1
|
Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 2003; 69:612-6. [PMID: 12700182 DOI: 10.1095/biolreprod.103.017012] [Citation(s) in RCA: 750] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a complex process that originates in a small population of spermatogonial stem cells. Here we report the in vitro culture of spermatogonial stem cells that proliferate for long periods of time. In the presence of glial cell line-derived neurotrophic factor, epidermal growth factor, basic fibroblast growth factor, and leukemia inhibitory factor, gonocytes isolated from neonatal mouse testis proliferated over a 5-month period (>10(14)-fold) and restored fertility to congenitally infertile recipient mice following transplantation into seminiferous tubules. Long-term spermatogonial stem cell culture will be useful for studying spermatogenesis mechanism and has important implications for developing new technology in transgenesis or medicine.
Collapse
|
|
22 |
750 |
2
|
Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T. Generation of pluripotent stem cells from neonatal mouse testis. Cell 2005; 119:1001-12. [PMID: 15620358 DOI: 10.1016/j.cell.2004.11.011] [Citation(s) in RCA: 567] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 10/07/2004] [Accepted: 11/02/2004] [Indexed: 12/12/2022]
Abstract
Although germline cells can form multipotential embryonic stem (ES)/embryonic germ (EG) cells, these cells can be derived only from embryonic tissues, and such multipotent cells have not been available from neonatal gonads. Here we report the successful establishment of ES-like cells from neonatal mouse testis. These ES-like cells were phenotypically similar to ES/EG cells except in their genomic imprinting pattern. They differentiated into various types of somatic cells in vitro under conditions used to induce the differentiation of ES cells and produced teratomas after inoculation into mice. Furthermore, these ES-like cells formed germline chimeras when injected into blastocysts. Thus, the capacity to form multipotent cells persists in neonatal testis. The ability to derive multipotential stem cells from the neonatal testis has important implications for germ cell biology and opens the possibility of using these cells for biotechnology and medicine.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
567 |
3
|
Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, Honjo T. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 1995; 28:495-500. [PMID: 7490086 DOI: 10.1006/geno.1995.1180] [Citation(s) in RCA: 475] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Stromal cell-derived factors 1 alpha and 1 beta are small cytokines belonging to the intercrine CXC subfamily and originally isolated from a murine bone-marrow stroma cell line by the signal sequence trap method. cDNA and genomic clones of human SDF1 alpha and SDF1 beta (SDF1A and SDF1B) were isolated and characterized. cDNAs of SDF1 alpha and SDF1 beta encode proteins of 89 and 93 amino acids, respectively. SDF1 alpha and SDF1 beta sequences are more than 92% identical to those of the human counterparts. The genomic structure of the SDF1 gene revealed that human SDF1 alpha and SDF1 beta are encoded by a single gene and arise by alternative splicing. SDF1 alpha and SDF1 beta are encoded by 3 and 4 exons, respectively. Ubiquitous expression of the SDF1 gene, except in blood cells, was consistent with the presence of the GC-rich sequence in the 5'-flanking region of the SDF1 gene, as is often the case in the "housekeeping" genes. Although genes encoding other members of the intercrine family are localized on chromosome 4q or 17q, the human SDF1 gene was mapped to chromosome 10q by fluorescence in situ hybridization. Strong evolutionary conservation and unique chromosomal localization of the SDF1 gene suggest that SDF1 alpha and SDF1 beta may have important functions distinct from those of other members of the intercrine family.
Collapse
|
|
30 |
475 |
4
|
Shinohara T, Avarbock MR, Brinster RL. beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 1999; 96:5504-9. [PMID: 10318913 PMCID: PMC21889 DOI: 10.1073/pnas.96.10.5504] [Citation(s) in RCA: 427] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although spermatogenesis is essential for reproduction, little is known about spermatogonial stem cells. These cells provide the basis for spermatogenesis throughout adult life by undergoing self-renewal and by providing progeny that differentiate into spermatozoa. A major impediment to our understanding of the biology of these stem cells is the inability to distinguish them from spermatogonia that are committed to differentiation. We made use of the known association of stem cells with basement membranes and our spermatogonial transplantation assay system to identify specific molecular markers on the stem cell surface. Selection of mouse testis cells with anti-beta1- or anti-alpha6-integrin antibody, but not anti-c-kit antibody, produced cell populations with a significantly enhanced ability to colonize recipient testes and generate donor cell-derived spermatogenesis. We demonstrate spermatogonial stem cell-associated antigens by using an assay system based on biological function. Furthermore, the presence of surface integrins on spermatogonial stem cells suggests that these cells share elements of a common molecular machinery with stem cells in other tissues.
