1
|
Aruga J, Tohmonda T, Homma S, Mikoshiba K. Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev Biol 2002; 244:329-41. [PMID: 11944941 DOI: 10.1006/dbio.2002.0598] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of Zic1 was investigated by altering its expression status in developing spinal cords. Zic genes encode zinc finger proteins homologous to Drosophila Odd-paired. In vertebrate neural development, they are generally expressed in the dorsal neural tube. Chick Zic1 was initially expressed evenly along the dorsoventral axis and its expression became increasingly restricted dorsally during the course of neurulation. The dorsal expression of Zic1 was regulated by Sonic hedgehog, BMP4, and BMP7, as revealed by their overexpressions in the spinal cord. When Zic1 was misexpressed on the ventral side of the chick spinal cord, neuronal differentiation was inhibited irrespective of the dorsoventral position. In addition, dorsoventral properties were not grossly affected as revealed by molecular markers. Concordantly, when Zic1 was overexpressed in the dorsal spinal cord in transgenic mice, we observed hypercellularity in the dorsal spinal cord. The transgene-expressing cells were increased in comparison to those of truncated mutant Zic1-bearing mice. Conversely, we observed a significant cell number reduction without loss of dorsal properties in the dorsal spinal cords of Zic1-deficient mice. Taken together, these findings suggest that Zic1 controls the expansion of neuronal precursors by inhibiting the progression of neuronal differentiation. Notch-mediated inhibition of neuronal differentiation is likely to act downstream of Zic genes since Notch1 is upregulated in Zic1-overexpressing spinal cords in both the mouse and the chick.
Collapse
|
|
23 |
104 |
2
|
Tohmonda T, Miyauchi Y, Ghosh R, Yoda M, Uchikawa S, Takito J, Morioka H, Nakamura M, Iwawaki T, Chiba K, Toyama Y, Urano F, Horiuchi K. The IRE1α-XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix. EMBO Rep 2011; 12:451-7. [PMID: 21415858 DOI: 10.1038/embor.2011.34] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 12/19/2022] Open
Abstract
During skeletal development, osteoblasts produce large amounts of extracellular matrix proteins and must therefore increase their secretory machinery to handle the deposition. The accumulation of unfolded protein in the endoplasmic reticulum induces an adoptive mechanism called the unfolded protein response (UPR). We show that one of the most crucial UPR mediators, inositol-requiring protein 1α (IRE1α), and its target transcription factor X-box binding protein 1 (XBP1), are essential for bone morphogenic protein 2-induced osteoblast differentiation. Furthermore, we identify Osterix (Osx, a transcription factor that is indispensible for bone formation) as a target gene of XBP1. The promoter region of the Osx gene encodes two potential binding motifs for XBP1, and we show that XBP1 binds to these regions. Thus, the IRE1α-XBP1 pathway is involved in osteoblast differentiation through promoting Osx transcription.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
98 |
3
|
Inoue T, Hatayama M, Tohmonda T, Itohara S, Aruga J, Mikoshiba K. Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives. Dev Biol 2004; 270:146-62. [PMID: 15136147 DOI: 10.1016/j.ydbio.2004.02.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 02/05/2004] [Accepted: 02/09/2004] [Indexed: 10/26/2022]
Abstract
Zic family genes encode zinc finger proteins, which are homologues of the Drosophila pair-rule gene odd-paired. In the present study, we characterized the fifth member of the mouse Zic family gene, mouse Zic5. Zic5 is located near Zic2, which is responsible for human brain malformation syndrome (holoprosencephaly, or HPE). In embryonic stages, Zic5 was expressed in dorsal part of neural tissues and limbs. Expression of Zic5 overlapped with those of other Zic genes, most closely with Zic2, but was not identical. Targeted disruption of Zic5 resulted in insufficient neural tube closure at the rostral end, similar to that seen in Zic2 mutant mice. In addition, the Zic5-deficient mice exhibited malformation of neural-crest-derived facial bones, especially the mandible, which had not been observed in other Zic family mutants. During the embryonic stages, there were delays in the development of the first branchial arch and extension of the trigeminal and facial nerves. Neural crest marker staining revealed fewer neural crest cells in the dorsal cephalic region of the mutant embryos without significant changes in their migration. When mouse Zic5 was overexpressed in Xenopus embryos, expression of a neural crest marker was enhanced. These findings suggested that Zic5 is involved in the generation of neural crest tissue in mouse development. ZIC5 is also located close to ZIC2 in humans, and deletions of 13q32, where ZIC2 is located, lead to congenital brain and digit malformations known as the "13q32 deletion syndrome". Based on both their similar expression pattern in mouse embryos and the malformations observed in Zic5-deficient mutant mice, human ZIC5 might be involved in the deletion syndrome.
