1
|
Mancia A, Chenet T, Bono G, Geraci ML, Vaccaro C, Munari C, Mistri M, Cavazzini A, Pasti L. Adverse effects of plastic ingestion on the Mediterranean small-spotted catshark (Scyliorhinus canicula). MARINE ENVIRONMENTAL RESEARCH 2020; 155:104876. [PMID: 31965976 DOI: 10.1016/j.marenvres.2020.104876] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Plastics are widely diffused in the oceans and their ingestion by marine organisms is raising concern for potentially adverse effects. The risk of harmful interactions with marine plastic pollution depends on the biology of the species as well as the distribution and abundance of the different plastic types. The aim of this study was to assess the occurrence of plastic ingestion by the small-spotted catshark (Scyliorhinus canicula), one of the most abundant elasmobranchs in the Mediterranean Sea. The expression levels of genes indicative of total immune system function were analyzed to gather preliminary data for further investigation of any potential correlations between plastic presence and immune activation. One hundred catsharks were collected during the Spring 2018 in two geographic locations in the southern region of the central Mediterranean Sea: 1) near Mazara del Vallo, SW Sicily and 2) near Lampedusa island, Italy's southernmost. Standard measurements were recorded for each specimen and its organs and sex was determined. The gastrointestinal tract (GIT) was preserved for plastic detection and identification. Where present, plastics (macro- and micro-) were characterized in terms of size, shape and polymer typology through microscopy and μ-Raman spectroscopy. Spleen from a subset of thirty samples was preserved for RNA extraction, then used to quantify by real time PCR the transcripts of T cell receptor beta (TCRB), T cell receptor delta (TCRD) and IgM genes. The results indicated that ingestion of plastic is widespread, with microplastics (MP, from 1 μm to <1 mm) abundantly present in nearly all samples and macroplasticplastic (MaP, > 1 cm) in approximately 18% of the specimens collected. A significant increase in the expression of TCRB, TCRD and IgM was observed in the spleen of MaP + specimens from Mazara del Vallo waters, in parallel with 67% increase in liver weight. While the presence of MP alone is not enough to induce a strong activation of the immunity, some type of plastics falling into the MaP category may be more toxic than others and crucial in the activation of the immune response. The results of this study represent a first evidence that plastic pollution represents an emerging threat to S. canicula, the Mediterranean food web and human consumers.
Collapse
|
|
5 |
44 |
2
|
Chenet T, Mancia A, Bono G, Falsone F, Scannella D, Vaccaro C, Baldi A, Catani M, Cavazzini A, Pasti L. Plastic ingestion by Atlantic horse mackerel (Trachurus trachurus) from central Mediterranean Sea: A potential cause for endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117449. [PMID: 34098369 DOI: 10.1016/j.envpol.2021.117449] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Plastics in the oceans can break up into smaller size and shape resembling prey or particles selected for ingestion by marine organisms. Plastic polymers may contain chemical additives and contaminants, including known endocrine disruptors that may be harmful for the marine organisms, in turn posing potential risks to marine ecosystems, biodiversity and food availability. This study assesses the presence of plastics in the contents of the gastrointestinal tract (GIT) of a commercial fish species, the Atlantic horse mackerel, Trachurus trachurus, sampled from two different fishing areas of central Mediterranean Sea. Adverse effect of plastics occurrence on T. Trachurus health were also assessed quantifying the liver expression of vitellogenin (VTG), a biomarker for endocrine disruption. A total of 92 specimens were collected and morphometric indices were analysed. A subgroup was examined for microplastics (MP < 1 mm) and macroplastics (MaP >1 cm) accumulation in the GIT and for VTG expression. Results indicated that specimens from the two locations are different in size and maturity but the ingestion of plastic is widespread, with microplastics (fragments and filaments) abundantly present in nearly all samples while macroplastics were found in the larger specimens, collected in one of the two locations. Spectroscopic analysis revealed that the most abundant polymers in MP fragments were polystyrene, polyethylene and polypropylene, whereas MP filaments were identified mainly as nylon 6, acrylic and polyester. MaP were composed mainly of weathered polyethylene or polypropylene. The expression of VTG was observed in the liver of 60% of all male specimens from both locations. The results of this study represent a first evidence that the ingestion of plastic pollution may alter endocrine system function in adult fish T. Trachurus and warrants further research.
