1
|
Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T, Fujiwara H, Hirata M, Yamagami T, Nakahata T, Hirabayashi T, Yoneda Y, Tanaka K, Wang WZ, Mori C, Shiota K, Yoshida N, Kishimoto T. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci U S A 1996; 93:407-11. [PMID: 8552649 PMCID: PMC40247 DOI: 10.1073/pnas.93.1.407] [Citation(s) in RCA: 476] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
gp130 is a ubiquitously expressed signal-transducing receptor component shared by interleukin 6, interleukin 11, leukemia inhibitory factor, oncostatin M, ciliary neurotrophic factor, and cardiotrophin 1. To investigate physiological roles of gp130 and to examine pathological consequences of a lack of gp130, mice deficient for gp130 have been prepared. Embryos homozygous for the gp130 mutation progressively die between 12.5 days postcoitum and term. On 16.5 days postcoitum and later, they show hypoplastic ventricular myocardium without septal and trabecular defect. The subcellular ultrastructures in gp130-/- cardiomyocytes appear normal. The mutant embryos have greatly reduced numbers of pluripotential and committed hematopoietic progenitors in the liver and differentiated lineages such as T cells in the thymus. Some gp130-/- embryos show anemia due to impaired development of erythroid lineage cells. These results indicate that gp130 plays a crucial role in myocardial development and hematopoiesis during embryogenesis.
Collapse
|
research-article |
29 |
476 |
2
|
Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, Shibuya M. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 2001; 97:785-91. [PMID: 11157498 DOI: 10.1182/blood.v97.3.785] [Citation(s) in RCA: 359] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Flt-1, also known as vascular endothelial growth factor receptor 1 (VEGFR-1), is a high-affinity tyrosine kinase receptor for VEGF and is expressed almost exclusively on vascular endothelial cells. As an exception, Flt-1 transcript was recently found to be expressed in human peripheral blood monocytes. However, the protein of the Flt-1 receptor on the cell surface of monocytes is yet to be identified, and whether the Flt-1 protein is expressed during the differentiation of monocyte-macrophage lineage cells has not been examined. Using monoclonal antibodies against 2 different antigenic epitopes on the Flt-1 extracellular domain, this study found that the major population of the monocyte-marker CD97+ cells in human peripheral blood express Flt-1 as a cell surface molecule. VEGFR-2 (KDR/Flk-1) was not expressed at detectable levels in these cells. An Flt-1 neutralizing monoclonal antibody significantly suppressed VEGF-induced migration of the monocytes, suggesting an important role for Flt-1 in the biologic function of monocytes. Furthermore, CD34+ cells in human cord blood, originally negative for the Flt-1 expression, differentiated into Flt-1+ cells in association with the appearance of monocyte-macrophage markers after a 2-week culture in the presence of hematopoietic cytokines. In addition, the Flt-1+ CD11b+ cell fraction from CD34+ cells was found to efficiently differentiate into multinuclear osteoclasts in the presence of macrophage colony-stimulating factor and osteoclast differentiation factor. These results strongly suggest that Flt-1 is a novel cell surface marker as well as a biologically functional molecule for monocyte-macrophage lineages in humans.
Collapse
|
|
24 |
359 |
3
|
Ueda T, Tsuji K, Yoshino H, Ebihara Y, Yagasaki H, Hisakawa H, Mitsui T, Manabe A, Tanaka R, Kobayashi K, Ito M, Yasukawa K, Nakahata T. Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J Clin Invest 2000; 105:1013-21. [PMID: 10749580 PMCID: PMC377479 DOI: 10.1172/jci8583] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Here, we demonstrate a significant ex vivo expansion of human hematopoietic stem cells capable of repopulating in NOD/SCID mice. Using a combination of stem cell factor (SCF), Flk2/Flt3 ligand (FL), thrombopoietin (TPO), and a complex of IL-6 and soluble IL-6 receptor (IL-6/sIL-6R), we cultured cord blood CD34(+) cells for 7 days and transplanted these cells into NOD/SCID mice. Bone marrow engraftment was judged successful when recipient animals contained measurable numbers of human CD45(+) cells 10-12 weeks after transplantation. When cells were cultured with SCF+FL+TPO+IL-6/sIL-6R, 13 of 16 recipients were successfully engrafted, and CD45(+) cells represented 11.5% of bone marrow cells in engrafted recipients. Cells cultured with a subset of these factors were less efficiently engrafted, both as measured by frequency of successful transplantations and prevalence of CD45(+) cells. In animals receiving cells cultured with all 4 factors, human CD45(+) cells represented various lineages, including a large number of CD34(+) cells. The proportion of CD45(+) cells in recipient marrow was 10 times higher in animals receiving these cultured cells than in those receiving comparable numbers of fresh CD34(+) cells, and the expansion rate was estimated at 4.2-fold by a limiting dilution method. Addition of IL-3 to the cytokine combination abrogated the repopulating ability of the expanded cells. The present study may provide a novel culture method for the expansion of human transplantable hematopoietic stem cells suitable for clinical applications.