Collapse
|
|
21 |
81 |
4
|
Tajima K, Takaishi H, Takito J, Tohmonda T, Yoda M, Ota N, Kosaki N, Matsumoto M, Ikegami H, Nakamura T, Kimura T, Okada Y, Horiuchi K, Chiba K, Toyama Y. Inhibition of STAT1 accelerates bone fracture healing. J Orthop Res 2010; 28:937-41. [PMID: 20063384 DOI: 10.1002/jor.21086] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Skeletal fracture healing involves a variety of cellular and molecular events; however, the mechanisms behind these processes are not fully understood. In the current study, we investigated the potential involvement of the signal transducer and activator of transcription 1 (STAT1), a critical regulator for both osteoclastogenesis and osteoblast differentiation, in skeletal fracture healing. We used a fracture model and a cortical defect model in mice, and found that fracture callus remodeling and membranous ossification are highly accelerated in STAT1-deficient mice. Additionally, we found that STAT1 suppresses Osterix transcript levels and Osterix promoter activity in vitro, indicating the suppression of Osterix transcription as one of the mechanisms behind the inhibitory effect of STAT1 on osteoblast differentiation. Furthermore, we found that fludarabine, a potent STAT1 inhibitor, significantly increases bone formation in a heterotopic ossification model. These results reveal previously unknown functions of STAT1 in skeletal homeostasis and may have important clinical implications for the treatment of skeletal bone fracture.
Collapse
|
|
15 |
50 |
5
|
Tohmonda T, Yoda M, Iwawaki T, Matsumoto M, Nakamura M, Mikoshiba K, Toyama Y, Horiuchi K. IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis. J Clin Invest 2015; 125:3269-79. [PMID: 26193638 DOI: 10.1172/jci76765] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/09/2015] [Indexed: 01/16/2023] Open
Abstract
The unfolded protein response (UPR) is a cellular adaptive mechanism that is activated in response to the accumulation of unfolded proteins in the endoplasmic reticulum. The inositol-requiring protein-1α/X-box-binding protein-mediated (IRE1α/XBP1-mediated) branch of the UPR is highly conserved and has also been shown to regulate various cell-fate decisions. Herein, we have demonstrated a crucial role for the IREα/XBP1-mediated arm of the UPR in osteoclast differentiation. Using murine models, we found that the conditional abrogation of IRE1α in bone marrow cells increases bone mass as the result of defective osteoclastic bone resorption. In osteoclast precursors, IRE1α was transiently activated during osteoclastogenesis, and suppression of the IRE1α/XBP1 pathway in these cells substantially inhibited the formation of multinucleated osteoclasts in vitro. We determined that XBP1 directly binds the promoter and induces transcription of the gene encoding the master regulator of osteoclastogenesis nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Moreover, activation of IRE1α was partially dependent on Ca2+ oscillation mediated by inositol 1,4,5-trisphosphate receptors 2 and 3 (ITPR2 and ITPR3) in the endoplasmic reticulum, as pharmacological inhibition or deletion of these receptors markedly decreased Xbp1 mRNA processing. The present study thus reveals an intracellular pathway that integrates the UPR and osteoclast differentiation through activation of the IRE1α/XBP1 pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
