1
|
Takano H, Yoshikawa T, Ichinose T, Miyabara Y, Imaoka K, Sagai M. Diesel exhaust particles enhance antigen-induced airway inflammation and local cytokine expression in mice. Am J Respir Crit Care Med 1997; 156:36-42. [PMID: 9230723 DOI: 10.1164/ajrccm.156.1.9610054] [Citation(s) in RCA: 326] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous experimental studies have suggested that nasal instillation of diesel exhaust particles (DEP) can enhance nasal IgE response and cytokine production. However, there is no experimental evidence for the relation of DEP to allergic asthma. We investigated the effects of DEP inoculated intratracheally on antigen-induced airway inflammation, local expression of cytokine proteins, and antigen-specific immunoglobulin production in mice. DEP aggravated ovalbumin-induced airway inflammation characterized by infiltration of eosinophils and lymphocytes and an increase in goblet cells in bronchial epithelium. DEP with antigen markedly increased interleukin-5 (IL-5) protein levels in lung tissue and bronchoalveolar lavage supernatants compared with either antigen or DEP alone. The combination of DEP and antigen induced significant increases in local expression of IL-4, granulocyte macrophage-colony stimulating factor (GM-CSF), and IL-2, whereas expression of interferon-gamma was not affected. In addition, DEP exhibited adjuvant activity for the antigen-specific production of IgG and IgE. These results provide the first experimental evidence that DEP can enhance the manifestations of allergic asthma. The enhancement may be mediated mainly by the increased local expression of IL-5, and also by the modulated expression of IL-4, GM-CSF, and IL-2.
Collapse
|
|
28 |
326 |
2
|
Sagai M, Saito H, Ichinose T, Kodama M, Mori Y. Biological effects of diesel exhaust particles. I. In vitro production of superoxide and in vivo toxicity in mouse. Free Radic Biol Med 1993; 14:37-47. [PMID: 8384149 DOI: 10.1016/0891-5849(93)90507-q] [Citation(s) in RCA: 236] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The problem of whether or not active oxygen species are involved in pulmonary injury by diesel exhaust particles (DEP) was investigated. We found that DEP could produce superoxide O2.- and hydroxyl radical (.OH) in vitro without any biological activating systems. In this reaction system, O2.- and .OH productions were inhibited by addition of superoxide dismutase (SOD) and dimethylsulfoxide, respectively. DEP which were washed with methanol could no longer produce O2.- and .OH, indicating that active components were extractable with organic solvents. These oxygen radicals were also identified by electron spin resonance (ESR) measurement. Furthermore, DEP instilled intratracheally to mouse caused high mortality at low dose, although methanol-washed DEP did not kill any mouse. The cause of death seemed to be pulmonary edema mediated by endothelial cell damage. The instilled DEP markedly decreased the activities of SOD, glutathione peroxidase, and glutathione S-transferase in mouse lungs. On the other hand, the death rate and lung injury were markedly prevented by polyethylene glycol conjugated SOD (PEG-SOD) pretreatment prior to DEP administration. The mortality and lung injury by DEP were also suppressed by butylated hydroxytoluene (BHT) pretreatment. From these results, it was suggested that most parts of DEP toxicity in lungs are due to active oxygen radicals such as O2.- and .OH, and that the cause of death is due to pulmonary edema mediated by endothelial cell damage.
Collapse
|
|
32 |
236 |
3
|
Ichinose T, Yajima Y, Nagashima M, Takenoshita S, Nagamachi Y, Sagai M. Lung carcinogenesis and formation of 8-hydroxy-deoxyguanosine in mice by diesel exhaust particles. Carcinogenesis 1997; 18:185-92. [PMID: 9054605 DOI: 10.1093/carcin/18.1.185] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In order to clarify the involvement of oxygen radicals in lung carcinogenesis induced by diesel exhaust particles (DEP), the relationship between lung tumour response and formation of 8-hydroxydeoxyguanosine (8-OHdG) in lung DNA was examined. The role of high dietary fat and beta-carotene on these responses was also studied. Mice were intratracheally injected with 0.05, 0.1 and 0.2 mg of DEP per animal once weekly for 10 weeks. After 12 months, the lung tumour incidence in mice treated with 0.05 mg and 0.1 mg showed similar increases (30% and 31%), but was decreased to 24% at 0.2 mg. High dietary fat enhanced the incidence of both benign and malignant tumours. beta-carotene partially prevented the tumour development. After the 10 weekly treatments of DEP, inflammatory reaction was observed in the respiratory tract and alveoli. The formation of 8-OHdG in lung DNA from mice treated with DEP showed a dose dependent increase. 8-OHdG formation was enhanced by high dietary fat and partially reduced by beta-carotene. Formation of 8-OHdG was significantly correlated with the lung tumour incidence except at 0.2 mg. These results suggest that the induction of oxidative DNA damage may be an important factor in the initiation of DEP-induced lung carcinogenesis, and that beta-carotene and high dietary fat may play a role in the regulation of tumour development via modulation of the formation of 8-OHdG.