Collapse
|
research-article |
25 |
231 |
4
|
Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest 1982; 70:1324-8. [PMID: 7174797 PMCID: PMC370352 DOI: 10.1172/jci110734] [Citation(s) in RCA: 227] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We report identification of a unique class of human hemopoietic colony-forming cells with extensive ability to generate progenitors for secondary colonies. Mononuclear cells isolated from human umbilical cord blood formed colonies consisting of 40-500 blast cells after 25 d of incubation in methylcellulose culture in the presence of erythropoietin and medium conditioned by phytohemagglutinin-stimulated leukocytes. Replating of these blast cell colonies revealed that 100% of the primary colonies had the ability to generate secondary colonies, including multipotential colonies. These colonies could be distinguished from other hemopoietic colonies in situ by the complete absence of signs of terminal differentiation. Replating of granulocyte-erythrocyte-macrophage-megakaryocyte (GEMM) colonies, consisting of an average of 2 x 10(4) cells, revealed less capacity for secondary colony formation. This human blast cell colony assay may provide a method for quantitation of more primitive hemopoietic stem cells than progenitors for GEMM colonies (CFU-GEMM) in man.
Collapse
|
research-article |
43 |
227 |
5
|
Nakahata T, Ogawa M. Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc Natl Acad Sci U S A 1982; 79:3843-7. [PMID: 6954527 PMCID: PMC346524 DOI: 10.1073/pnas.79.12.3843] [Citation(s) in RCA: 220] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mouse marrow and spleen cells formed colonies consisting of 40-1,000 blast cells after 16 days of incubation in methylcellulose culture in the presence of medium conditioned by pokeweed mitogen-stimulated mouse spleen cells. These colonies could be distinguished from other hemopoietic colonies in situ by the complete absence of signs of terminal differentiation. Replating of these colonies (tentatively named stem cell colonies) revealed their self-renewal capacity and the extensive ability to generate secondary colonies, many of which were multipotential hemopoietic colonies. Some of the colonies revealed 100% replating efficiencies. Analyses of individual stem cells colonies revealed concurrent and high incidences of spleen colony-forming units and the macroscopic granulocyte-erythrocyte-macrophage-megakaryocyte colony-forming units (CFU-GEMM) in culture. Replating comparison between the stem cell colonies and GEMM colonies strongly indicated that the progenitors for the stem cell colonies are higher in the hierarchy of stem cell differentiation than are CFU-GEMM. Quantitation of stem cell colonies provides an assay for the class of primitive hemopoietic progenitors described here.
Collapse
|
research-article |
43 |
220 |
6
|
Matsumoto A, Seki Y, Kubo M, Ohtsuka S, Suzuki A, Hayashi I, Tsuji K, Nakahata T, Okabe M, Yamada S, Yoshimura A. Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol Cell Biol 1999; 19:6396-407. [PMID: 10454585 PMCID: PMC84609 DOI: 10.1128/mcb.19.9.6396] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Various cytokines utilize Janus kinase (JAK) and the STAT (signal transducers and activators of transcription) family of transcription factors to carry out their biological functions. Among STATs, two highly related proteins, STAT5a and STAT5b, are activated by various cytokines, including prolactin, growth hormone, erythropoietin, interleukin 2 (IL-2), and IL-3. We have cloned a STAT5-dependent immediate-early cytokine-responsive gene, CIS1 (encoding cytokine-inducible SH2-containing protein 1). In this study, we created CIS1 transgenic mice under the control of a beta-actin promoter. The transgenic mice developed normally; however, their body weight was lower than that of the wild-type mice, suggesting a defect in growth hormone signaling. Female transgenic mice failed to lactate after parturition because of a failure in terminal differentiation of the mammary glands, suggesting a defect in prolactin signaling. The IL-2-dependent upregulation of the IL-2 receptor alpha chain and proliferation were partially suppressed in the T cells of transgenic mice. These phenotypes remarkably resembled those found in STAT5a and/or STAT5b knockout mice. Indeed, STAT5 tyrosine phosphorylation was suppressed in mammary glands and the liver. Furthermore, the IL-2-induced activation of STAT5 was markedly inhibited in T cells in transgenic mice, while leukemia inhibitory factor-induced STAT3 phosphorylation was not affected. We also found that the numbers of gamma delta T cells, as well as those of natural killer (NK) cells and NKT cells, were dramatically decreased and that Th1/Th2 differentiation was altered in transgenic mice. These data suggest that CIS1 functions as a specific negative regulator of STAT5 in vivo and plays an important regulatory role in the liver, mammary glands, and T cells.
Collapse
|
research-article |
26 |
182 |
7
|
Nakahata T, Gross AJ, Ogawa M. A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J Cell Physiol 1982; 113:455-8. [PMID: 7174743 DOI: 10.1002/jcp.1041130314] [Citation(s) in RCA: 147] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We recently identified a murine hemopoietic stem cell colony which consists of undifferentiated (blast) cells and appears to be more primitive than CFU-GEMM in the stem cell hierarchy. The progenitors for the colony which we termed "stem cell colony" possess an extensive self-renewal capacity and the ability to generate many secondary multipotential hemopoietic colonies in culture. We replated a total of 68 stem cell colonies from cultures of murine spleen cells and analyzed the number of stem cell--and granulocyte(neutrophil)-erythrocyte-macrophage-megakaryocyte (GEMM) colony-forming cells in individual stem cell colonies. Of the 68 stem cell colonies, 35 contained progenitors (abbreviated as "S"-cells) for stem cell colonies. The distributions of S-cells and CFU-GEMM in individual stem cell colonies were extremely heterogeneous. Neither the frequency distributions of S-cells nor CFU-GEMM in stem cell colonies could be fitted well by Poisson distribution. Rather, the frequency distribution of the s-cells could be approximated by a geometric distribution and that of CFU-GEMM by an exponential distribution, both of which are variates of the gamma distribution. Our observations are in agreement with those on the distributions of CFU-S in individual spleen colonies and provided support for a stochastic model for stem cell self-renewal and commitment in culture. Application of the theory of the branching process to the distribution of S-cells revealed a distributional parameter "p" of 0.589 which is also in agreement with the earlier report on the p value for reproduction of CFU-S.