Collapse
|
research-article |
26 |
427 |
5
|
Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci U S A 2000; 97:8346-51. [PMID: 10900001 PMCID: PMC26950 DOI: 10.1073/pnas.97.15.8346] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The spermatogonial stem cell initiates and maintains spermatogenesis in the testis. To perform this role, the stem cell must self replicate as well as produce daughter cells that can expand and differentiate to form spermatozoa. Despite the central importance of the spermatogonial stem cell to male reproduction, little is known about its morphological or biochemical characteristics. This results, in part, from the fact that spermatogonial stem cells are an extremely rare cell population in the testis, and techniques for their enrichment are just beginning to be established. In this investigation, we used a multiparameter selection strategy, combining the in vivo cryptorchid testis model with in vitro fluorescence-activated cell sorting analysis. Cryptorchid testis cells were fractionated by fluorescence-activated cell sorting analysis based on light-scattering properties and expression of the cell surface molecules alpha6-integrin, alphav-integrin, and the c-kit receptor. Two important observations emerged from these analyses. First, spermatogonial stem cells from the adult cryptorchid testis express little or no c-kit. Second, the most effective enrichment strategy, in this study, selected cells with low side scatter light-scattering properties, positive staining for alpha6-integrin, and negative or low alphav-integrin expression, and resulted in a 166-fold enrichment of spermatogonial stem cells. Identification of these characteristics will allow further purification of these valuable cells and facilitate the investigation of molecular mechanisms governing spermatogonial stem cell self renewal and hierarchical differentiation.
Collapse
|
research-article |
25 |
288 |
6
|
Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, Shinohara T. Long-Term Culture of Mouse Male Germline Stem Cells Under Serum-or Feeder-Free Conditions1. Biol Reprod 2005; 72:985-91. [PMID: 15601913 DOI: 10.1095/biolreprod.104.036400] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells are the only stem cells in the body that transmit genetic information to the next generation. These cells can be cultured for extended periods in the presence of serum and feeder cells. However, little is known about factors that regulate self-renewal division of spermatogonial stem cells. In this investigation we examined the possibility of establishing culture systems for spermatogonial stem cells that lack serum or a feeder cell layer. Spermatogonial stem cells could expand in serum-free conditions on mouse embryonic fibroblasts (MEFs), or were successfully cultivated without feeder cells on a laminin-coated plate. However, they could not expand when both serum and feeder cells were absent. Although the cells cultured on laminin differed phenotypically from those on feeder cells, they grew exponentially for at least 6 mo, and produced normal, fertile progeny following transplantation into infertile mouse testis. This culture system will provide a new opportunity for understanding the regulatory mechanism that governs spermatogonial stem cells.
Collapse
|
|
20 |
236 |
7
|
Abstract
Spermatogenesis originates from spermatogonial stem cells (SSCs). Development of the spermatogonial transplantation technique in 1994 provided the first functional assay to characterize SSCs. In 2000, glial cell line-derived neurotrophic factor was identified as a SSC self-renewal factor. This discovery not only provided a clue to understand SSC self-renewing mechanisms but also made it possible to derive germline stem (GS) cell cultures in 2003. In vitro culture of GS cells demonstrated their potential pluripotency and their utility in germline modification. However, in vivo SSC analyses have challenged the traditional concept of SSC self-renewal and have revealed their relationship with the microenvironment. An improved understanding of SSC self-renewal through functional assays promises to uncover fundamental principles of stem cell biology and will enable us to use these cells for applications in animal transgenesis and medicine.