Collapse
|
|
28 |
159 |
4
|
Sagai M, Furuyama A, Ichinose T. Biological effects of diesel exhaust particles (DEP). III. Pathogenesis of asthma like symptoms in mice. Free Radic Biol Med 1996; 21:199-209. [PMID: 8818635 DOI: 10.1016/0891-5849(96)00032-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic airway inflammation, mucus hypersecretion, reversible airway constriction, and bronchial hyperresponsiveness are important pathogenic features of asthma. We found that diesel exhaust particles (DEP) instilled intratracheally and repeatedly to mice (once/week for 16 weeks) caused marked infiltration of inflammatory cells, proliferation of goblet cells, increased mucus secretion, respiratory resistance, and airway constriction. Eosinophils in the submucosa of the proximal bronchi and medium bronchioles increased eightfold following instillation. Eosinophil infiltration was significantly suppressed by pretreatment with polyethyleneglycol-conjugated superoxide dismutase (PEG-SOD). Bound sialic acid concentrations in bronchial alveolar lavage fluids, an index of mucus secretion, increased with DEP, but were suppressed by pretreatment with PEG-SOD. Goblet cell hyperplasia, airway narrowing, and airway constriction also were observed with DEP. Respiratory resistance in the DEP-group to acetylcholine was 11 times higher than in controls, and the increased resistance was significantly suppressed by PEG-SOD pretreatment. These findings suggest that DEP and/or oxygen radicals derived from DEP cause bronchial asthma in mice.
Collapse
|
|
29 |
140 |
5
|
Sagai M, Ichinose T. Age-related changes in lipid peroxidation as measured by ethane, ethylene, butane and pentane in respired gases of rats. Life Sci 1980; 27:731-8. [PMID: 7412499 DOI: 10.1016/0024-3205(80)90326-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
|
45 |
136 |
6
|
Yoshida S, Hiyoshi K, Ichinose T, Takano H, Oshio S, Sugawara I, Takeda K, Shibamoto T. Effect of nanoparticles on the male reproductive system of mice. ACTA ACUST UNITED AC 2009; 32:337-42. [DOI: 10.1111/j.1365-2605.2007.00865.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
16 |
111 |
7
|
Manzerra P, Behrens MM, Canzoniero LM, Wang XQ, Heidinger V, Ichinose T, Yu SP, Choi DW. Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc Natl Acad Sci U S A 2001; 98:11055-61. [PMID: 11572968 PMCID: PMC58682 DOI: 10.1073/pnas.191353598] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Zinc is coreleased with glutamate from excitatory nerve terminals throughout the central nervous system and acutely inhibits N-methyl-d-aspartate (NMDA) receptor activation. Here we report that cultured murine cortical neurons briefly exposed to sublethal concentrations of zinc developed increased intracellular free Na(+), phosphorylation of Src kinase at tyrosine 220, and tyrosine phosphorylation of NMDA receptor 2A/2B subunits, in a fashion sensitive to the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, PP2. Functionally, this zinc exposure produced a delayed increase in NMDA receptor current in perforated patch but not conventional whole-cell recordings, as well as an increase in NMDA receptor-mediated cell death. These observations suggest that the effect of synaptically released zinc on neuronal NMDA receptors may be biphasic: acute block, followed by Src family kinase-mediated up-regulation of NMDA receptor activity and cytotoxicity.
Collapse
|
research-article |
24 |
94 |
8
|
Sanbongi C, Takano H, Osakabe N, Sasa N, Natsume M, Yanagisawa R, Inoue KI, Sadakane K, Ichinose T, Yoshikawa T. Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clin Exp Allergy 2004; 34:971-7. [PMID: 15196288 DOI: 10.1111/j.1365-2222.2004.01979.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Perilla and its constituent rosmarinic acid have been suggested to have anti-allergic activity. However, few studies have examined the effects on allergic asthma. OBJECTIVE The purpose of this study was to evaluate the effect of oral administration of perilla leaf extract, which contains high amount of rosmarinic acid, on a murine model of allergic asthma induced by house dust mite allergen. METHODS C3H/He mice were sensitized by intratracheal administration of Dermatophagoides farinae (Der f). Mice were orally treated with rosmarinic acid in perilla extract (PE) (1.5 mg/mouse/day). RESULTS Der f challenge of sensitized mice elicited pulmonary eosinophilic inflammation, accompanied by an increase in lung expression of IL-4 and IL-5, and eotaxin. Daily treatment with rosmarinic acid in PE significantly prevented the increases in the numbers of eosinophils in bronchoalveolar lavage fluids and also in those around murine airways. Rosmarinic acid in PE treatment also inhibited the enhanced protein expression of IL-4 and IL-5, and eotaxin in the lungs of sensitized mice. Der f challenge also enhanced allergen-specific IgG1, which were also inhibited by rosmarinic acid in PE. CONCLUSION These results suggest that oral administration of perilla-derived rosmarinic acid is an effective intervention for allergic asthma, possibly through the amelioration of increases in cytokines, chemokines, and allergen-specific antibody.