Collapse
|
|
4 |
26 |
3
|
Felletti S, De Luca C, Lievore G, Chenet T, Chankvetadze B, Farkas T, Cavazzini A, Catani M. Shedding light on mechanisms leading to convex-upward van Deemter curves on a cellulose tris(4-chloro-3-methylphenylcarbamate)-based chiral stationary phase. J Chromatogr A 2020; 1630:461532. [PMID: 32950816 DOI: 10.1016/j.chroma.2020.461532] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
Abstract
An unusual convex-upward van Deemter curve was observed for the more retained enantiomer of a chiral sulfoxide (2-(benzylsulfinyl)benzamide) on a cellulose tris(4-chloro-3-methylphenylcarbamate)-based chiral stationary phase (CSP), prepared on silica particles of 1000 Å pore size. In contrast, the firstly eluted enantiomer of the same molecule exhibited the traditional convex-downward van Deemter curve. A detailed kinetic and thermodynamic investigation has revealed that this unusual phenomenon, which however has already been observed in chiral chromatography, originates when the adsorption of the compound is very strong and the solid-phase diffusion negligible. Experimentally, the intraparticle diffusion of the more retained enantiomer of the sulfoxide was found to be one order of magnitude smaller than that of the first eluted one. Overall, this translates into very little longitudinal diffusion (b-term of van Deemter curve) accompanied by high solid-liquid mass transfer resistance (c-term). Finally the comparison with another, differently-substituted chiral sulfoxide (whose enantiomers both exhibit traditional van Deemter curve behavior) has allowed to correlate these findings to the specific characteristics of the molecule.
Collapse
|
|
5 |
20 |
4
|
De Luca C, Felletti S, Lievore G, Chenet T, Morbidelli M, Sponchioni M, Cavazzini A, Catani M. Modern trends in downstream processing of biotherapeutics through continuous chromatography: The potential of Multicolumn Countercurrent Solvent Gradient Purification. Trends Analyt Chem 2020; 132:116051. [PMID: 32994652 PMCID: PMC7513800 DOI: 10.1016/j.trac.2020.116051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-column (batch) preparative chromatography is the technique of choice for purification of biotherapeutics but it is often characterized by an intrinsic limitation in terms of yield-purity trade-off, especially for separations containing a larger number of product-related impurities. This drawback can be alleviated by employing multicolumn continuous chromatography. Among the different methods working in continuous mode, in this paper we will focus in particular on Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) which has been specifically designed for challenging separations of target biomolecules from their product-related impurities. The improvements come from the automatic internal recycling of the impure fractions inside the chromatographic system, which results in an increased yield without compromising the purity of the pool. In this article, steps of the manufacturing process of biopharmaceuticals will be described, as well as the advantages of continuous chromatography over batch processes, by particularly focusing on MCSGP.
Collapse
|
review-article |
5 |
20 |
5
|
De Luca C, Felletti S, Macis M, Cabri W, Lievore G, Chenet T, Pasti L, Morbidelli M, Cavazzini A, Catani M, Ricci A. Modeling the nonlinear behavior of a bioactive peptide in reversed-phase gradient elution chromatography. J Chromatogr A 2019; 1616:460789. [PMID: 31874699 DOI: 10.1016/j.chroma.2019.460789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
The thermodynamic behavior of octreotide, a cyclic octapeptide with important pharmaceutical functions, has been simulated under reversed-phase gradient elution conditions. To this end, adsorption behavior was firstly investigated in isocratic conditions, under a variety of water/acetonitrile + 0.02% (v/v) trifluoroacetic acid (TFA) mixtures as mobile phase by using a Langmuir isotherm. Organic modifier was varied in the range between 23 and 28% (v/v). Adsorption isotherms were determined by means of the so-called Inverse Method (IM) with a minimum amount of peptide. The linear solvent strength (LSS) model was used to find the correlation between isotherm parameters and mobile phase composition. This study contributes to enlarge our knowledge on the chromatographic behavior under nonlinear gradient conditions of peptides. In particular, it focuses on a cyclic octapeptide.