Collapse
|
|
43 |
147 |
8
|
Toru H, Ra C, Nonoyama S, Suzuki K, Yata J, Nakahata T. Induction of the high-affinity IgE receptor (Fc epsilon RI) on human mast cells by IL-4. Int Immunol 1996; 8:1367-73. [PMID: 8921414 DOI: 10.1093/intimm/8.9.1367] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The high-affinity IgE receptor (Fc epsilon RI) is necessary for the induction of IgE-mediated allergic reactions. Cross-linking of Fc epsilon RI expressed on mast cells causes the release of various inflammatory mediators, which trigger allergic reactions. Recently, mast cells lacking Fc epsilon RI have been observed in vivo and in vitro, suggesting the presence of regulational mechanisms in the induction of Fc epsilon RI. In this report, we demonstrate that IL-4 up-regulates Fc epsilon RI in cultured human mast cells, which are grown from cord blood mononuclear cells in the presence of stem cell factor and IL-6, and usually lack Fc epsilon RI expression. At the protein level, the induction of Fc epsilon RI was observed by flow cytometric analysis and the induced Fc epsilon RI expression was stable for at least 23 days in the presence of IL-4. Consistently, Northern blot analysis demonstrated the increase of alpha chain mRNA of Fc epsilon RI and revealed that the up-regulation of Fc epsilon RI occurred at the transcriptional level. Fc epsilon RI induced by IL-4 was functional and caused histamine and beta-hexosaminidase release from mast cells upon cross-linking. Taken together, these results indicate a new role of IL-4 in allergic reactions, besides the stimulation of IgE production.
Collapse
|
|
29 |
144 |
9
|
Kinoshita T, Sekiguchi T, Xu MJ, Ito Y, Kamiya A, Tsuji K, Nakahata T, Miyajima A. Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. Proc Natl Acad Sci U S A 1999; 96:7265-70. [PMID: 10377403 PMCID: PMC22074 DOI: 10.1073/pnas.96.13.7265] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embryonic liver is a transient site for definitive hematopoiesis. Along with maturation of the bone marrow and spleen, hematopoietic cells relocate from the liver to their final destinations while the liver starts organizing its own structure and develops numerous metabolic functions toward adult. Recently, it was demonstrated that the signal exerted by oncostatin M (OSM) through gp130 plays a pivotal role in the maturation process of the liver both in vitro and in vivo. However, the molecular basis underlying the termination of embryonic hematopoiesis remains unknown. In this study, we report that primary culture of fetal hepatic cells from embryonic day 14.5 murine embryos supported expansion of blood cells from Lin-Sca-1(+)c-Kit+ cells, giving rise to myeloid, lymphoid, and erythroid lineages. Of interest, promotion of hepatic development by OSM and glucocorticoid strongly suppressed in vitro hematopoiesis. Consistent with these results, hepatic culture from the embryonic day 18.5 liver no longer supported hematopoiesis. These data together with the previous observations suggest that the signals exerted by OSM and glucocorticoid induce hepatic differentiation, which in turn terminate embryonic hematopoiesis and promote relocation of hematopoietic cells.
Collapse
|
research-article |
26 |
134 |
10
|
Mukouyama Y, Hara T, Xu M, Tamura K, Donovan PJ, Kim H, Kogo H, Tsuji K, Nakahata T, Miyajima A. In vitro expansion of murine multipotential hematopoietic progenitors from the embryonic aorta-gonad-mesonephros region. Immunity 1998; 8:105-14. [PMID: 9462516 DOI: 10.1016/s1074-7613(00)80463-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The origin of hematopoietic stem cells (HSCs) and their growth factor requirement are poorly understood. Here we describe a new in vitro culture system of the aorta-gonad-mesonephros (AGM) region, where long-term repopulating HSCs first arise. We demonstrate that oncostatin M (OSM) is expressed in the AGM and is absolutely required for the expansion of multipotential hematopoietic progenitors in vitro. In addition, OSM enhances the formation of endothelial cell clusters. Thus, OSM appears to be a key cytokine for the development of multipotential hematopoietic progenitors in the AGM, possibly acting on common precursor cells between HSCs and endothelial cells. By using the AGM culture derived from macrophage colony-stimulating factor (M-CSF)-deficient op/op mutant embryos, we also show a pivotal role for M-CSF in fetal myelopoiesis.