Collapse
|
Review |
12 |
233 |
8
|
Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci U S A 2001; 98:6186-91. [PMID: 11371640 PMCID: PMC33443 DOI: 10.1073/pnas.111158198] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Little is known about stem cell biology or the specialized environments or niches believed to control stem cell renewal and differentiation in self-renewing tissues of the body. Functional assays for stem cells are available only for hematopoiesis and spermatogenesis, and the microenvironment, or niche, for hematopoiesis is relatively inaccessible, making it difficult to analyze donor stem cell colonization events in recipients. In contrast, the recently developed spermatogonial stem cell assay system allows quantitation of individual colonization events, facilitating studies of stem cells and their associated microenvironment. By using this assay system, we found a 39-fold increase in male germ-line stem cells during development from birth to adult in the mouse. However, colony size or area of spermatogenesis generated by neonate and adult stem cells, 2-3 months after transplantation into adult tubules, was similar ( approximately 0.5 mm(2)). In contrast, the microenvironment in the immature pup testis was 9.4 times better than adult testis in allowing colonization events, and the area colonized per donor stem cell, whether from adult or pup, was about 4.0 times larger in recipient pups than adults. These factors facilitated the restoration of fertility by donor stem cells transplanted to infertile pups. Thus, our results demonstrate that stem cells and their niches undergo dramatic changes in the postnatal testis, and the microenvironment of the pup testis provides a more hospitable environment for transplantation of male germ-line stem cells.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
217 |
9
|
Kitajima I, Shinohara T, Bilakovics J, Brown DA, Xu X, Nerenberg M. Ablation of transplanted HTLV-I Tax-transformed tumors in mice by antisense inhibition of NF-kappa B. Science 1992; 258:1792-5. [PMID: 1299224 DOI: 10.1126/science.1299224] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mice transgenic for the human T cell leukemia virus (HTLV-I) Tax gene develop fibroblastic tumors that express NF-kappa B-inducible early genes. In vitro inhibition of NF-kappa B expression by antisense oligodeoxynucleotides (ODNs) inhibited growth of these culture-adapted Tax-transformed fibroblasts as well as an HTLV-I-transformed human lymphocyte line. In contrast, antisense inhibition of Tax itself had no apparent effect on cell growth. Mice treated with antisense to NF-kappa B ODNs showed rapid regression of transplanted fibrosarcomas. This suggests that NF-kappa B expression may be necessary for the maintenance of the malignant phenotype and provides a therapeutic approach for HTLV-I-associated disease.
Collapse
|
|
33 |
213 |
10
|
Kanatsu-Shinohara M, Toyokuni S, Shinohara T. CD9 is a surface marker on mouse and rat male germline stem cells. Biol Reprod 2004; 70:70-5. [PMID: 12954725 DOI: 10.1095/biolreprod.103.020867] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogenesis is dependent on a small population of stem cells. Despite the biological significance of spermatogonial stem cells, their analysis has been hampered by their scarcity. However, spermatogonial stem cells can be enriched by selection with an antibody against cell-surface molecules. In this investigation, we searched for new antigens expressed on spermatogonial stem cells. Using the spermatogonial transplantation technique, we examined expression of the CD9 molecule, which is commonly expressed on stem cells of other tissues. Selection of both mouse and rat testis cells with anti-CD9 antibody resulted in 5- to 7-fold enrichment of spermatogonial stem cells from intact testis cells, indicating that CD9 is commonly expressed on spermatogonial stem cells of both species. Therefore, CD9 may be involved in the common machinery in stem cells of many self-renewing tissues, and the identification of a common surface antigen on spermatogonial stem cells of different species has important implications for the development of a technique to enrich stem cells from other mammalian species.