Collapse
|
Journal Article |
6 |
13 |
6
|
Mistri M, Munari C, Pagnoni A, Chenet T, Pasti L, Cavazzini A. Accumulation of trace metals in crayfish tissues: is Procambarus clarkii a vector of pollutants in Po Delta inland waters? EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1717653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
5 |
10 |
7
|
Felletti S, De Luca C, Mazzoccanti G, Gasparrini F, Manetto S, Franchina FA, Chenet T, Pasti L, Cavazzini A, Catani M. Understanding the Transition from High-Selective to High-Efficient Chiral Separations by Changing the Organic Modifier with Zwitterionic-Teicoplanin Chiral Stationary Phase. Anal Chem 2023. [PMID: 37294639 DOI: 10.1021/acs.analchem.3c01344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The retention behavior of small molecules and N-protected amino acids on a zwitterionic teicoplanin chiral stationary phase (CSP), prepared on superficially porous particles (SPPs) of 2.0 μm particle diameter, has shown that efficiency and enantioselectivity, and so enantioresolution, dramatically change depending on the employed organic modifier. In particular, it was found that while methanol permits the boost of enantioselectivity and resolution of the amino acids, at the cost of efficiency, acetonitrile allows for the ability to reach extraordinary efficiency even at high flow rates (with reduced plate height <2 and up to 300,000 plates/m at the optimum flow rate). To understand these features, an approach based on the investigation of mass transfer through the CSP, the estimation of the binding constants of amino acids on the CSP, and the assessment of compositional properties of the interfacial region between bulk mobile phase and solid surface has been adopted.
Collapse
|
|
2 |
8 |
8
|
Felletti S, De Luca C, Lievore G, Pasti L, Chenet T, Mazzoccanti G, Gasparrini F, Cavazzini A, Catani M. Investigation of mass transfer properties and kinetic performance of high‐efficiency columns packed with C
18
sub‐2 μm fully and superficially porous particles. J Sep Sci 2020; 43:1737-1745. [DOI: 10.1002/jssc.202000041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/09/2022]
|
|
5 |
7 |
9
|
Rodeghero E, Chenet T, Martucci A, Ardit M, Sarti E, Pasti L. Selective adsorption of toluene and n-hexane binary mixture from aqueous solution on zeolite ZSM-5: Evaluation of competitive behavior between aliphatic and aromatic compounds. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
|
5 |
6 |
10
|
Schincaglia A, Aspromonte J, Franchina FA, Chenet T, Pasti L, Cavazzini A, Purcaro G, Beccaria M. Current Developments of Analytical Methodologies for Aflatoxins' Determination in Food during the Last Decade (2013-2022), with a Particular Focus on Nuts and Nut Products. Foods 2023; 12:527. [PMID: 36766055 PMCID: PMC9914313 DOI: 10.3390/foods12030527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
This review aims to provide a clear overview of the most important analytical development in aflatoxins analysis during the last decade (2013-2022) with a particular focus on nuts and nuts-related products. Aflatoxins (AFs), a group of mycotoxins produced mainly by certain strains of the genus Aspergillus fungi, are known to impose a serious threat to human health. Indeed, AFs are considered carcinogenic to humans, group 1, by the International Agency for Research on Cancer (IARC). Since these toxins can be found in different food commodities, food control organizations worldwide impose maximum levels of AFs for commodities affected by this threat. Thus, they represent a cumbersome issue in terms of quality control, analytical result reliability, and economical losses. It is, therefore, mandatory for food industries to perform analysis on potentially contaminated commodities before the trade. A full perspective of the whole analytical workflow, considering each crucial step during AFs investigation, namely sampling, sample preparation, separation, and detection, will be presented to the reader, focusing on the main challenges related to the topic. A discussion will be primarily held regarding sample preparation methodologies such as partitioning, solid phase extraction (SPE), and immunoaffinity (IA) related methods. This will be followed by an overview of the leading analytical techniques for the detection of aflatoxins, in particular liquid chromatography (LC) coupled to a fluorescence detector (FLD) and/or mass spectrometry (MS). Moreover, the focus on the analytical procedure will not be specific only to traditional methodologies, such as LC, but also to new direct approaches based on imaging and the ability to detect AFs, reducing the need for sample preparation and separative techniques.