Collapse
|
|
21 |
93 |
9
|
Miyabara Y, Takano H, Ichinose T, Lim HB, Sagai M. Diesel exhaust enhances allergic airway inflammation and hyperresponsiveness in mice. Am J Respir Crit Care Med 1998; 157:1138-44. [PMID: 9563731 DOI: 10.1164/ajrccm.157.4.9708066] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We previously reported that the intratracheal instillation of diesel exhaust particles enhances allergic airway inflammation and hyperresponsiveness in mice. However, it is not known whether the effects of such instillation differ from those obtained with the daily inhalation of diesel exhaust. We therefore examined whether the inhalation of diesel exhaust would also enhance allergic reactions. Mice were exposed to diesel exhaust or clean air for 5 wk. After the first week, the animals were sensitized to ovalbumin by intraperitoneal injection. At the end of the exposure period, they underwent an ovalbumin challenge. Control animals received saline instead of ovalbumin. Independently of ovalbumin sensitization, diesel exhaust caused an increase in the numbers of neutrophils and macrophages in bronchoalveolar lavage fluid, whereas a significant increase in eosinophil numbers occurred only after antigen challenge combined with diesel exhaust exposure. Furthermore, ovalbumin alone caused an increase in eosinophil numbers in lung tissue, and this was enhanced by diesel exhaust. Exposure to diesel exhaust combined with ovalbumin sensitization, but not diesel exhaust inhalation alone, enhanced the number of goblet cells in lung tissue, respiratory resistance, production of ovalbumin-specific immunoglobulin E and G1 in the serum, and expression of interleukin-5 in lung tissue.
Collapse
|
|
27 |
92 |
10
|
Ichinose T, Yoshida S, Hiyoshi K, Sadakane K, Takano H, Nishikawa M, Mori I, Yanagisawa R, Kawazato H, Yasuda A, Shibamoto T. The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 55:348-57. [PMID: 18227959 DOI: 10.1007/s00244-007-9128-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 12/26/2007] [Indexed: 05/19/2023]
Abstract
Asian sand dust (ASD) containing microbiological materials, sulfate (SO(4)(2)), and nitrate (NO(3)(-) ) derived from air pollutants in East China, reportedly cause adverse respiratory health effects. ASD aggravates ovalbumin (OVA)-associated experimental lung eosinophilia. In this study, the toxic materials adsorbed onto ASD were excluded by heat treatment at 360 degrees C for 30 min. The effects of nonheated ASD or heated ASD (H-ASD) toward the allergic lung inflammation were compared in murine lungs. ICR mice were administered intratracheally with normal saline (control), H-ASD, ASD, OVA, OVA + H-ASD, and OVA + ASD, four times at 2-week intervals. ASD only increased neutrophils in bronchoalveolar lavage fluids (BALFs) along with pro-inflammatory mediators, such as keratinocyte chemoattractant (KC). H-ASD and ASD enhanced eosinophil recruitment induced by OVA in the alveoli and in the submucosa of the airway, which has a goblet cell proliferation in the bronchial epithelium. The two ASDs synergistically increased interleukin-5 (IL-5), monocyte chemotactic protein-3 (MCP-3), and eotaxin, which were associated with OVA, in BALF. The enhancing effects were much greater in ASD than in H-ASD. The two ASDs induced the adjuvant effects to specific IgE and IgG1 production by OVA. In the in vitro study using RAW264.7 cells, ASD increased the expression of Toll-like receptor 2 (TLR 2) mRNA but not TLR4 mRNA. H-ASD caused no expression of either TLR mRNA. These results suggest that the aggravated lung eosinophilia by ASD may be due to activation of Th2-associated immune response via the activation of TLR2 by microbial components adhered to ASD.
Collapse
|
|
17 |
86 |
11
|
Ichinose T, Furuyama A, Sagai M. Biological effects of diesel exhaust particles (DEP). II. Acute toxicity of DEP introduced into lung by intratracheal instillation. Toxicology 1995; 99:153-67. [PMID: 7541919 DOI: 10.1016/0300-483x(94)03013-r] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Histopathological examination and cytological analyses in bronchial alveolar lavage fluids (BALF) were performed to clarify the acute toxicity of diesel exhaust particles (DEP) introduced into the lung of ICR mice by intratracheal instillation. Activated charcoal (Norit) was intratracheally administered as a control for non-oedemagenic carbon particles. After administration of two doses (0.4 mg or 0.8 mg per mouse) of DEP, lung water contents increased with instillation dose and with time and increased 1.9 and 2.7-fold, respectively, compared to control animals 24 h after the administration of DEP. In contrast, the instillation of Norit had no effect on the increase in water contents. An inflammatory response in lungs was observed by an increase of inflammatory cells in BALF from mice instilled with DEP. The degree of increase in neutrophils of BALF from mice treated with DEP was much greater than in mice treated with Norit. An intense color of MB-pigment, which showed the extent and degree of endothelial cell injury, was found up to 4 h after administration of DEP. Histopathologically, the disruption of capillary endothelial cells, the detachment from their basement membrane and necrosis, disruption and desquamation of type I pneumocytes were observed, 6 h after the injection of DEP, by electron microscopy. An influx of neutrophils into alveoli, intra-alveolar hemorrhage, perivascular oedema and bronchiolar cell hypertrophy were detected between 18 and 24 h after DEP administration. However, the magnitude of these appearances was greater in mice treated with 0.8 mg of DEP than in mice treated with 0.4 mg. The administration of Norit caused an increase of alveolar macrophages and slight infiltration of neutrophils into the alveolar air spaces and alveolar septa in the animals and had no effects on the bronchioles. These results may suggest that damage of capillary endothelial cells and type I pneumocytes are the earliest changes of lung toxicities by DEP and these cell injuries lead to alveolar oedema and the subsequent inflammatory response.