Collapse
|
|
27 |
130 |
11
|
Tanaka Y, Naruse I, Hongo T, Xu M, Nakahata T, Maekawa T, Ishii S. Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech Dev 2000; 95:133-45. [PMID: 10906457 DOI: 10.1016/s0925-4773(00)00360-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CREB-binding protein (CBP) is a transcriptional co-activator which is required by many transcription factors. Rubinstein-Taybi syndrome (RTS), which is an autosomal dominant syndrome characterized by abnormal pattern formation, is associated with mutations in the human CBP gene. Various abnormalities occur at high frequency in the skeletal system of heterozygous Cbp-deficient mice, but some features of RTS such as cardiac anomalies do not, suggesting that some symptoms of RTS are caused by a dominant-negative mechanism. Here we report the characterization of homozygous Cbp-deficient mice. Homozygous mutants died around E10.5-E12.5, apparently as a result of massive hemorrhage caused by defective blood vessel formation in the central nervous system, and exhibited apparent developmental retardation as well as delays in both primitive and definitive hematopoiesis. Cbp-deficient embryos exhibited defective neural tube closure which was similar to those observed in twist-deficient embryos. However, a decrease in the level of twist expression was not observed in Cbp-deficient embryos. Anomalous heart formation, a feature of RTS patients and mice mutated in the CBP-related molecule, p300, was not observed in Cbp-deficient embryos. Since both Cbp and p300 are ubiquitously expressed in embryonic tissues including the developing heart, these results suggest that cardiac anomalies observed in RTS patients may be caused by a dominant negative effect of mutant CBP.
Collapse
|
|
25 |
123 |
12
|
Matsuoka S, Tsuji K, Hisakawa H, Ebihara Y, Ishii T, Sugiyama D, Manabe A, Tanaka R, Ikeda Y, Asano S, Nakahata T. Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta-gonad-mesonephros region-derived stromal cells. Blood 2001; 98:6-12. [PMID: 11418454 DOI: 10.1182/blood.v98.1.6] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is controversy as to whether murine definitive hematopoiesis originates from yolk sac (YS) or the intraembryonic region. This study reports the generation of definitive hematopoietic stem cells (HSCs) from both early YS and intraembryonic paraaortic splanchnopleures (P-Sp) on AGM-S3 stromal cells derived from the aorta-gonad-mesonephros (AGM) region at 10.5 days post coitum (dpc). YS and P-Sp cells at 8.5 dpc generated no definitive hematopoiesis-derived colony-forming cells in cocultures with AGM-S3 cells, but spleen colony-forming cells and HSCs capable of reconstituting definitive hematopoiesis in adult mice simultaneously appeared on day 4 of coculture. Precursors for definitive HSCs were present in YS and P-Sp at 8.0 dpc, a time when YS and embryo were not connected by blood vessels. It is proposed that precursors with the potential to generate definitive HSCs appear independently in YS and intraembryonic P-Sp and that the P-Sp or AGM region affords the microenvironment that facilitates generation of definitive hematopoiesis from precursors.
Collapse
|
|
24 |
120 |
13
|
Toru H, Pawankar R, Ra C, Yata J, Nakahata T. Human mast cells produce IL-13 by high-affinity IgE receptor cross-linking: enhanced IL-13 production by IL-4-primed human mast cells. J Allergy Clin Immunol 1998; 102:491-502. [PMID: 9768593 DOI: 10.1016/s0091-6749(98)70140-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Mast cells play a central role not only in the early phase of the allergic reaction, but also participate in the late phase of the allergic reaction through the allergen and IgE-dependent release of multifunctional cytokines. OBJECTIVE Using the recently established culture system for human mast cells, we examined the expression of a variety of cytokines in cord blood-derived human cultured mast cells (HCMCs) in response to different stimuli. METHODS HCMCs were grown from cord blood mononuclear cells in the presence of stem cell factor and IL-6 for 10 weeks. Cytokine mRNA expression in HCMCs by the different stimuli was examined by RT-PCR. Then taking 2 important cytokines, IL-13 and IL4, that share several functional properties and play important roles in allergic diseases, we examined protein as well as mRNA expression of both cytokines in HCMCs. RESULTS HCMCs did not express either IL-13 or IL-4 spontaneously. Stimulation with PMA + A23187 induced the expression of IL4 protein, as well as IL-13 protein, in their cytoplasm, although IL-4 secreted in the supernatant was below detectable levels in contrast to a significant amount of IL-13. Stimulation of HCMCs by cross-linking of the high-affinity IgE receptor (Fc(epsilon)RI) induced the expression of IL-13 mRNA and protein, but not IL4. Although we previously found that IL-4 upregulates Fc(epsilon)RI expression on HCMCs, when HCMCs were first cultured in the presence of IL4 and then activated through FC(epsilon)RI cross-linking, remarkable increase was found in IL-13 production. Furthermore, although IL-4 was still undetectable at protein level, IL-4 mRNA expression was induced in the IL-4-primed HCMCs stimulating Fc(epsilon)RI cross-linking. In addition, we examined the effects of these cytokines on the surface molecule expression in HCMCs. Although IL4 remarkably upregulated lymphocyte function-associated antigen-1, intercellular adhesion molecule-1, and Fc(epsilon)RI expression and downregulated c-kit expression in HCMCs, IL-13 did not. CONCLUSIONS Our observation that HCMCs produce IL-13 on cross-linking of Fc(epsilon)RI, which was enhanced by IL-4 priming, supports an important role of mast cells in amplification of allergic reaction and further suggests one of the mechanisms enhancing mast cell function in the microenvironment.