Collapse
|
Review |
2 |
5 |
11
|
Zanella D, Romagnoli M, Malcangi S, Beccaria M, Chenet T, De Luca C, Testoni F, Pasti L, Visentini U, Morini G, Cavazzini A, Franchina FA. The contribution of high-resolution GC separations in plastic recycling research. Anal Bioanal Chem 2023; 415:2343-2355. [PMID: 36650250 PMCID: PMC10149442 DOI: 10.1007/s00216-023-04519-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
One convenient strategy to reduce environmental impact and pollution involves the reuse and revalorization of waste produced by modern society. Nowadays, global plastic production has reached 367 million tons per year and because of their durable nature, their recycling is fundamental for the achievement of the circular economy objective. In closing the loop of plastics, advanced recycling, i.e., the breakdown of plastics into their building blocks and their transformation into valuable secondary raw materials, is a promising management option for post-consumer plastic waste. The most valuable product from advanced recycling is a fluid hydrocarbon stream (or pyrolysis oil) which represents the feedstock for further refinement and processing into new plastics. In this context, gas chromatography is currently playing an important role since it is being used to study the pyrolysis oils, as well as any organic contaminants, and it can be considered a high-resolution separation technique, able to provide the molecular composition of such complex samples. This information significantly helps to tailor the pyrolysis process to produce high-quality feedstocks. In addition, the detection of contaminants (i.e., heteroatom-containing compounds) is crucial to avoid catalytic deterioration and to implement and design further purification processes. The current review highlights the importance of molecular characterization of waste stream products, and particularly the pyrolysis oils obtained from waste plastics. An overview of relevant applications published recently will be provided, and the potential of comprehensive two-dimensional gas chromatography, which represents the natural evolution of gas chromatography into a higher-resolution technique, will be underlined.
Collapse
|
Review |
2 |
4 |
12
|
Spadafora ND, Eggermont D, Křešťáková V, Chenet T, Van Rossum F, Purcaro G. Comprehensive analysis of floral scent and fatty acids in nectar of Silene nutans through modern analytical gas chromatography techniques. J Chromatogr A 2023; 1696:463977. [PMID: 37054636 DOI: 10.1016/j.chroma.2023.463977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
The aim of this work was to show the potential of multidimensional gas chromatography combined with mass spectrometry and suitable chemometrics means based on untargeted and profiling data analysis to strengthen the information provided by floral scent and nectar fatty acids of four genetically differentiated lineages (E1, W1, W2, and W3) of the nocturnal moth-pollinated herb Silene nutans. Volatile organic compounds emitted by flowers were trapped for a total of 42 samples by in-vivo sampling dynamic head space for analysing floral scent by untargeted approach, while 37 samples of nectar were collected for analysing fatty acids through profiling analysis. The resulting data from floral scent analysis were aligned and compared using a tile-based methodology followed by data mining to access high-level information. Based on floral scent and nectar fatty acid results, it was possible to distinguish E1 from the W lineages, and W3 from W1 and W2. This work puts the bases for a larger study aiming to clarify the existence of prezygotic barriers involved in speciation among lineages of S. nutans, and thus the possible implication of different flower scents and nectar compositions in this phenomenon.