Collapse
|
|
30 |
84 |
12
|
Nagashima M, Kasai H, Yokota J, Nagamachi Y, Ichinose T, Sagai M. Formation of an oxidative DNA damage, 8-hydroxydeoxyguanosine, in mouse lung DNA after intratracheal instillation of diesel exhaust particles and effects of high dietary fat and beta-carotene on this process. Carcinogenesis 1995; 16:1441-5. [PMID: 7540513 DOI: 10.1093/carcin/16.6.1441] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Diesel exhaust particles (DEP) cause tumors in the respiratory tracts of experimental animals. It was previously shown that DEP produced superoxide and hydroxyl radical. To examine whether oxygen radicals are involved in mouse lung tumorigenesis induced by DEP, formation of an oxidative DNA damage, 8-hydroxydeoxyguanosine (oh8dG), by DEP was investigated. Furthermore, the role of high dietary fat and beta-carotene on this process was studied. After intratracheal instillation of DEP, a significant increase of oh8dG in mouse lung DNA was observed. High dietary fat enhanced the formation of oh8dG in lung DNA. Intake of beta-carotene suppressed the formation of oh8dG in lung DNA, but the protective effect of beta-carotene against this process was not statistically significant. These results suggest that formation of oh8dG in lung DNA was induced by oxygen free radicals produced by DEP. Thus, it is possible that oh8dG is a promutagenic lesion in DEP-induced lung tumorigenesis in mice and high dietary fat enhances this process through the generation of oh8dG in mouse lung DNA.
Collapse
|
|
30 |
78 |
13
|
Lim HB, Ichinose T, Miyabara Y, Takano H, Kumagai Y, Shimojyo N, Devalia JL, Sagai M. Involvement of superoxide and nitric oxide on airway inflammation and hyperresponsiveness induced by diesel exhaust particles in mice. Free Radic Biol Med 1998; 25:635-44. [PMID: 9801062 DOI: 10.1016/s0891-5849(98)00073-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously demonstrated that chronic intratracheal instillation of diesel exhaust particles (DEP) induces airway inflammation and hyperresponsiveness in the mouse, and that these effects were partially reversed by the administration of superoxide dismutase (SOD). In the present study, we have investigated the involvement of superoxide in DEP-induced airway response by analyzing the localization and activity of two enzymes: (1) a superoxide producer, NADPH cytochrome P-450 reductase (P-450 reductase), and (2) a superoxide scavenger, SOD, in the lungs of the exposed mice and controls. P-450 reductase was detected mainly in ciliated cells and clara cells: its activity was increased by the repeated intratracheal instillation of DEP. While CuZn-SOD and Mn-SOD were also present in the airway epithelium, their activity was significantly decreased following DEP instillation. Exposure to DEP doubled the level of nitric oxide (NO) in the exhaled air. DEP exposure also increased the level of constitutive NO synthase (cNOS) in the airway epithelium and inducible NO synthase (iNOS) in the macrophages. Pretreatment with N-G-monomethyl L-arginine, a nonspecific inhibitor of NO synthase, significantly reduced the airway hyperresponsiveness induced by DEP. These results indicate that superoxide and NO may each contribute to the airway inflammation and hyperresponsiveness induced by the repeated intratracheal instillation of DEP in mice.
Collapse
|
|
27 |
75 |
14
|
Yanagisawa R, Takano H, Inoue KI, Ichinose T, Sadakane K, Yoshino S, Yamaki K, Yoshikawa T, Hayakawa K. Components of diesel exhaust particles differentially affect Th1/Th2 response in a murine model of allergic airway inflammation. Clin Exp Allergy 2006; 36:386-95. [PMID: 16499651 DOI: 10.1111/j.1365-2222.2006.02452.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Diesel exhaust particles (DEP) can enhance various respiratory diseases. However, it is unclear as to which components in DEP are associated with the enhancement. We investigated the effects of DEP components on antigen-related airway inflammation, using residual carbonaceous nuclei of DEP after extraction (washed DEP), extracted organic chemicals (OC) in DEP (DEP-OC), and DEP-OC plus washed DEP (whole DEP) in the presence or absence of ovalbumin (OVA). METHODS Male ICR mice were intratracheally administrated with OVA and/or DEP components. We examined the cellular profile of bronchoalveolar lavage (BAL) fluid, histological changes, lung expression of inflammatory molecules, and antigen-specific production of IgG1 in the serum. RESULTS DEP-OC, rather than washed DEP, enhanced infiltration of inflammatory cells into BAL fluid, magnitude of airway inflammation, and proliferation of goblet cells in the airway epithelium in the presence of OVA, which was paralleled by the enhanced lung expression of eotaxin and IL-5 as well as the elevated concentration of OVA-specific IgG1. In contrast, washed DEP with OVA showed less change and increased the lung expression of IFN-gamma. The combination of whole DEP and OVA caused the most remarkable changes in the entire enhancement, which was also accompanied by the enhanced expression of IL-13 and macrophage inflammatory protein-1 alpha. CONCLUSION DEP-OC, rather than washed DEP, exaggerated allergic airway inflammation through the enhancement of T-helper type 2 responses. The coexistence of OC with carbonaceous nuclei caused the most remarkable aggravation. DEP components might diversely affect various types of respiratory diseases, while whole DEP might mostly aggravate respiratory diseases.