Collapse
|
|
27 |
115 |
14
|
Koike K, Nakahata T, Takagi M, Kobayashi T, Ishiguro A, Tsuji K, Naganuma K, Okano A, Akiyama Y, Akabane T. Synergism of BSF-2/interleukin 6 and interleukin 3 on development of multipotential hemopoietic progenitors in serum-free culture. J Exp Med 1988; 168:879-90. [PMID: 3049908 PMCID: PMC2189042 DOI: 10.1084/jem.168.3.879] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We investigated the effects of B cell stimulatory factor 2/interleukin 6 (BSF-2/IL-6) on the development of murine hemopoietic progenitors using serum-containing culture and serum-free culture. In serum-containing culture, BSF-2 mainly supported multipotential blast cell colonies from spleen cells of normal and 5-fluorouracil (5-FU)-treated mice. In serum-free culture, no colony growth was seen in the presence of BSF-2. Addition of BSF-2 to the serum-free culture containing IL-3 resulted in a significant increase in the number of colonies formed from multipotential progenitors in spleen cells and bone marrow cells of 5-FU-treated mice, whereas no effects were seen on the number of single or oligolineage colonies formed by the spleen cells of normal mice. These results suggested that BSF-2 and IL-3 act synergistically on the multipotential progenitors but not on the maturer progenitors. When BSF-2 was added to a culture containing low concentrations of IL-3 (1 U/ml, 4 U/ml), which had little effect on colony formation, the number of total colonies formed by the spleen cells and bone marrow cells of 5-FU-treated mice increased significantly. The combination of BSF-2 and 40 U/ml of IL-3 resulted in a significant enlargement of GMM colonies. Thus, BSF-2 appears to enhance the sensitivity of multipotential hemopoietic progenitors to IL-3.
Collapse
|
research-article |
37 |
108 |
15
|
Matsuoka S, Ebihara Y, Xu M, Ishii T, Sugiyama D, Yoshino H, Ueda T, Manabe A, Tanaka R, Ikeda Y, Nakahata T, Tsuji K. CD34 expression on long-term repopulating hematopoietic stem cells changes during developmental stages. Blood 2001; 97:419-25. [PMID: 11154218 DOI: 10.1182/blood.v97.2.419] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CD34 antigen serves as an important marker for primitive hematopoietic cells in therapeutic transplantation of hematopoietic stem cells (HSC) and gene therapy, but it has remained an open question as to whether or not most HSC express CD34. Using a competitive long-term reconstitution assay, the results of this study confirm developmental changes in CD34 expression on murine HSC. In fetuses and neonates, CD34 was expressed on Lin(-)c-Kit(+) long-term repopulating HSC of bone marrow (BM), liver, and spleen. However, CD34 expression on HSC decreased with aging, and in mice older than 10 weeks, HSC were most enriched in the Lin(-)c-Kit(+)CD34(-) marrow cell fraction. A second transplantation was performed from primary recipients who were transplanted with neonatal Lin(-)c-Kit(+) CD34(high) HSC marrow. Although donor-type HSC resided in CD34-expressing cell fraction in BM cells of the first recipients 4 weeks after the first transplantation, the stem cell activity had shifted to Lin(-)c-Kit(+)CD34(-) cells after 16 weeks, indicating that adult Lin(-)c-Kit(+)CD34(-) HSC are the progeny of neonatal CD34-expresssing HSC. Assays for colony-forming cells showed that hematopoietic progenitor cells, unlike HSC, continue to express CD34 throughout murine development. The present findings are important because the clinical application of HSC can be extended, in particular as related to CD34-enriched HSC and umbilical cord blood HSC.
Collapse
|
|
24 |
101 |
16
|
Tomizawa D, Koh K, Sato T, Kinukawa N, Morimoto A, Isoyama K, Kosaka Y, Oda T, Oda M, Hayashi Y, Eguchi M, Horibe K, Nakahata T, Mizutani S, Ishii E. Outcome of risk-based therapy for infant acute lymphoblastic leukemia with or without an MLL gene rearrangement, with emphasis on late effects: a final report of two consecutive studies, MLL96 and MLL98, of the Japan Infant Leukemia Study Group. Leukemia 2007; 21:2258-63. [PMID: 17690691 DOI: 10.1038/sj.leu.2404903] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We evaluated the efficacy of a treatment strategy in which infants with acute lymphoblastic leukemia (ALL) were stratified by their MLL gene status and then assigned to different risk-based therapies. A total of 102 patients were registered on two consecutive multicenter trials, designated MLL96 and MLL98, between 1995 and 2001. Those with a rearranged MLL gene (MLL-R, n=80) were assigned to receive intensive chemotherapy followed by hematopoietic stem cell transplantation (HSCT), while those with germline MLL (MLL-G, n=22) were treated with chemotherapy alone. The 5-year event-free survival (EFS) rate for all 102 infants was 50.9% (95% confidence interval, 41.0-60.8%). The most prominent late effect was growth impairment, observed in 58.9% of all evaluable patients in the MLL-R group. This plan of risk-based therapy appears to have improved the overall prognosis for infants with ALL, compared with previously reported results. However, over half the events in patients with MLL rearrangement occurred before the instigation of HSCT, and that HSCT-related toxic events comprised 36.3% (8/22) of post-transplantation events, suggesting that further stratification within the MLL-R group and the development of more effective early-phase intensification chemotherapy will be needed before the full potential of this strategy is realized.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
101 |
17
|
Akasaka T, Tsuji K, Kawahira H, Kanno M, Harigaya K, Hu L, Ebihara Y, Nakahata T, Tetsu O, Taniguchi M, Koseki H. The role of mel-18, a mammalian Polycomb group gene, during IL-7-dependent proliferation of lymphocyte precursors. Immunity 1997; 7:135-46. [PMID: 9252126 DOI: 10.1016/s1074-7613(00)80516-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
mel-18 is a mammalian homolog of Drosophila melanogaster Polycomb group genes. Mice lacking the mel-18 gene show a posterior transformation of the axial skeleton, severe combined immunodeficiency, and a food-passing disturbance in the lower intestine due to hypertrophy of the smooth muscle layer. In this study, the severe combined immunodeficiency observed in mel-18 mutant mice is correlated with the impaired mitotic response of lymphocyte precursors upon interleukin-7 stimulation. Strikingly, the axial skeleton and lymphoid phenotypes are identical in both mel-18 and bmi-1 mutants, indicating that the Mel-18 and Bmi-1 gene products might act in the same genetic cascade. These results suggest that mammalian Polycomb group gene products are involved in cell cycle progression in the immune system.