Collapse
|
|
2 |
1 |
13
|
Hassoun A, Pasti L, Chenet T, Rusanova P, Smaoui S, Aït-Kaddour A, Bono G. Detection methods of micro and nanoplastics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:175-227. [PMID: 36863835 DOI: 10.1016/bs.afnr.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Plastics and related contaminants (including microplastics; MPs and nanoplastics; NPs) have become a serious global safety issue due to their overuse in many products and applications and their inadequate management, leading to possible leakage into the environment and eventually to the food chain and humans. There is a growing literature reporting on the occurrence of plastics, (MPs and NPs) in both marine and terrestrial organisms, with many indications about the harmful impact of these contaminants on plants and animals, as well as potential human health risks. The presence of MPs and NPs in many foods and beverages including seafood (especially finfish, crustaceans, bivalves, and cephalopods), fruits, vegetables, milk, wine and beer, meat, and table salts, has become popular research areas in recent years. Detection, identification, and quantification of MPs and NPs have been widely investigated using a wide range of traditional methods, such as visual and optical methods, scanning electron microscopy, and gas chromatography-mass spectrometry, but these methods are burdened with a number of limitations. In contrast, spectroscopic techniques, especially Fourier-transform infrared spectroscopy and Raman spectroscopy, and other emerging techniques, such as hyperspectral imaging are increasingly being applied due to their potential to enable rapid, non-destructive, and high-throughput analysis. Despite huge research efforts, there is still an overarching need to develop reliable analytical techniques with low cost and high efficiency. Mitigation of plastic pollution requires establishing standard and harmonized methods, adopting holistic approaches, and raising awareness and engaging the public and policymakers. Therefore, this chapter focuses mainly on identification and quantification techniques of MPs and NPs in different food matrices (mostly seafood).
Collapse
|
|
2 |
1 |
14
|
Beltrami G, Martucci A, Pasti L, Chenet T, Ardit M, Gigli L, Cescon M, Suard E. L-Lysine Amino Acid Adsorption on Zeolite L: a Combined Synchrotron, X-Ray and Neutron Diffraction Study. ChemistryOpen 2020; 9:978-982. [PMID: 33024651 PMCID: PMC7528762 DOI: 10.1002/open.202000183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Combined neutron and X-ray powder diffraction techniques highlighted the sorption capacity of the acidic L zeolite towards the L-lysine amino acid. The role of zeolite channels in the stabilization of the lysine absorbed and the effect of water on protein structure are elucidated at atomistic level. The stabilization of the L α-helical conformation is related to strong H-bonds between the tail aminogroups of lysine molecules and the Brønsted acid site as well as to complex intermolecular H-bond system between water molecules, zeolite and amino acid. This finding is relevant in the catalytic synthesis of polypeptide, as well as in industrial biotechnology by qualitatively predicting binding behaviour.
Collapse
|
|
5 |
1 |
15
|
Milani M, Mazzanti M, Stevanin C, Chenet T, Magnacca G, Pasti L, Molinari A. CdS-Based Hydrothermal Photocatalysts for Complete Reductive Dehalogenation of a Chlorinated Propionic Acid in Water by Visible Light. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:579. [PMID: 38607114 PMCID: PMC11013931 DOI: 10.3390/nano14070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Cadmium sulfide (CdS)-based photocatalysts are prepared following a hydrothermal procedure (with CdCl2 and thiourea as precursors). The HydroThermal material annealed (CdS-HTa) is crystalline with a band gap of 2.31 eV. Photoelectrochemical investigation indicates a very reducing photo-potential of -0.9 V, which is very similar to that of commercial CdS. CdS-HTa, albeit having similar reducing properties, is more active than commercial CdS in the reductive dehalogenation of 2,2-dichloropropionic acid (dalapon) to propionic acid. Spectroscopic, electro-, and photoelectrochemical investigation show that photocatalytic properties of CdS are correlated to its electronic structure. The reductive dehalogenation of dalapon has a double significance: on one hand, it represents a demanding reductive process for a photocatalyst, and on the other hand, it has a peculiar interest in water treatment because dalapon can be considered a representative molecule of persistent organic pollutants and is one of the most important disinfection by products, whose removal from the water is the final obstacle to its complete reuse. HPLC-MS investigation points out that complete disappearance of dalapon passes through 2-monochloropropionic acid and leads to propionic acid as the final product. CdS-HTa requires very mild working conditions (room temperature, atmospheric pressure, natural pH), and it is stable and recyclable without significant loss of activity.
