1
|
Adeogun AO, Babalola AS, Oyale OO, Oyeniyi T, Omotayo A, Izekor RT, Adetunji O, Olakiigbe A, Olagundoye O, Adeleke MA, Ojianwuna CC, Dagona A, Muhammad DA, Mabu JM, Sambo EO, Oduola A, Inyama PU, Samdi L, Obembe A, Dogara MM, Yoriyo KP, Mohammed S, Samuel RN, Amajoh C, Musa A, Zabiri MJ, Sani N, Zakariya S, Samaila A, Abba E, Shuaibu AB, Enwemiwe V, Esiwo E, Danjuma A, Shuaibu T, Istifanus PA, Kabiru S, Ukubuiwe AC, Salihu IM, Bamidele JA, Fawole JK, Liatu GC, Wahedi AJ, Idris SF, Ado A, Pukuma MS, Fasasi KA, Rufai AM, Fagbohun IK, Bala M, Esema M, Omo-Eboh M, Idowu OA, Ande A, Olayemi IK, Yayo AM, Ademu C, Okoronko C, Ozor L, Ssekitooleko J, Mokuolu O, Kawu I, Ntadom G, Salako B, Awolola S. Spatial distribution and geospatial modeling of potential spread of secondary malaria vectors species in Nigeria using recently collected empirical data. PLoS One 2025; 20:e0320531. [PMID: 40258055 PMCID: PMC12011306 DOI: 10.1371/journal.pone.0320531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/19/2025] [Indexed: 04/23/2025] Open
Abstract
In Nigeria, most research and malaria vector control efforts have focused on primary vectors within the Anopheles gambiae complex, with less emphasis on other secondary vectors. Consequently, understudied secondary vectors have demonstrated a proportional and increasing role in transmission. This study utilized geospatial models to understand the potential distribution of anopheline species other than An. gambiae complex (non-gambiae species) in Nigeria. Adult mosquitoes were sampled monthly between 2020 and 2022, with concurrent surveys of larval sites in selected Local Government Areas (LGAs) across 20 States resulting in the collection and identification of over 100,000 Anopheline mosquitoes. Utilizing 23 environmental variables, the model produced maps depicting the potential geographical distribution of four secondary vector species under current climatic conditions. An. funestus, An. coustani, An. maculipalpis, and An. rufipes dominated collections, with other species also present. Most species collected exhibited higher occurrences in the Northern parts of the country, albeit with lower numbers, while they seem confined to fewer locations in the southern parts - with higher densities. An. funestus, An. maculipalpis, and An. rufipes demonstrated a higher potential for wide range expansion compared to An. coustani based on the model. Overall, modeling outputs indicate that non-An. gambiae were expected to exhibit a wide-spread across the country, with their distribution primarily influenced by temperature rather than precipitation-related factors. These models provide research scientists and decision-makers with a baseline for research, monitoring towards establishing management plans for future national mosquito surveillance and control programs in Nigeria.
Collapse
|
research-article |
1 |
|
2
|
Omotayo AI, Dogara MM, Sufi D, Shuaibu T, Balogun J, Dawaki S, Muktar B, Adeniyi K, Garba N, Namadi I, Adam HA, Adamu S, Abdullahi H, Sulaiman A, Oduola AO. High pyrethroid-resistance intensity in Culex quinquefasciatus (Say) (Diptera: Culicidae) populations from Jigawa, North-West, Nigeria. PLoS Negl Trop Dis 2022; 16:e0010525. [PMID: 35727843 PMCID: PMC9249174 DOI: 10.1371/journal.pntd.0010525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/01/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
This study examined pyrethroid resistance intensity and mechanisms in Culex quinquefasciatus (Say) (Diptera: Culicidae) populations from Jigawa, North-West Nigeria. Resistance statuses to permethrin, lambda-cyhalothrin and alphacypermethrin were determined with both WHO and CDC resistance bioassays. Synergist assay was conducted by pre-exposing the populations to Piperonyl butoxide (PBO) using the WHO method. Resistance intensities to 2x, 5x and 10x of diagnostic concentrations were determined with the CDC bottle method. Species analysis and presence of knockdown mutation (Leu-Phe) were done using Polymerase Chain Reaction (PCR). Results showed that Cx. quinquefasciatus was the only Culex spp. present and “Kdr-west” mutation was not detected in all analyzed samples. Using WHO method, Cx. quinquefasciatus resistance to permethrin was detected in Dutse (12.2%) and Kafin-Hausa (77.78%). Lambda-cyhalothrin resistance was recorded only in Kafin-Hausa (83.95%) with resistance suspected in Ringim (90%). Resistance to alphacypermethrin was recorded in all locations. Pre-exposure to PBO led to 100% mortality to alphacypermethrin and lambda-cyhalothrin in Ringim while mortality to permethrin and alphacypermethrin in Dutse increased from 12.2% to 97.5% and 64.37% to 79.52% respectively. Using CDC bottle bioassay, resistance was also recorded in all populations and the result shows a significant positive correlation (R2 = 0.728, p = 0.026) with the result from the WHO bioassay. Results of resistance intensity revealed a very high level of resistance in Kafin-Hausa with susceptibility to lambda-cyhalothrin and alphacypermethrin not achieved at 10x of diagnostic doses. Resistance intensity was also high in Dutse with susceptibility to all insecticides not achieved at 5x of diagnostic doses. Widespread and high intensity of resistance in Cx. quinquefasciatus from North-West Nigeria is a major threat to the control of diseases transmitted by Culex and other mosquito species. It is a challenge that needs to be adequately addressed so as to prevent the failure of pyrethroid-based vector control tools. Development of resistance to insecticide by mosquitoes has been identified to be a major challenge in the prevention and control of diseases transmitted by mosquitoes. This informs this study that investigated the level of resistance of Culex mosquitoes from Jigawa, North-West Nigeria to Pyrethroids. The main type of Culex mosquitoes found in the sampled area was Cx. quinquefasciatus. The Cx. quinquefasciatus populations were found to be resistant to permethrin, lambda-cyhalothrin and alphacypermethrin. Resistance in Cx. quinquefasciatus from the three LGAs is more pronounced to alphacypermethrin. The methods employed by the mosquitoes in developing resistance involve detoxification of the insecticides by metabolic enzymes. Cx. quinquefasciatus from the three LGAs were observed to be highly resistant and can withstand multiple of the recommended doses. This development whereby Cx. quinquefasciatus populations were highly resistant to these recommended insecticides is of serious concern as it can lead to failure of all efforts geared towards prevention and control of diseases transmitted by Culex mosquitoes in North-West Nigeria.
Collapse
|
|
3 |
|