47 |
6
|
Chhin B, Hatayama M, Bozon D, Ogawa M, Schön P, Tohmonda T, Sassolas F, Aruga J, Valard AG, Chen SC, Bouvagnet P. Elucidation of penetrance variability of aZIC3mutation in a family with complex heart defects and functional analysis ofZIC3mutations in the first zinc finger domain. Hum Mutat 2007; 28:563-70. [PMID: 17295247 DOI: 10.1002/humu.20480] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We studied a series of 42 cases of transposition of the great arteries (TGA), a complex heart defect (CHD) that is two times more prevalent in males than in females. A mutation in the X chromosome at the ZIC3 gene was found in two affected siblings (one male, one female) and their unaffected mother. A second factor, skewed X-inactivation pattern explained the discrepancy between the daughter/mother phenotype. In this family, the missense mutation (p.W255G) was found in the first zinc finger of ZIC3, a domain that is relatively specific to each of the five human ZIC genes. It was tested further along with two other mutations of this domain (p.C253S and p.H286R). In transfected 3T3 cells, mutants p.W255G and p.H286R expressed lower protein levels, and an increased protein degradation (p.W255G only). Moreover, mutants p.C253S and p.W255G had a decreased transcription activation of the TK-luciferase reporter gene. Nuclear translocation of the three ZIC3 mutants varied considerably depending on the experimental models. Finally, p.W255G and p.H286R showed diminished activities for both left-right axis disturbance and neural crest induction in Xenopus embryos. These results suggest that mutations in the first zinc finger of ZIC3 mildly affect several functions of the protein.
Collapse
|
|
18 |
42 |
7
|
Mizugishi K, Hatayama M, Tohmonda T, Ogawa M, Inoue T, Mikoshiba K, Aruga J. Myogenic repressor I-mfa interferes with the function of Zic family proteins. Biochem Biophys Res Commun 2004; 320:233-40. [PMID: 15207726 DOI: 10.1016/j.bbrc.2004.05.158] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Indexed: 11/25/2022]
Abstract
Zinc finger proteins belonging to the Zic family control several developmental processes such as patterning of the axial skeleton. Here we mapped the transcriptional regulatory domains in Zic2 protein and identified a protein which specifically binds to one of them. In the mapping experiments, an amino-terminal region was identified as transcriptional regulatory domains. A search for proteins binding to the amino terminal domain of Zic2 revealed that inhibitor of MyoD family (I-mfa) protein, which has been identified as a repressor of myogenic helix-loop-helix class transcription factors, can physically interact with the amino terminal domain. When Zic1-3 and I-mfa proteins were co-expressed in cultured cells, nuclear import of the Zic proteins was inhibited. Consequently, I-mfa inhibited transcriptional activation by the Zic proteins in cultured cells. These results suggest that the physical and functional interaction between Zic and I-mfa proteins can play a role in the vertebrate development.