Collapse
|
|
21 |
200 |
11
|
Lee J, Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Toyokuni S, Kimura T, Nakano T, Ogura A, Shinohara T. Akt mediates self-renewal division of mouse spermatogonial stem cells. Development 2007; 134:1853-9. [PMID: 17428826 DOI: 10.1242/dev.003004] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spermatogonial stem cells have unique properties to self-renew and support spermatogenesis throughout their lifespan. Although glial cell line-derived neurotrophic factor (GDNF) has recently been identified as a self-renewal factor for spermatogonial stem cells, the molecular mechanism of spermatogonial stem cell self-renewal remains unclear. In the present study, we assessed the role of the phosphoinositide-3 kinase (PI3K)-Akt pathway using a germline stem (GS) cell culture system that allows in vitro expansion of spermatogonial stem cells. Akt was rapidly phosphorylated when GDNF was added to the GS cell culture, and the addition of a chemical inhibitor of PI3K prevented GS cell self-renewal. Furthermore, conditional activation of the myristoylated form of Akt-Mer (myr-Akt-Mer) by 4-hydroxy-tamoxifen induced logarithmic proliferation of GS cells in the absence of GDNF for at least 5 months. The myr-Akt-Mer GS cells expressed spermatogonial markers and retained androgenetic imprinting patterns. In addition, they supported spermatogenesis and generated offspring following spermatogonial transplantation into the testes of infertile recipient mice, indicating that they are functionally normal. These results demonstrate that activation of the PI3K-Akt pathway plays a central role in the self-renewal division of spermatogonial stem cells.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
194 |
12
|
Shinohara T, Inoue K, Ogonuki N, Kanatsu-Shinohara M, Miki H, Nakata K, Kurome M, Nagashima H, Toyokuni S, Kogishi K, Honjo T, Ogura A. Birth of offspring following transplantation of cryopreserved immature testicular pieces and in-vitro microinsemination. Hum Reprod 2002; 17:3039-45. [PMID: 12456600 DOI: 10.1093/humrep/17.12.3039] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fertility protection is an urgent clinical problem for prepubertal male oncology patients who undergo either chemotherapy or radiotherapy. As these patients do not have mature sperm to be frozen, there is as yet no effective method to preserve their fertility. METHODS AND RESULTS Single pieces of immature mouse (1.5 x 1.5 x 1.5 mm) or rabbit (2.0 x 2.0 x approximately 3.0 mm) testis were cryopreserved, thawed and transplanted into mouse testes. Histological techniques were used to determine the presence of spermatogenesis, which was restored in both mouse and rabbit testicular pieces, and led to the production of mature sperm after both cryopreservation and syngeneic or xenogeneic transplantation into mouse testes. Using sperm developed in the frozen-thawed transplants, mouse offspring were born after in-vitro microinsemination. Furthermore, rabbit offspring were obtained using rabbit sperm that developed in fresh transplants in a xenogeneic surrogate mouse. CONCLUSIONS This approach of 'testicular tissue banking' is a promising technique for the preservation of fertility in prepubertal male oncology patients. Xenogeneic transplantation into immunodeficient mice may provide a system for studying spermatogenic failure in infertile men.
Collapse
|
|
23 |
174 |
13
|
Shinohara T, Taniwaki M, Ishida Y, Kawaichi M, Honjo T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics 1994; 23:704-6. [PMID: 7851902 DOI: 10.1006/geno.1994.1562] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A cDNA encoding mouse PD-1, a member of the immunoglobulin superfamily was previously isolated from apoptosis-induced cells by subtractive hybridization. To determine the structure and chromosomal location of the human PD-1 gene, we screened a human T cell cDNA library by mouse PD-1 probe and isolated a cDNA coding for the human PD-1 protein. The deduced amino acid sequence of human PD-1 was 60% identical to the mouse counterpart, and a putative tyrosine kinase-association motif was well conserved. The human PD-1 gene was mapped to 2q37.3 by chromosomal in situ hybridization.