Collapse
|
|
19 |
71 |
15
|
Miyabara Y, Ichinose T, Takano H, Lim HB, Sagai M. Effects of diesel exhaust on allergic airway inflammation in mice. J Allergy Clin Immunol 1998; 102:805-12. [PMID: 9819298 DOI: 10.1016/s0091-6749(98)70021-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Eosinophilic infiltration and goblet cell hyperplasia were induced by the intratracheal instillation of diesel exhaust particles and ovalbumin in mice. However, it is unknown whether its results differ from the effects of the inhalation of diesel exhaust and allergen. OBJECTIVES The purpose of this study was to compare the effects of diesel exhaust inhalation and intratracheal instillation of diesel exhaust particles in a murine asthma model. METHODS ICR mice were exposed to 3 mg soot per cubic meter of diesel exhaust for 6 weeks. After the first week, animals were sensitized by intraperitoneal injection of ovalbumin and aluminum hydroxide gel. After 5 weeks of diesel exhaust exposure, the mice were challenged with ovalbumin. The animals were killed 1, 2, 3, and 7 days after the challenge and investigated for airway inflammation, hyperplasia of goblet cells, airway hyperresponsiveness, local cytokine expression, and antigen-specific IgE and IgG1 production. RESULTS Exposure to diesel exhaust enhanced infiltration of eosinophils and neutrophils in murine airways even 1 day after the challenge. An increment of goblet cells under the bronchial epithelium was followed by the recruitment of inflammatory cells. Furthermore, exposure to diesel exhaust combined with ovalbumin sensitization enhanced respiratory resistance and expression of IL-5 in lung tissue and IgG1 production but not IgE. However, diesel exhaust alone did not induce pathologic changes in mice. CONCLUSIONS Diesel exhaust enhanced allergic airway inflammation, hyperplasia of goblet cells, and airway hyperresponsiveness caused by ovalbumin sensitization.
Collapse
|
|
27 |
71 |
16
|
Miyabara Y, Yanagisawa R, Shimojo N, Takano H, Lim HB, Ichinose T, Sagai M. Murine strain differences in airway inflammation caused by diesel exhaust particles. Eur Respir J 1998; 11:291-8. [PMID: 9551727 DOI: 10.1183/09031936.98.11020291] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To elucidate whether immunoglobulin (Ig) E or IgG are involved in the murine asthma model, we compared the pathogenic features of mice that were high IgG responders (C3H/He) with mice that were high IgE responders (BALB/c) after intratracheal instillation of diesel exhaust particles (DEP) and ovalbumin sensitization. Both mouse strains received DEP intratracheally once a week for 5 weeks. After the second injection of DEP, ovalbumin and aluminium hydroxide were injected intraperitoneally. After the last DEP administration, the mice were challenged by exposure to an aerosol of ovalbumin. DEP caused increased IgG1 production and airway hyperresponsiveness after ovalbumin sensitization in C3H/He mice, although IgE production did not change in either strain. Furthermore, in C3H/He mice, the number of eosinophils and goblet cells in the bronchial epithelium, and the expression of interleukin-5 and interleukin-2 were increased by DEP and ovalbumin treatments. In contrast, the pathogenic changes in BALB/c mice were weak, even though the same protocol was used. In conclusion, murine strain differences in response to air pollutants and allergens seem to be related to antigen-specific immunoglobulin G1 production and cytokine expression in the lungs.
Collapse
|
|
27 |
64 |
17
|
Fujimaki H, Nohara O, Ichinose T, Watanabe N, Saito S. IL-4 production in mediastinal lymph node cells in mice intratracheally instilled with diesel exhaust particulates and antigen. Toxicology 1994; 92:261-8. [PMID: 7524198 DOI: 10.1016/0300-483x(94)90182-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To clarify the relationship between air pollutants and IgE antibody production, interleukin 4 (IL-4) production was investigated in BALB/c mice intratracheally injected with diesel exhaust particulates (DEP) mixed with antigen (Ovalbumin (OA) or Japanese Cedar Pollen (JCP)). BALB/c mice were injected with DEP plus OA or OA alone three times with a 3-week interval. After the last instillation, proliferative response and lymphokine-producing activity of mediastinal lymph node cells (LNC) were examined in vitro. Proliferative response to OA in mediastinal LNC from mice injected with DEP plus OA was enhanced 4-17 times of that from control mice. IL-4-producing activity by OA stimulation also enhanced in mediastinal LNC from mice injected with DEP plus OA. A significantly larger amount of anti-OA IgE antibody was detected in sera from DEP- and OA-injected mice compared with those from control mice. The levels of IL-4, estimated by JCP antigen in mediastinal LNC, from mice injected with DEP plus JCP were two-fold higher than those from mice injected with JCP alone. These results suggest that intratracheal instillation of DEP affects antigen-specific IgE antibody responses via local T-cell activation, especially enhanced IL-4 production.