Collapse
|
|
28 |
100 |
18
|
Tajima S, Tsuji K, Ebihara Y, Sui X, Tanaka R, Muraoka K, Yoshida M, Yamada K, Yasukawa K, Taga T, Kishimoto T, Nakahata T. Analysis of interleukin 6 receptor and gp130 expressions and proliferative capability of human CD34+ cells. J Exp Med 1996; 184:1357-64. [PMID: 8879208 PMCID: PMC2192851 DOI: 10.1084/jem.184.4.1357] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We recently demonstrated that stimulation of gp130 by a combination of soluble interleukin 6 receptor (sIL-6R) and IL-6 but not IL-6 alone significantly stimulates the ex vivo expansion of primitive hematopoietic progenitors and the generation of erythroid cells from human CD34+ cells in the presence of stem cell factor (SCF). Here, we show that gp130 is found low positively on most CD34+ cells, whereas IL-6R is expressed on only 30-50% of these cells. Although most of the colonies generated from FACS-sorted CD34+IL-6R+ cells were granulocyte/macrophage (GM) colonies, CD34+IL-6R- cells gave rise to various types of colonies, including erythroid bursts, GM, megakaryocytes, and mixed colonies in methylcellulose culture with a combination of IL-6, sIL-6R, and SCF. Similar results were obtained in culture supplemented with a combination of IL-3, IL-6, SCF, granulocyte colony-stimulating factor, erythropoietin, and thrombopoietin. A limiting dilution analysis of long-term culture-initiating cells (LTC-IC) showed that the CD34+IL-6R- cells contained a larger number of LTC-IC than did the CD34+IL-6R+ cells. In a serum-free suspension of CD34+IL-6R- cells, the addition of sIL-6R to the combination of IL-6 and SCF dramatically increased the total and multipotential progenitors, whereas CD34+IL-6R+ cells failed to do so under the same conditions. These results indicate that most of the erythroid, megakaryocytic, and primitive human hematopoietic progenitors are included in the IL-6R- populations, and the activation of gp130 on these progenitors can be achieved by a complex of IL-6-sIL-6R, but not by IL-6 alone. The present culture system using IL-6, sIL-6R, and SCF may provide a novel approach for ex vivo expansion of human primitive hematopoietic progenitors.
Collapse
|
research-article |
29 |
99 |
19
|
Xu M J, Matsuoka S, Yang FC, Ebihara Y, Manabe A, Tanaka R, Eguchi M, Asano S, Nakahata T, Tsuji K. Evidence for the presence of murine primitive megakaryocytopoiesis in the early yolk sac. Blood 2001; 97:2016-22. [PMID: 11264166 DOI: 10.1182/blood.v97.7.2016] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During mouse embryogenesis, primitive erythropoiesis occurs in blood islands of the yolk sac (YS) on the seventh day of gestation. This study demonstrated for the first time the presence of unique primitive megakaryocytic (Mk) progenitors in the early YS, which disappeared by 13.5 days postcoitum (dpc). When 7.5 dpc YS cells were incubated in the presence of stem cell factor (SCF), interleukin (IL)-3, IL-6, erythropoietin (EPO), thrombopoietin (TPO), and granulocyte colony-stimulating factor in methylcellulose clonal culture, not only erythroid bursts but also megakaryocyte colonies were observed. The megakaryocytes in the colonies matured to proplatelet stages and produced platelets as early as day 3 of culture, much earlier than those from adult bone marrow, although their ploidy class was lower. These megakaryocytes were stained with acetylcholine esterase, and expressed platelet glycoprotein (GP)Ib beta, GPIIIa, and platelet factor 4 by reverse transcription-polymerase chain reaction analysis. The analysis of hemoglobin types in erythrocytes obtained from hematopoietic multilineage colonies containing the megakaryocytes indicated that the Mk progenitors originated from primitive hematopoiesis. The primitive Mk progenitors formed colonies in the absence of any cytokines in fetal bovine serum (FBS)-containing culture, and SCF, IL-3, EPO, and TPO significantly enhanced the Mk colony formation. In FBS-free culture, however, no colony formation was induced without these cytokines. Because megakaryocytes were detected in 8.5-dpc YS, these unique primitive Mk progenitors may rapidly mature and give rise to platelets to prevent hemorrhage in the simultaneously developing blood vessels until definitive hematopoiesis begins to produce platelets. (Blood. 2001;97:2016-2022)
Collapse
|
|
24 |
83 |
20
|
Manabe A, Okamura J, Yumura-Yagi K, Akiyama Y, Sako M, Uchiyama H, Kojima S, Koike K, Saito T, Nakahata T. Allogeneic hematopoietic stem cell transplantation for 27 children with juvenile myelomonocytic leukemia diagnosed based on the criteria of the International JMML Working Group. Leukemia 2002; 16:645-9. [PMID: 11960345 DOI: 10.1038/sj.leu.2402407] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2001] [Accepted: 11/21/2001] [Indexed: 11/08/2022]
Abstract