Collapse
|
|
21 |
40 |
8
|
Yoda M, Kimura T, Tohmonda T, Morioka H, Matsumoto M, Okada Y, Toyama Y, Horiuchi K. Systemic overexpression of TNFα-converting enzyme does not lead to enhanced shedding activity in vivo. PLoS One 2013; 8:e54412. [PMID: 23342154 PMCID: PMC3544834 DOI: 10.1371/journal.pone.0054412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/13/2012] [Indexed: 01/12/2023] Open
Abstract
TNFα-converting enzyme (TACE/ADAM17) is a membrane-bound proteolytic enzyme with a diverse set of target molecules. Most importantly, TACE is indispensable for the release and activation of pro-TNFα and the ligands for epidermal growth factor receptor in vivo. Previous studies suggested that the overproduction of TACE is causally related to the pathogenesis of inflammatory diseases and cancers. To test this hypothesis, we generated a transgenic line in which the transcription of exogenous Tace is driven by a CAG promoter. The Tace-transgenic mice were viable and exhibited no overt defects, and the quantitative RT-PCR and Western blot analyses confirmed that the transgenically introduced Tace gene was highly expressed in all of the tissues examined. The Tace-transgenic mice were further crossed with Tace⁻/⁺ mice to abrogate the endogenous TACE expression, and the Tace-transgenic mice lacking endogenous Tace gene were also viable without any apparent defects. Furthermore, there was no difference in the serum TNFα levels after lipopolysaccharide injection between the transgenic mice and control littermates. These observations indicate that TACE activity is not necessarily dependent on transcriptional regulation and that excess TACE does not necessarily result in aberrant proteolytic activity in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
35 |
9
|
Takito J, Nakamura M, Yoda M, Tohmonda T, Uchikawa S, Horiuchi K, Toyama Y, Chiba K. The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts. J Cell Sci 2012; 125:662-72. [DOI: 10.1242/jcs.090886] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Multinucleated osteoclasts are responsible for bone resorption. Hypermultinucleated osteoclasts are often observed in some bone-related diseases such as Paget's disease and cherubism. The cellular mechanics controlling the size of osteoclasts is poorly understood. We introduced EGFP–actin into RAW 264.7 cells to monitor actin dynamics during osteoclast differentiation. Before their terminal differentiation into osteoclasts, syncytia displayed two main types of actin assembly, podosome clusters and clusters of zipper-like structures. The zipper-like structures morphologically resembled the adhesion zippers found at the initial stage of cell–cell adhesion in keratinocytes. In the zipper-like structure, Arp3 and cortactin overlapped with the distribution of dense F-actin, whereas integrin β3, paxillin and vinculin were localized to the periphery of the structure. The structure was negative for WGA–lectin staining and biotin labeling. The zipper-like structure broke down and transformed into a large actin ring, called a podosome belt. Syncytia containing clusters of zipper-like structures had more nuclei than those with podosome clusters. Differentiated osteoclasts with a podosome belt also formed the zipper-like structure at the cell contact site during cell fusion. The breakdown of the cell contact site resulted in the fusion of the podosome belts following plasma membrane fusion. Additionally, osteoclasts in mouse calvariae formed the zipper-like structure in the sealing zone. Therefore, we propose that the zipper-like actin superstructures might be involved in cell–cell interaction to achieve efficient multinucleation of osteoclasts. Understanding of the zipper-like structure might lead to selective therapeutics for bone diseases caused by hypermultinucleated osteoclasts.
Collapse
|
|
13 |
33 |
10
|
Ota N, Takaishi H, Kosaki N, Takito J, Yoda M, Tohmonda T, Kimura T, Okada Y, Yasuda H, Kawaguchi H, Matsumoto M, Chiba K, Ikegami H, Toyama Y. Accelerated cartilage resorption by chondroclasts during bone fracture healing in osteoprotegerin-deficient mice. Endocrinology 2009; 150:4823-34. [PMID: 19819969 DOI: 10.1210/en.2009-0452] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG), a decoy receptor of RANKL, maintain bone mass by regulating the differentiation of osteoclasts, which are bone-resorbing cells. Endochondral bone ossification and bone fracture healing involve cartilage resorption, a less well-understood process that is needed for replacement of cartilage by bone. Here we describe the role of OPG produced by chondrocytes in chondroclastogenesis. Fracture healing in OPG(-/-) mice showed faster union of the fractured bone, faster resorption of the cartilaginous callus, and an increased number of chondroclasts at the chondroosseous junctions compared with that in wild-type littermates. When a cultured pellet of OPG(-/-) chondrocytes was transplanted beneath the kidney capsule, the pellet recruited many chondroclasts. The pellet showed the ability to induce tartrate-resistant acid phosphatase-positive multinucleated cells from RAW 264.7 cells in vitro. Finally, OPG(-/-) chondrocytes (but not wild-type chondrocytes) cultured with spleen cells induced many tartrate-resistant acid phosphatase-positive multinucleated cells. The expression of RANKL and OPG in chondrocytes was regulated by several osteotropic factors including 1,25-dihydroxyvitamin D(3), PTHrP, IL-1alpha, and TNF-alpha. Thus, local OPG produced by chondrocytes probably controls cartilage resorption as a negative regulator for chondrocyte-dependent chondroclastogenesis.