Collapse
|
research-article |
1 |
|
16
|
Mancia A, Chenet T, Bono G, Geraci ML, Vaccaro C, Munari C, Mistri M, Cavazzini A, Pasti L. Corrigendum "Adverse effects of plastic ingestion on the Mediterranean small-spotted catshark (Scyliorhinus canicula)" [Mar. Environ. Res. 155 March 2020 104876]. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105325. [PMID: 33932847 DOI: 10.1016/j.marenvres.2021.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
Published Erratum |
4 |
|
17
|
Spadafora ND, Felletti S, Chenet T, Sirangelo TM, Cescon M, Catani M, De Luca C, Stevanin C, Cavazzini A, Pasti L. The influence of drying and storage conditions on the volatilome and cannabinoid content of Cannabis sativa L. inflorescences. Anal Bioanal Chem 2024; 416:3797-3809. [PMID: 38702447 PMCID: PMC11180634 DOI: 10.1007/s00216-024-05321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The increasing interest in hemp and cannabis poses new questions about the influence of drying and storage conditions on the overall aroma and cannabinoids profile of these products. Cannabis inflorescences are subjected to drying shortly after harvest and then to storage in different containers. These steps may cause a process of rapid deterioration with consequent changes in precious secondary metabolite content, negatively impacting on the product quality and potency. In this context, in this work, the investigation of the effects of freeze vs tray drying and three storage conditions on the preservation of cannabis compounds has been performed. A multi-trait approach, combining both solid-phase microextraction (SPME) two-dimensional gas chromatography coupled to mass spectrometry (SPME-GC × GC-MS) and high-performance liquid chromatography (HPLC), is presented for the first time. This approach has permitted to obtain the detailed characterisation of the whole cannabis matrix in terms of volatile compounds and cannabinoids. Moreover, multivariate statistical analyses were performed on the obtained data, helping to show that freeze drying conditions is useful to preserve cannabinoid content, preventing decarboxylation of acid cannabinoids, but leads to a loss of volatile compounds which are responsible for the cannabis aroma. Furthermore, among storage conditions, storage in glass bottle seems more beneficial for the retention of the initial VOC profile compared to open to air dry tray and closed high-density polyethylene box. However, the glass bottle storage condition causes formation of neutral cannabinoids at the expenses of the highly priced acid forms. This work will contribute to help define optimal storage conditions useful to produce highly valuable and high-quality products.