Collapse
|
Comparative Study |
31 |
168 |
14
|
Kanatsu-Shinohara M, Ogonuki N, Iwano T, Lee J, Kazuki Y, Inoue K, Miki H, Takehashi M, Toyokuni S, Shinkai Y, Oshimura M, Ishino F, Ogura A, Shinohara T. Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 2005; 132:4155-63. [PMID: 16107472 DOI: 10.1242/dev.02004] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although stem cells are believed to divide infinitely by self-renewal division, there is little evidence that demonstrates their infinite replicative potential. Spermatogonial stem cells are the founder cell population for spermatogenesis. Recently, in vitro culture of spermatogonial stem cells was described. Spermatogonial stem cells can be expanded in vitro in the presence of glial cell line-derived neurotrophic factor (GDNF), maintaining the capacity to produce spermatogenesis after transplantation into testis. Here, we examined the stability and proliferative capacity of spermatogonial stem cells using cultured cells. Spermatogonial stem cells were cultured over 2 years and achieved approximately 10(85)-fold expansion. Unlike other germline cells that often acquire genetic and epigenetic changes in vitro, spermatogonial stem cells retained the euploid karyotype and androgenetic imprint during the 2-year experimental period, and produced normal spermatogenesis and fertile offspring. However, the telomeres in spermatogonial stem cells gradually shortened during culture, suggesting that they are not immortal. Nevertheless, the remarkable stability and proliferative potential of spermatogonial stem cells suggest that they have a unique machinery to prevent transmission of genetic and epigenetic damages to the offspring, and these characteristics make them an attractive target for germline modification.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
167 |
15
|
Morimoto H, Iwata K, Ogonuki N, Inoue K, Atsuo O, Kanatsu-Shinohara M, Morimoto T, Yabe-Nishimura C, Shinohara T. ROS Are Required for Mouse Spermatogonial Stem Cell Self-Renewal. Cell Stem Cell 2013; 12:774-86. [DOI: 10.1016/j.stem.2013.04.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/21/2013] [Accepted: 03/29/2013] [Indexed: 12/24/2022]
|
|
12 |
165 |
16
|
Shinohara T, Dietzschold B, Craft CM, Wistow G, Early JJ, Donoso LA, Horwitz J, Tao R. Primary and secondary structure of bovine retinal S antigen (48-kDa protein). Proc Natl Acad Sci U S A 1987; 84:6975-9. [PMID: 3478675 PMCID: PMC299211 DOI: 10.1073/pnas.84.20.6975] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The complete amino acid sequence of bovine S antigen (48-kDa protein) has been determined by cDNA and partial amino acid sequencing. A 1623-base-pair (bp) cDNA contains an open reading frame coding for a protein of 404 amino acids (45,275 Da). Tryptic peptides and cyanogen bromide peptides of native bovine S antigen were purified and partially sequenced. All of these peptides were accounted for in the long open reading frame. Searching of the National Biomedical Research Foundation data bank revealed no extensive sequence homology between S antigen and other proteins. However, there are local regions of sequence similarity with alpha transducin, including the sites subject to ADP-ribosylation by Bordetella pertussis and cholera toxins and the phosphoryl binding-sites. Secondary structure prediction and circular dichroic spectroscopy show that S antigen is composed predominantly of beta-sheet conformation. Acid-catalyzed methanolysis suggests the presence of low levels of carbohydrate in the molecule.
Collapse
|
research-article |
38 |
159 |
17
|
Tomizuka K, Shinohara T, Yoshida H, Uejima H, Ohguma A, Tanaka S, Sato K, Oshimura M, Ishida I. Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 2000; 97:722-7. [PMID: 10639146 PMCID: PMC15397 DOI: 10.1073/pnas.97.2.722] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of a human chromosome or its fragment as a vector for animal transgenesis may facilitate functional studies of large human genomic regions. We describe here the generation and analysis of double trans-chromosomic (Tc) mice harboring two individual human chromosome fragments (hCFs). Two transmittable hCFs, one containing the Ig heavy chain locus (IgH, approximately 1.5 Mb) and the other the kappa light chain locus (Igkappa, approximately 2 Mb), were introduced into a mouse strain whose endogenous IgH and Igkappa loci were inactivated. In the resultant double-Tc/double-knockout mice, substantial proportion of the somatic cells retained both hCFs, and the rescue in the defect of Ig production was shown by high level expression of human Ig heavy and kappa chains in the absence of mouse heavy and kappa chains. In addition, serum expression profiles of four human Ig gamma subclasses resembled those seen in humans. They mounted an antigen-specific human antibody response upon immunization with human serum albumin, and human serum albumin-specific human monoclonal antibodies with various isotypes were obtained from them. These results represent a generation of mice with "humanized" loci by using the transmittable hCFs, which suggest that the Tc technology may allow for the humanization of over megabase-sized, complex loci in mice or other animals. Such animals may be useful not only for studying in vivo functions of the human genome but also for obtaining various therapeutic products.