Collapse
|
|
16 |
33 |
11
|
Horiuchi K, Tohmonda T, Morioka H. The unfolded protein response in skeletal development and homeostasis. Cell Mol Life Sci 2016; 73:2851-69. [PMID: 27002737 PMCID: PMC11108572 DOI: 10.1007/s00018-016-2178-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/06/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
Abstract
Osteoblasts and chondrocytes produce a large number of extracellular matrix proteins to generate and maintain the skeletal system. To cope with their functions as secretory cells, these cells must acquire a considerable capacity for protein synthesis and also the machinery for the quality-control and transport of newly synthesized secreted proteins. The unfolded protein response (UPR) plays a crucial role during the differentiation of these cells to achieve this goal. Unexpectedly, however, studies in the past several years have revealed that the UPR has more extensive functions in skeletal development than was initially assumed, and the UPR critically orchestrates many facets of skeletal development and homeostasis. This review focuses on recent findings on the functions of the UPR in the differentiation of osteoblasts, chondrocytes, and osteoclasts. These findings may have a substantial impact on our understanding of bone metabolism and also on establishing treatments for congenital and acquired skeletal disorders.
Collapse
|
Review |
9 |
29 |
12
|
Hosaka S, Horiuchi K, Yoda M, Nakayama R, Tohmonda T, Susa M, Nakamura M, Chiba K, Toyama Y, Morioka H. A novel multi-kinase inhibitor pazopanib suppresses growth of synovial sarcoma cells through inhibition of the PI3K-AKT pathway. J Orthop Res 2012; 30:1493-8. [PMID: 22359392 DOI: 10.1002/jor.22091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 02/02/2012] [Indexed: 02/04/2023]
Abstract
Synovial sarcoma is an aggressive soft tissue sarcoma with only a modest response to conventional cytotoxic agents. In the present study, we evaluated the potential antitumor effects of a novel anti-angiogenesis agent, pazopanib, against synovial sarcoma cells. We found that pazopanib directly inhibited the growth of synovial sarcoma cells by inducing G1 arrest. Multiplex analyses revealed that the PI3K-AKT pathway was highly suppressed in pazopanib-sensitive synovial sarcoma cells. Furthermore, administration of pazopanib highly suppressed the tumor growth in a xenograft model. Taken together, these results suggest pazopanib as a possible agent against synovial sarcoma and may warrant further clinical studies.
Collapse
|
|
13 |
29 |
13
|
Shirasawa H, Matsumura N, Shimoda M, Oki S, Yoda M, Tohmonda T, Kanai Y, Matsumoto M, Nakamura M, Horiuchi K. Inhibition of PDGFR signaling prevents muscular fatty infiltration after rotator cuff tear in mice. Sci Rep 2017; 7:41552. [PMID: 28139720 PMCID: PMC5282512 DOI: 10.1038/srep41552] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
Fatty infiltration in muscle is often observed in patients with sizable rotator cuff tear (RCT) and is thought to be an irreversible event that significantly compromises muscle plasticity and contraction strength. These changes in the mechanical properties of the affected muscle render surgical repair of RCT highly formidable. Therefore, it is important to learn more about the pathology of fatty infiltration to prevent this undesired condition. In the present study, we aimed to generate a mouse model that can reliably recapitulate some of the important characteristics of muscular fatty infiltration after RCT in humans. We found that fatty infiltration can be efficiently induced by a combination of the following procedures: denervation of the suprascapular nerve, transection of the rotator cuff tendon, and resection of the humeral head. Using this model, we found that platelet-derived growth factor receptor-α (PDGFRα)-positive mesenchymal stem cells are induced after this intervention and that inhibition of PDGFR signaling by imatinib treatment can significantly suppress fatty infiltration. Taken together, the present study presents a reliable fatty infiltration mouse model and suggests a key role for PDGFRα-positive mesenchymal stem cells in the process of fatty infiltration after RCT in humans.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