Collapse
|
|
31 |
64 |
18
|
Yamasoba D, Sato K, Ichinose T, Imamura T, Koepke L, Joas S, Reith E, Hotter D, Misawa N, Akaki K, Uehata T, Mino T, Miyamoto S, Noda T, Yamashita A, Standley DM, Kirchhoff F, Sauter D, Koyanagi Y, Takeuchi O. N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation. Nat Microbiol 2019; 4:1532-1544. [PMID: 31133753 DOI: 10.1038/s41564-019-0460-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 04/16/2019] [Indexed: 01/04/2023]
Abstract
RNA-modulating factors not only regulate multiple steps of cellular RNA metabolism, but also emerge as key effectors of the immune response against invading viral pathogens including human immunodeficiency virus type-1 (HIV-1). However, the cellular RNA-binding proteins involved in the establishment and maintenance of latent HIV-1 reservoirs have not been extensively studied. Here, we screened a panel of 62 cellular RNA-binding proteins and identified NEDD4-binding protein 1 (N4BP1) as a potent interferon-inducible inhibitor of HIV-1 in primary T cells and macrophages. N4BP1 harbours a prototypical PilT N terminus-like RNase domain and inhibits HIV-1 replication by interacting with and degrading viral mRNA species. Following activation of CD4+ T cells, however, N4BP1 undergoes rapid cleavage at Arg 509 by the paracaspase named mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1). Mutational analyses and knockout studies revealed that MALT1-mediated inactivation of N4BP1 facilitates the reactivation of latent HIV-1 proviruses. Taken together, our findings demonstrate that the RNase N4BP1 is an efficient restriction factor of HIV-1 and suggest that inactivation of N4BP1 by induction of MALT1 activation might facilitate elimination of latent HIV-1 reservoirs.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
60 |
19
|
Takano H, Ichinose T, Miyabara Y, Yoshikawa T, Sagai M. Diesel exhaust particles enhance airway responsiveness following allergen exposure in mice. Immunopharmacol Immunotoxicol 1998; 20:329-36. [PMID: 9653676 DOI: 10.3109/08923979809038548] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have previously reported that intratracheal instillation of diesel exhaust particles (DEP) enhances allergen-induced eosinophilic airway inflammation, local expression of interleukin-5 and granulocyte macrophage-colony stimulating factor, and allergen-specific production of IgE and IgG in mice. The present study was undertaken to elucidate the effects of DEP on airway hyperresponsiveness as another characteristic feature of allergic asthma. The animals were randomized into four experimental groups that received intratracheal instillation with vehicle, ovalbumin (OVA), DEP, or the combination of OVA and DEP on a weekly basis for 6 weeks. Respiratory resistance (Rrs) was measured 24 h after the last instillation. An increase in Rrs in animals that inhaled acetylcholine was significantly greater in the combined treatment with OVA and DEP than in the other treatments. The present study indicates that DEP can enhance airway responsiveness associated with allergen exposure, and provides experimental evidence that DEP may deteriorate the pathophysiology of allergen-related respiratory disease such as allergic asthma.
Collapse
|
Comparative Study |
27 |
60 |
20
|
Takano H, Ichinose T, Miyabara Y, Shibuya T, Lim HB, Yoshikawa T, Sagai M. Inhalation of diesel exhaust enhances allergen-related eosinophil recruitment and airway hyperresponsiveness in mice. Toxicol Appl Pharmacol 1998; 150:328-37. [PMID: 9653064 DOI: 10.1006/taap.1998.8437] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that intratracheal instillation of suspension of diesel exhaust particles enhances allergen-related eosinophilic airway inflammation, airway hyperresponsiveness, and local expression of interleukin (IL)-5 and granulocyte macrophage-colony stimulating factor (GM-CSF) in mice. The present study was designed to elucidate the effects of daily inhalation of diesel exhaust (DE) on the allergen-related respiratory disease. ICR mice were exposed for 40 weeks to clean air or DE at a soot concentration of 0.3, 1.0, or 3.0 mg/m3 with aerosol allergen challenges (1% ovalbumin in isotonic saline for 6 min) at 3-week intervals during the last 24 weeks of exposures. Exposure to DE enhanced allergen-related eosinophil recruitment to the submucosal layers of the airways and to the bronchoalveolar space, and increased protein levels of GM-CSF and IL-5 in the lung in a dose-dependent manner compared to exposure to clean air. There were strong correlations between the number of eosinophils in bronchoalveolar lavage (BAL) fluid and IL-5 concentrations in BAL supernatants and lung tissue supernatants. In addition, the increases in eosinophil recruitment and local cytokine expression were accompanied by goblet cell proliferation in the bronchial epithelium and airway hyperresponsiveness to inhaled acetylcholine. In contrast, the control mice exposed for 40 weeks to clean air or DE at a soot concentration of 0.3, 1.0, or 3.0 mg/m3 without allergen provocation showed no eosinophil recruitment to the submucosal layers of the airways nor to the bronchoalveolar space and few goblet cells in the bronchial epithelium. The present study provides experimental evidence that daily inhalation of DE can enhance allergen-related respiratory diseases such as allergic asthma. This effect may be mediated by the enhanced local expression of IL-5 and GM-CSF. Increased ambient levels of DE may be implicated in the increasing prevalence of bronchial asthma in recent years.