Prognostic factors of juvenile myelomonocytic leukemia (JMML) have not been clarified because of its very low incidence and inaccuracy in the diagnosis. The purpose of this study was to evaluate children with JMML given an allogeneic hematopoietic stem cell transplantation (SCT) and the role of different variables potentially influencing outcome in a nationwide survey in Japan based on the newly proposed criteria by the International JMML Working Group. The study patients were 27 children who underwent SCT among 55 JMML patients retrospectively collected in the survey. The source of grafts was HLA-identical siblings in 12 cases, HLA-matched unrelated individuals in 10 and others in five. Total body irradiation was used in 18 cases. Event-free and overall survival (OS) at 4 years after SCT were 54.2 +/- 11.2% (s.e.) and 57.9 +/- 11.0% (s.e.), respectively. Six patients died of relapse and three of complications. Patients with abnormal karyotypes showed a significantly lower OS than those with normal karyotypes (P < 0.001). Patients below 1 year of age showed a significantly higher OS than those of 1 year of age or more (P = 0.02). Patients with grade 0-1 acute graft-versus-host disease (GVHD) or chronic GVHD had a more favorable OS than those without them, although they were not statistically significant (P > 0.05). Other variables studied were not associated with OS. A multivariate analysis of these factors yielded the abnormal karyotype as the only significant risk factor for lower OS (risk ratio: 11.0; 95% CI: 2.7-45.1).
Collapse
|
Comparative Study |
23 |
82 |
21
|
Nakahata T, Ogawa M. Clonal origin of murine hemopoietic colonies with apparent restriction to granuclocyte-macrophage-megakaryocyte (GMM) differentiation. J Cell Physiol 1982; 111:239-46. [PMID: 7096452 DOI: 10.1002/jcp.1041110304] [Citation(s) in RCA: 82] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We characterized murine hemopoietic colonies consisting of granulocytes, macrophages, megakaryocytes, and blast cells and yet lacking erythroid elements. Mouse marrow or spleen cells were cultured in methylcellulose media in the presence of 10% (v/v) pokeweek mitogen-stimulated spleen cell-conditioned medium (PWM-SCM) and 2 units/ml erythropoietin for 8 days. Granulocyte-macrophage-megakaryocyte (GMM) colonies could be distinguished from granulocyte-erythrocyte-macrophage-megakaryocyte (GEMM) colonies because the former lacked the typical appearance of bursts with red color. Analysis of Y-chromosomes in mixing experiments with male and female marrow cells confirmed the clonal nature of the GMM colonies. Differential counts of GMM colonies revealed varying, but significant, numbers of blast cells in all of the day-8 and day-12 colonies and in seven out of ten day-14 GMM colonies. In general, the percentages of blast cells were inversely related to the length of incubation in culture. Replating experiments confirmed the absence of late erythroid precursors such as CFU-E and normoblasts in all of the 50 day-8 GMM colonies. However, six out of the 50 GMM colonies contained early progenitors capable of erythroid expression, such as BFU-E, CFU-EM, CFU-GEM, and CFU-GEMM. In contrast, the three day-14 GMM colonies which did not reveal blast cells failed to produce secondary colonies. Thus, while the progenitors for the latter colonies are restricted to only granulocyte-macrophage-megakaryocyte differentiation, some of the apparent GMM colonies containing blast cells may have originated in early progenitors close to pluripotent stem cells. Detailed cytological analyses and replating experiments are necessary for characterization of true differentiation potentials of mixed colonies in culture.
Collapse
|
|
43 |
82 |
22
|
Sui X, Tsuji K, Tajima S, Tanaka R, Muraoka K, Ebihara Y, Ikebuchi K, Yasukawa K, Taga T, Kishimoto T, Nakahata T. Erythropoietin-independent erythrocyte production: signals through gp130 and c-kit dramatically promote erythropoiesis from human CD34+ cells. J Exp Med 1996; 183:837-45. [PMID: 8642288 PMCID: PMC2192354 DOI: 10.1084/jem.183.3.837] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Erythropoietin (EPO) is the primary humoral regulator of erythropoiesis and no other factor has previously been reported to support proliferation and terminal maturation of erythroid cells from hemopoietic stem cells. Here we show that stimulation of glycoprotein (gp130) by a combination of recombinant human soluble interleukin 6 receptor (sIL-6R) and IL-6 but not sIL-6R or IL-6 alone can support proliferation, differentiation, and terminal maturation of erythroid cells in the absence of EPO from purified human CD34+ cells in suspension culture containing stem cell factor (SCF). A number of erythroid bursts and mixed erythroid colonies also developed in methylcellulose culture under the same combination. The addition of anti-gp130 monoclonal antibodies but not anti-EPO antibody to the same culture completely abrogated the generation of erythroid cells. These results clearly demonstrate that mature erythroid cells can be emerged from hemopoietic progenitors without EPO in vitro. Together with the previous reports that human sera contain detectable levels of sIL-6R, IL-6, and SCF, current data suggest that gp130 signaling in association with c-kit activation may play a role in human erythropoiesis in vivo.