25 |
14
|
Tohmonda T, Yoda M, Mizuochi H, Morioka H, Matsumoto M, Urano F, Toyama Y, Horiuchi K. The IRE1α-XBP1 pathway positively regulates parathyroid hormone (PTH)/PTH-related peptide receptor expression and is involved in pth-induced osteoclastogenesis. J Biol Chem 2012; 288:1691-5. [PMID: 23235147 DOI: 10.1074/jbc.c112.424606] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To address the "endoplasmic reticulum stress" triggered by the burden of protein synthesis, the unfolded protein response is induced during osteoblast differentiation. In this study, we show that the transcription of parathyroid hormone (PTH)/PTH-related peptide receptor (PTH1R) is regulated by one of the endoplasmic reticulum-stress mediators, the IRE1α-XBP1 pathway, in osteoblasts. We found that the increase in Pth1r transcription upon BMP2 treatment is significantly suppressed in mouse embryonic fibroblasts lacking IRE1α. As expected, gene silencing of Ire1α and Xbp1 resulted in a decrease in Pth1r transcripts in BMP2-treated embryonic fibroblasts. We identified two potential binding sites for XBP1 in the promoter region of Pth1r and found that XBP1 promotes the transcription of Pth1r by directly binding to those sites. Moreover, we confirmed that the gene silencing of Xbp1 suppresses PTH-induced Rankl expression in primary osteoblasts and thereby abolishes osteoclast formation in an in vitro model of osteoclastogenesis. Thus, the present study reveals potential involvement of the IRE1α-XBP1 pathway in PTH-induced osteoclastogenesis through the regulation of PTH1R expression.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
23 |
15
|
Uchikawa S, Yoda M, Tohmonda T, Kanaji A, Matsumoto M, Toyama Y, Horiuchi K. ADAM17 regulates IL-1 signaling by selectively releasing IL-1 receptor type 2 from the cell surface. Cytokine 2014; 71:238-45. [PMID: 25461404 DOI: 10.1016/j.cyto.2014.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/22/2014] [Accepted: 10/21/2014] [Indexed: 01/22/2023]
Abstract
Interleukin (IL)-1 is one of the most evolutionarily conserved cytokines and plays an essential role in the regulation of innate immunity. IL-1 binds to two different receptors, IL-1R1 and IL-1R2, which share approximately 28% amino acid homology. IL-1R1 contains a cytoplasmic domain and is capable of transducing cellular signals; by contrast, IL-1R2 lacks a functional cytoplasmic domain and serves as a decoy receptor for IL-1. Interestingly, IL-1R2 is proteolytically cleaved and also functions as a soluble receptor that blocks IL-1 activity. In the present study, we examined the shedding properties of IL-1R2 and demonstrate that ADAM17 is de facto the major sheddase for IL-1R2 and that introducing a mutation into the juxta-membrane domain of IL-1R2 significantly desensitizes IL-1R2 to proteolytic cleavage. IL-1R1 was almost insensitive to ADAM17-dependent cleavage; however, the replacement of the juxta-membrane domain of IL-R1 with that of IL-1R2 significantly increased the sensitivity of IL-1R1 to shedding. Furthermore, we demonstrate that ADAM17 indirectly enhances IL-1 signaling in a cell-autonomous manner by selectively cleaving IL-1R2. Taken together, the data collected in the present study indicate that ADAM17 affects sensitivity to IL-1 by changing the balance between IL-1R1 and the decoy receptor IL-1R2.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
21 |
16
|
Mizuno S, Yoda M, Shimoda M, Tohmonda T, Okada Y, Toyama Y, Takeda S, Nakamura M, Matsumoto M, Horiuchi K. A Disintegrin and Metalloprotease 10 (ADAM10) Is Indispensable for Maintenance of the Muscle Satellite Cell Pool. J Biol Chem 2015; 290:28456-28464. [PMID: 26453297 DOI: 10.1074/jbc.m115.653477] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Indexed: 12/20/2022] Open