Collapse
|
Comparative Study |
27 |
59 |
21
|
Burch JB, Reif JS, Noonan CW, Ichinose T, Bachand AM, Koleber TL, Yost MG. Melatonin metabolite excretion among cellular telephone users. Int J Radiat Biol 2002; 78:1029-36. [PMID: 12456290 DOI: 10.1080/09553000210166561] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE The relationship between cellular telephone use and excretion of the melatonin metabolite 6-hydroxymelatonin sulfate (6-OHMS) was evaluated in two populations of male electric utility workers (Study 1, n=149; Study 2, n=77). MATERIALS AND METHODS Participants collected urine samples and recorded cellular telephone use over 3 consecutive workdays. Personal 60-Hz magnetic field (MF) and ambient light exposures were characterized on the same days using EMDEX II meters. A repeated measures analysis was used to assess the effects of cellular telephone use, alone and combined with MF exposures, after adjustment for age, participation month and light exposure. RESULTS No change in 6-OHMS excretion was observed among those with daily cellular telephone use >25 min in Study 1 (5 worker-days). Study 2 workers with >25 min cellular telephone use per day (13 worker-days) had lower creatinine-adjusted mean nocturnal 6-OHMS concentrations (p=0.05) and overnight 6-OHMS excretion (p=0.03) compared with those without cellular telephone use. There was also a linear trend of decreasing mean nocturnal 6-OHMS/creatinine concentrations (p=0.02) and overnight 6-OHMS excretion (p=0.08) across categories of increasing cellular telephone use. A combined effect of cellular telephone use and occupational 60-Hz MF exposure in reducing 6-OHMS excretion was also observed in Study 2. CONCLUSIONS Exposure-related reductions in 6-OHMS excretion were observed in Study 2, where daily cellular telephone use of >25 min was more prevalent. Prolonged use of cellular telephones may lead to reduced melatonin production, and elevated 60-Hz MF exposures may potentiate the effect.
Collapse
|
|
23 |
58 |
22
|
Ichinose T, Takano H, Miyabara Y, Yanagisawa R, Sagai M. Murine strain differences in allergic airway inflammation and immunoglobulin production by a combination of antigen and diesel exhaust particles. Toxicology 1997; 122:183-92. [PMID: 9328218 DOI: 10.1016/s0300-483x(97)00096-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To clarify the relationship between the manifestations of allergic airway inflammation modulated by diesel exhaust particles (DEP) and immunoglobulin production in response to an antigen, airway inflammation characterized by the infiltration of eosinophils, goblet cell proliferation, and antigen-specific immunoglobulin (Ig) production was investigated in five strains of mice after immunization with ovalbumin (OA). Mice were injected intratracheally with OA (1 microg) or OA (1 microg) + DEP (50 microg) four times at 3-week intervals. The order of antigen-specific IgG1 production in plasma of mouse strains treated with OA alone was CBA/2N <BDF/1 <C57BL/6 < ICR <C3H/He. The adjuvant effect of DEP on IgG1 production was observed in CBA/2N, BDF/1, ICR, and C57BL/6 mice. The immune activity in BDF/1 mice was significantly elevated (P < 0.01). The OA-specific IgE in plasma was unaffected by antigen challenge with or without DEP in any strain. The degree of eosinophilic inflammation and goblet cell proliferation in the airway induced by OA alone or OA + DEP corresponded well with the antigen-specific IgG1 production. These results suggest that the manifestations of allergic airway inflammation modulated by DEP were closely related to the immunoglobulin production response to OA, especially with regard to enhanced IgG1 production.
Collapse
|
Comparative Study |
28 |
56 |
23
|
Yanagisawa R, Takano H, Inoue K, Ichinose T, Sadakane K, Yoshino S, Yamaki K, Kumagai Y, Uchiyama K, Yoshikawa T, Morita M. Enhancement of acute lung injury related to bacterial endotoxin by components of diesel exhaust particles. Thorax 2003; 58:605-12. [PMID: 12832678 PMCID: PMC1746720 DOI: 10.1136/thorax.58.7.605] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Diesel exhaust particles (DEP) synergistically aggravate acute lung injury related to lipopolysaccharide (LPS) in mice, but the components in DEP responsible for this have not been identified. A study was undertaken to examine the effects of the organic chemicals (DEP-OC) and residual carbonaceous nuclei (washed DEP) derived from DEP on LPS related lung injury. METHODS ICR mice were divided into experimental groups and vehicle, LPS, washed DEP, DEP-OC, washed DEP+LPS, and DEP-OC+LPS were administered intratracheally. The cellular profile of the bronchoalveolar lavage (BAL) fluid, pulmonary oedema, lung histology, and expression of proinflammatory molecules and Toll-like receptors in the lung were evaluated. RESULTS Both DEP-OC and washed DEP enhanced the infiltration of neutrophils into BAL fluid in the presence of LPS. Washed DEP combined with LPS synergistically exacerbated pulmonary oedema and induced alveolar haemorrhage, which was concomitant with the enhanced lung expression of interleukin-1beta, macrophage inflammatory protein-1alpha, macrophage chemoattractant protein-1, and keratinocyte chemoattractant, whereas DEP-OC combined with LPS did not. Gene expression of Toll-like receptors 2 and 4 was increased by combined treatment with washed DEP and LPS. The enhancement effects of washed DEP on LPS related changes were comparable to those of whole DEP. CONCLUSIONS These results suggest that the residual carbonaceous nuclei of DEP rather than the extracted organic chemicals predominantly contribute to the aggravation of LPS related lung injury. This may be mediated through the expression of proinflammatory cytokines, chemokines, and Toll-like receptors.