Collapse
|
research-article |
29 |
79 |
23
|
Ito M, Kobayashi K, Nakahata T. NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol 2008; 324:53-76. [PMID: 18481452 DOI: 10.1007/978-3-540-75647-7_3] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Humanized mice," in which various kinds of human cells and tissues can be engrafted and retain the same functions as in humans, are extremely useful because human diseases can be studied directly. Using the newly combined immunodeficient NOD-scid IL2rgamma(null) mice and Rag2(null) IL2rgamma(null) humanized mice, it has became possible to expand applications because various hematopoietic cells can be differentiated by human hematopoietic stem cell transplantation, and the human immune system can be reconstituted to some degree. This work has attracted attention worldwide, but the development and use of immunodeficient mice in Japan are not very well known or understood. This review describes the history and characteristics of the NOD/Shi-scid IL2rgamma(null) (NOG) and BALB/cA-Rag2(null) IL2rgamma(null) mice that were established in Japan, including our unpublished data from researchers who are currently using these mice. In addition, we also describe the potential development of new immunodeficient mice that can be used as humanized mice in the future.
Collapse
|
Review |
17 |
75 |
24
|
Yoshino H, Ueda T, Kawahata M, Kobayashi K, Ebihara Y, Manabe A, Tanaka R, Ito M, Asano S, Nakahata T, Tsuji K. Natural killer cell depletion by anti-asialo GM1 antiserum treatment enhances human hematopoietic stem cell engraftment in NOD/Shi-scid mice. Bone Marrow Transplant 2000; 26:1211-6. [PMID: 11149733 DOI: 10.1038/sj.bmt.1702702] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The scid mutation was backcrossed on to the NOD/Shi mouse background, resulting in the development of NOD/Shi-scid mice, which showed lack of mature lymphocytes, macrophage dysfunction and absence of circulating complement, but were not as impaired in natural killer (NK) cell activity as NOD/LtSz-scid mice. We then examined the effect of recipient NK cell depletion by anti-asialo GM1 antiserum on the repopulation of human cord blood (CB) hematopoietic stem cells (HSC) in NOD/Shi-scid mice to clarify the role of recipient NK cells in human HSC engraftment. The anti-asialo GM1 antiserum treatment significantly enhanced the engraftment of CB CD34+ cells, but did not affect the differentiation of the engrafted HSC into each hematopoietic lineage. The NK cell depletion was effective at early stages of the engraftment, but not 3 weeks after the transplantation. The anti-asialo GM1 antiserum treatment did not improve the engraftment by human HSC in scid mice which lack mature lymphocytes, but show neither macrophage dysfunction nor a reduction in circulating complement, indicating that macrophages and/or complement also have roles in HSC graft rejection. The present study indicates that the preconditioning targeting of recipient NK cells in addition to T cell suppression and myeloablation might prevent HSC graft failure, and that NOD/Shi-scid mice treated with anti-asialo GM1 antiserum could provide a useful tool for evaluating the repopulating ability of transplantable human HSC.
Collapse
|
|
25 |
73 |
25
|
Nakahata T, Kobayashi T, Ishiguro A, Tsuji K, Naganuma K, Ando O, Yagi Y, Tadokoro K, Akabane T. Extensive proliferation of mature connective-tissue type mast cells in vitro. Nature 1986; 324:65-7. [PMID: 3491321 DOI: 10.1038/324065a0] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There are two phenotypically distinct subpopulations of mast cells in rodents: connective tissue-type mast cells (CTMC) and mucosal mast cells (MMC). These populations differ in their location, cell size, staining characteristics, ultrastructure, mediator content and T-cell dependency. Several investigators recently reported a further subclass of mast cells which arise when normal mouse haematopoietic cells are cultured with interleukin-3 (IL-3); IL-3 is an activity similar or identical to mast-cell growth factor, histamine-producing factor, or P-cell stimulating factor. These cultured mast cells are in many ways similar to MMC; they stain with Alcian blue but not safranin, contain chondroitin sulphate E proteoglycan rather than heparin proteoglycan and have relatively low histamine content, as do MMC. Although proliferation of MMC is known to be T-cell dependent in vivo and thought to be IL-3-dependent in vitro, the factors on which CTMC proliferation depends remain elusive. Here we show that mature CTMC purified from mouse peritoneal cells can proliferate in vitro in methylcellulose culture and maintain the appearance and function of CTMC. We also present evidence that mature CTMC cannot proliferate in the presence of pure IL-3 alone.
Collapse
|
|
39 |
68 |