Abstract
Satellite cells (SCs) are muscle-specific stem cells that are essential for the regeneration of damaged muscles. Although SCs have a robust capacity to regenerate myofibers, the number of SCs decreases with aging, leading to insufficient recovery after muscle injury. We herein show that ADAM10 (a disintegrin and metalloprotease 10), a membrane-bound proteolytic enzyme with a critical role in Notch processing (S2 cleavage), is essential for the maintenance of SC quiescence. We generated mutant mice in which ADAM10 in SCs can be conditionally abrogated by tamoxifen injection. Tamoxifen-treated mutant mice did not show any apparent defects and grew normally under unchallenged conditions. However, these mice showed a nearly complete loss of muscle regeneration after chemically induced muscle injury. In situ hybridization and flow cytometric analyses revealed that the mutant mice had significantly less SCs compared with wild type controls. Of note, we found that inactivation of ADAM10 in SCs severely compromised Notch signaling and led to dysregulated myogenic differentiation, ultimately resulting in deprivation of the SC pool in vivo. Taken together, the present findings underscore the role of ADAM10 as an indispensable component of Notch signaling in SCs and for maintaining the SC pool.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
19 |
17
|
Kato M, Takaishi H, Yoda M, Tohmonda T, Takito J, Fujita N, Hosogane N, Horiuchi K, Kimura T, Okada Y, Saito T, Kawaguchi H, Kikuchi T, Matsumoto M, Toyama Y, Chiba K. GRIP1 enhances estrogen receptor alpha-dependent extracellular matrix gene expression in chondrogenic cells. Osteoarthritis Cartilage 2010; 18:934-41. [PMID: 20346402 DOI: 10.1016/j.joca.2010.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/12/2010] [Accepted: 03/09/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The role of postmenopause on the pathogenesis of cartilage degeneration has been an open question. We assessed cartilage degeneration in estrogen receptor (ER)alpha null mice and examined the role of glucocorticoid receptor-interacting protein 1 (GRIP1) in the ERalpha-dependent transcription of a type II collagen gene (col2a1) with special reference to a crosstalk with the transforming growth factor (TGF)-beta signaling pathway. METHODS The vertebral cartilaginous endplate from female ERalpha null mice was subjected to histological analyses. Col2a1 expression of primary chondrocytes (PCs) obtained from ERalpha null mice after 17beta-estradiol (E(2)) and TGF-beta1 stimulation was examined by reverse transcription polymerase chain reaction (RT-PCR). Estrogen response element (ERE) or col2a1 promoter-enhancer luciferase reporter system was used to investigate the crosstalk among ERalpha, GRIP1, and MKK6. Col2a1 expression and glycosaminoglycan (GAG) content were measured in ATDC5 cells treated with GRIP1 small interfering RNA (siRNA). RESULTS ERalpha deficiency clearly accelerated impairment of the vertebral cartilaginous endplate. E(2) and TGF-beta1 stimulation increased col2a1 expression in PC from wild-type mice, but not that from ERalpha null mice. The same stimulation increased the col2a1 promoter-enhancer reporter activity, and the elevated activity was decreased by dominant-negative ERalpha and p38 mitogen-activated protein kinase (MAPK) inhibitor. GRIP1 increased the E(2)-dependent ERE activation in the presence of ERalpha and constitutive-active MKK6. GRIP1 siRNA repressed col2a1 expression and GAG production in ATDC5 cells. CONCLUSIONS Crosstalks between ERalpha/GRIP1 and TGF-beta/MKK6/p38 MAPK pathway have protective roles on cartilage metabolism via regulating the extracellular matrices expression. The finding may lead to the development of a novel therapeutic approach for cartilage degeneration.