Collapse
|
research-article |
22 |
53 |
24
|
Kato S, Karino K, Hasegawa S, Nagasawa J, Nagasaki A, Eguchi M, Ichinose T, Tago K, Okumori H, Hamatani K. Octacosanol affects lipid metabolism in rats fed on a high-fat diet. Br J Nutr 1995; 73:433-41. [PMID: 7766566 DOI: 10.1079/bjn19950045] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of dietary octacosanol, a long-chain alcohol, on lipid metabolism was investigated in rats fed on a high-fat diet for 20 d. The addition of octacosanol (10 g/kg diet) to the high-fat diet led to a significant reduction (P < 0.05) in the perirenal adipose tissue weight without decrease of the cell number, suggesting that octacosanol may suppress lipid accumulation in this tissue, whereas no effect was seen in the epididymal adipose tissue weight and in the lipid content in liver. Octacosanol supplementation decreased the serum triacylglycerol concentration, and enhanced the concentration of serum fatty acids, probably through inhibition of hepatic phosphatidate phosphohydrolase (EC 3.1.3.4). Though the activity of hormone-sensitive lipase (EC 3.1.1.3) was not influenced by octacosanol, higher activities of lipoprotein lipase (EC 3.1.1.34) in the perirenal adipose tissue and the total oxidation rate of fatty acid in muscle were observed. Lipid absorption was not affected by the inclusion of octacosanol. Thus, the present results suggest that the dietary incorporation of octacosanol into a high-fat diet affects some aspects of lipid metabolism.
Collapse
|
|
30 |
52 |
25
|
Sagai M, Ichinose T, Kubota K. Studies on the biochemical effects of nitrogen dioxide. IV. Relation between the change of lipid peroxidation and the antioxidative protective system in rat lungs upon life span exposure to low levels of NO2. Toxicol Appl Pharmacol 1984; 73:444-56. [PMID: 6719462 DOI: 10.1016/0041-008x(84)90097-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study examined the relation between lipid peroxidation and the antioxidative protective system in lungs of rats exposed to low levels of nitrogen dioxide (NO2). JCL:male Wistar rats were exposed to 0, 0.04, 0.4, and 4 ppm NO2 for 9, 18, and 27 months. Lipid peroxidation measured by TBA method, increased significantly in the 4 ppm NO2 group of the 9-month exposure and in the 0.4 and 4 ppm NO2 groups of the 18-month exposure. The activity of glutathione peroxidase measured with hydrogen peroxide as substrate decreased significantly in the 4 ppm NO2 group of the 9-month exposure and in the 0.4 and 4 ppm NO2 groups of the 18-month exposure. Furthermore, the activities of two glutathione S-transferases, aryl and aralkyl S-transferase, also decreased in the 0.4 and 4 ppm NO2 groups of the 18-month exposure, but not in any groups of the 9-month exposure. The activity of glutathione peroxidase measured with cumene hydroperoxide as substrate did not show any significant changes in any NO2 group. The activities of glucose-6-phosphate dehydrogenase and glutathione reductase were significantly higher than those in the control group for the 9-month exposure. In the 18-month exposure, however, they showed a tendency to return to control level. The activities of superoxide dismutase and disulfide reductase upon NO2 exposure for 9 and 18 months were not different from control values. To confirm that lipid peroxidation was increased with greater NO2 concentrations and exposure times, ethane and pentane exhalation in breath as an index of lipid peroxidation was examined. Ethane exhalation increased significantly following 0.04, 0.4, and 4 ppm NO2 exposure for 9 and 18 months. Furthermore, ethane formation of rats exposed to 0.04 and 0.4 ppm NO2 for 27 months also increased to twice the control level. On the other hand, after exposure to 4 ppm NO2 for 27 months, ethane levels returned to control level. Pentane formation increased significantly only in the 0.04 and 0.4 ppm groups in the 18-month exposure. Ethane exhalation in rats exposed to 0.04, 0.12, and 0.4 ppm NO2 for 9 and 18 months was similar. These results suggested that the antioxidative protective ability was decreased with prolonged exposure, while formation of cytotoxic lipid peroxides was increased.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
41 |
48 |