Collapse
|
research-article |
25 |
155 |
18
|
Ishii K, Kanatsu-Shinohara M, Toyokuni S, Shinohara T. FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development 2012; 139:1734-43. [PMID: 22491947 DOI: 10.1242/dev.076539] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor 2 (FGF2) and glial cell line-derived neurotrophic factor (GDNF) are required to recapitulate spermatogonial stem cell (SSC) self-renewal in vitro. Although studies have revealed the role of the GDNF signaling pathway in SSCs, little is known about how FGF2 is involved. In the present study, we assessed the role of the FGF2 signaling pathway using a mouse germline stem (GS) cell culture system that allows in vitro expansion of SSCs. Adding GDNF or FGF2 induced phosphorylation of MAPK1/3, and adding the MAP2K1 inhibitor PD0325091 reduced GS cell proliferation and MAPK1/3 phosphorylation. Moreover, GS cells transfected with an activated form of Map2k1 not only upregulated Etv5 and Bcl6b gene expression, but also proliferated in an FGF2-independent manner, suggesting that they act downstream of MAP2K1 signaling to drive SSC self-renewal. Although GS cells transfected with Map2k1, Etv5 or Bcl6b showed normal spermatogonial markers, transplanting GS cells expressing Bcl6b into infertile mouse testes resulted in the formation of a germ cell tumor, suggesting that excessive self-renewal signals causes tumorigenic conversion. These results show that FGF2 depends on MAP2K1 signaling to drive SSC self-renewal via upregulation of the Etv5 and Bcl6b genes.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
150 |
19
|
Carper D, Nishimura C, Shinohara T, Dietzchold B, Wistow G, Craft C, Kador P, Kinoshita JH. Aldose reductase and p-crystallin belong to the same protein superfamily as aldehyde reductase. FEBS Lett 1987; 220:209-13. [PMID: 3111886 DOI: 10.1016/0014-5793(87)80905-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aldose reductase (EC 1.1.1.21) has been implicated in a variety of diabetic complications. Here we present the first primary sequence data for the rat lens enzyme, obtained by amino acid and cDNA analysis. We have found structural similarities with another NADPH-dependent oxidoreductase: human liver aldehyde reductase (EC 1.1.1.2). The identity between these two enzymes is 50%. Both enzymes share approx. 40-50% homology with p-crystallin, a major lens protein present only in the frog, Rana pipiens. We propose that aldose reductase, aldehyde reductase and p-crystallin are members of a superfamily of related proteins.
Collapse
|
Comparative Study |
38 |
147 |
20
|
Kanatsu-Shinohara M, Lee J, Inoue K, Ogonuki N, Miki H, Toyokuni S, Ikawa M, Nakamura T, Ogura A, Shinohara T. Pluripotency of a Single Spermatogonial Stem Cell in Mice1. Biol Reprod 2008; 78:681-7. [DOI: 10.1095/biolreprod.107.066068] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
|
17 |
139 |
21
|
Yanagawa H, Sone S, Takahashi Y, Haku T, Yano S, Shinohara T, Ogura T. Serum levels of interleukin 6 in patients with lung cancer. Br J Cancer 1995; 71:1095-8. [PMID: 7734307 PMCID: PMC2033769 DOI: 10.1038/bjc.1995.212] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Serum interleukin 6 (IL-6) levels were measured in 75 patients with lung cancer and in 20 patients with benign lung diseases. IL-6 was detectable in 29 patients with lung cancer (39%), but was not detectable in any of the patients with benign lung diseases. Serum C-reactive protein levels and plasma fibrinogen levels were significantly higher and serum albumin concentration was significantly lower in lung cancer patients with detectable serum IL-6 levels than in those without detectable serum IL-6 levels and in patients with benign lung diseases. On the other hand, no significant difference was observed in blood platelet counts in these three groups. Moreover, serum IL-6 levels were not significantly different in lung cancer patients with or without clinically demonstrated distant metastasis. These results suggest that IL-6 may be a mediator of various reactions including an inflammatory response in lung cancer patients.