Collapse
|
|
15 |
16 |
18
|
Hakozaki A, Yoda M, Tohmonda T, Furukawa M, Hikata T, Uchikawa S, Takaishi H, Matsumoto M, Chiba K, Horiuchi K, Toyama Y. Receptor activator of NF-kappaB (RANK) ligand induces ectodomain shedding of RANK in murine RAW264.7 macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 184:2442-8. [PMID: 20118276 DOI: 10.4049/jimmunol.0901188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteoclastogenesis is a highly sophisticated process that involves a variety of membrane-bound proteins expressed in osteoblasts and osteoclast precursors. Over the past several years, proteolytic cleavage and release of the ectodomain of membrane-bound proteins, also referred to as ectodomain shedding, has emerged as an important posttranslational regulatory mechanism for modifying the function of cell surface proteins. In line with this notion, several membrane-bound molecules involved in osteoclastogenesis, including CSF-1R and receptor activator of NF-kappaB ligand (RANKL), are proteolytically cleaved and released from the cell surface. In this study, we investigated whether receptor activator of NF-kappaB (RANK), one of the most essential molecules in osteoclastogenesis, undergoes ectodomain shedding. The results showed that RANK is released in the form of a soluble monomeric protein and that TNF-alpha-converting enzyme is involved in this activity. We also identified potential cleavage sites in the juxtamembrane domain of RANK and found that rRANKL induces RANK shedding in a macrophage-like cell line RAW264.7 via TNFR-associated factor 6 and MAPK pathways. Furthermore, we found that RANKL-induced osteoclastogenesis is accelerated in TNF-alpha-converting enzyme-deficient osteoclast precursors. These observations suggest the potential involvement of ectodomain shedding in the regulation of RANK functions and may provide novel insights into the mechanisms of osteoclastogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
16 |
19
|
Oki S, Shirasawa H, Yoda M, Matsumura N, Tohmonda T, Yuasa K, Nakamura M, Matsumoto M, Horiuchi K. Generation and characterization of a novel shoulder contracture mouse model. J Orthop Res 2015; 33:1732-8. [PMID: 26014262 DOI: 10.1002/jor.22943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/08/2015] [Indexed: 02/04/2023]
Abstract
Frozen shoulder is a relatively common disorder that leads to severe pain and stiffness in the shoulder joint. Although this disorder is self-limiting in nature, the symptoms often persist for years, resulting in severe disability. Recent studies using human specimens and animal models have shown distinct changes in the gene expression patterns in frozen shoulder tissue, indicating that novel therapeutic intervention could be achieved by controlling the genes that are potentially involved in the development of frozen shoulder. To achieve this goal, it is imperative to develop a reliable animal joint contracture model in which gene expression can be manipulated by gene targeting and transgenic technologies. Here, we describe a novel shoulder contracture mouse model. We found that this model mimics the clinical presentation of human frozen shoulder and recapitulates the changes in the gene expression pattern and the histology of frozen shoulder and joint contracture in humans and other larger animal models. The model is highly reproducible, without any major complications. Therefore, the present model may serve as a useful tool for investigating frozen shoulder etiology and for identifying its potential target genes.
Collapse
|
|
10 |
11 |
20
|
Hirozane T, Tohmonda T, Yoda M, Shimoda M, Kanai Y, Matsumoto M, Morioka H, Nakamura M, Horiuchi K. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass. Sci Rep 2016; 6:34426. [PMID: 27677594 PMCID: PMC5039636 DOI: 10.1038/srep34426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/13/2016] [Indexed: 01/06/2023] Open
Abstract
Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.
Collapse
|
research-article |
9 |
4 |
21
|
Tohmonda T, Kamiya A, Ishiguro A, Iwaki T, Fujimi TJ, Hatayama M, Aruga J. Identification and Characterization of Novel Conserved Domains in Metazoan Zic Proteins. Mol Biol Evol 2018; 35:2205-2229. [DOI: 10.1093/molbev/msy122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
|
7 |
3 |