Collapse
|
research-article |
30 |
137 |
22
|
Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N, Horiuchi T, Shinohara T. Long-Term Culture of Male Germline Stem Cells From Hamster Testes1. Biol Reprod 2008; 78:611-7. [DOI: 10.1095/biolreprod.107.065615] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
|
17 |
135 |
23
|
Kanatsu-Shinohara M, Ikawa M, Takehashi M, Ogonuki N, Miki H, Inoue K, Kazuki Y, Lee J, Toyokuni S, Oshimura M, Ogura A, Shinohara T. Production of knockout mice by random or targeted mutagenesis in spermatogonial stem cells. Proc Natl Acad Sci U S A 2006; 103:8018-23. [PMID: 16679411 PMCID: PMC1472422 DOI: 10.1073/pnas.0601139103] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stem cells represent a unique population of cells with self-renewal capacity. Although they are important therapeutic targets, the genetic manipulation of tissue-specific stem cells has been limited, which complicates the study and practical application of these cells. Here, we demonstrate successful gene trapping and homologous recombination in spermatogonial stem cells. Cultured spermatogonial stem cells were transfected with gene trap or gene targeting vectors. Mutagenized stem cells were expanded clonally by drug selection. These cells underwent spermatogenesis and produced heterozygous offspring after transplantation into the seminiferous tubules of infertile mouse testes. Heterozygous mutant mice were intercrossed to produce homozygous gene knockouts. Using this strategy, the efficiency of homologous recombination for the occludin gene locus was 1.7% using a nonisogenic DNA construct. These results demonstrate the feasibility of altering genes in tissue-specific stem cells in a manner similar to embryonic stem cells and have important implications for gene therapy and animal transgenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
133 |
24
|
Shinohara T, Avarbock MR, Brinster RL. Functional analysis of spermatogonial stem cells in Steel and cryptorchid infertile mouse models. Dev Biol 2000; 220:401-11. [PMID: 10753526 DOI: 10.1006/dbio.2000.9655] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Spermatogenesis is a complex and productive process that originates from stem cell spermatogonia and ultimately results in formation of mature spermatozoa. The stem cell undergoes self-renewal throughout life, but study of its biological characteristics has been difficult because a very small number (2 to 3 in 10(4) cells) exist in the testis and they can only be identified by function. Although the development of the spermatogonial transplantation technique has provided an assay system for stem cells, efficient methods to enrich stem cells have not been available. Here, we examined two infertile mouse models, Steel/Steel(Dickie)(Sl/Sl(d)) and experimental cryptorchid, as a source of testis cell populations enriched in stem cells. The Sl/Sl(d) testis showed little enrichment, which raises questions about how adult stem cell number is determined and about the currently accepted belief that adult stem cells are independent of Sl factor. The cells recovered from cryptorchid testes were enriched for stem cells 25-fold (colonies) or 50-fold (area) compared to wild-type testes. The cryptorchid condition does not affect stem cell activity, but eliminates almost all differentiated cells, and about 1 in 200 cells is a stem cell. Thus, cryptorchid testes provide an important approach for purification and characterization of spermatogonial stem cells.
Collapse
|
|
25 |
125 |
25
|
de Smet MD, Yamamoto JH, Mochizuki M, Gery I, Singh VK, Shinohara T, Wiggert B, Chader GJ, Nussenblatt RB. Cellular immune responses of patients with uveitis to retinal antigens and their fragments. Am J Ophthalmol 1990; 110:135-42. [PMID: 2378377 DOI: 10.1016/s0002-9394(14)76981-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Of two patient populations totaling 82 patients, one in the United States and the other in Japan, we studied the cellular immune responses against S-antigen and interphotoreceptor retinoid binding protein as well as to fragments of each antigen. Behçet's disease, birdshot retinochoroidopathy, pars planitis, ocular sarcoid, sympathetic ophthalmia, and the Vogt-Koyanagi-Harada syndrome were diagnosed in these patients. The response profile of both antigens paralleled each other. This profile was more commonly seen in patients suffering from diseases affecting the retina. Responders reacting to both antigens or to several fragments of an antigen were present. This pattern of response was seen in 26 of the patients tested. Patients with uveitis appeared able to recognize several autoantigens. This might be a consequence of the breakdown of the blood-retinal barrier and may help perpetuate the inflammatory process. Several patients were capable of responding to more than one epitope of the same antigen, which indicates that there are major differences between the experimental model and human autoimmune diseases in the response to autoantigens. Both of these findings may to help develop new immunotherapeutic strategies in the treatment of uveitis.
Collapse
|
Comparative Study |
35 |
124 |