Collapse
|
research-article |
1 |
|
18
|
De Poli M, Chenet T, Felletti S, Spadafora D, Cavazzini A, Franchina FA. Sorbent-Based Sampling With Two-Stage Trapping/Desorption Coupled to Comprehensive Two-Dimensional Gas Chromatography and Mass Spectrometry for Terpenoids Profiling in Cannabis. ANALYTICAL SCIENCE ADVANCES 2025; 6:e202400044. [PMID: 39777015 PMCID: PMC11702380 DOI: 10.1002/ansa.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Cannabis inflorescences represent an important source of many high-value bioactive specialized metabolites, among which the family of terpenes or terpenoids that are the largest classes of natural products known. Besides their biological activities either alone or synergistic with other terpenoids and/or cannabinoids, they are responsible for their distinctive flavour. In this study, we exploited the separation power and identification capabilities of comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC-MS) for the profiling of terpenes and terpenoids in cannabis inflorescences. The dynamic headspace (DHS) used herein for the extraction was chosen for its sensitivity, portability, suitability, as well as its versatility of sampling various natural products, including plant raw materials and different plant parts. The enrichment method and the following desorption into the GC were developed and optimized on both standards and real samples considering different sorbent traps (i.e. Tenax-TA, Carbotrap T420, Carbotrap 202), and evaluating key performance values. Analyte coverage, recovery and response reproducibility were used for the evaluation of the best performing thermal desorption tube. Considering terpenoids profiling on cannabis inflorescences, satisfactory extraction performance was observed with both Tenax-TA and Carbotrap T420. However, Tenax-TA provided a wider analyte coverage beyond the class of terpenoids, thus can be better suited for non-targeted analysis. On the other hand, peak width, peak height, peak quality and resolution were considered for the optimization of the chromatographic process, and more specifically the injection process, demonstrating the benefit of a secondary trapping/desorption stage with a cryotrap. Finally, considering the final DHSE-TD-GC×GC-MS conditions, terpenes and terpenoids were profiled in real-world cannabis inflorescences, highlighting the differences among the chemovars.
Collapse
|
research-article |
1 |
|
19
|
Chenet T, Schwarz G, Neff C, Hattendorf B, Günther D, Martucci A, Cescon M, Baldi A, Pasti L. Scallop shells as biosorbents for water remediation from heavy metals: Contributions and mechanism of shell components in the adsorption of cadmium from aqueous matrix. Heliyon 2024; 10:e29296. [PMID: 38601540 PMCID: PMC11004421 DOI: 10.1016/j.heliyon.2024.e29296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/05/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
To ascertain their potential for heavy metal pollution remedy, we studied the adsorption mechanism of cadmium onto scallop shells and the interactions between the heavy metal and the shell matrix. Intact shells were used to investigate the uptake and diffusion of the metal contaminant onto the shell carbonatic layers, as well as to evaluate the distribution of major and trace elements in the matrix. LA-ICPMS measurements demonstrate that Cd is adsorbed on a very thin layer on the inner and outer surfaces of the shell. Structural and thermal analyses showed the presence of 9 wt.-% of a CdCO3 phase indicating that the adsorption is mainly a superficial process which involves different processes, including ion exchange of Ca by Cd. In addition, organic components of the shell could contribute to adsorption as highlighted by different metal uptake observed for shells with different colours. In particular, darker shells appeared to adsorb more contaminant than the white ones. The contribution of the organic shell components on the adsorption of heavy metals was also highlighted by the element bulk content which showed higher concentrations of different metals in the darker specimen. Raman spectroscopy allowed to identify the pigments as carotenoids, confirmed by XRD measurements which highlighted the presence of astaxanthin phases. The results presented here provide new insights into the Cd adsorption mechanism highlighting the important contribution given by the organic components present in the biogenic carbonate matrix. Furthermore, the high efficiency of Cd removal from water by scallop shells, supported by adsorption kinetic and isotherm studies, has been demonstrated.
Collapse
|
research-article |
1 |
|
20
|
Cescon M, Stevanin C, Ardit M, Orlandi M, Martucci A, Chenet T, Pasti L, Caramori S, Cristino V. Solvothermally Grown Oriented WO 3 Nanoflakes for the Photocatalytic Degradation of Pharmaceuticals in a Flow Reactor. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:860. [PMID: 38786816 PMCID: PMC11124514 DOI: 10.3390/nano14100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Contamination by pharmaceuticals adversely affects the quality of natural water, causing environmental and health concerns. In this study, target drugs (oxazepam, OZ, 17-α-ethinylestradiol, EE2, and drospirenone, DRO), which have been extensively detected in the effluents of WWTPs over the past decades, were selected. We report here a new photoactive system, operating under visible light, capable of degrading EE2, OZ and DRO in water. The photocatalytic system comprised glass spheres coated with nanostructured, solvothermally treated WO3 that improves the ease of handling of the photocatalyst and allows for the implementation of a continuous flow process. The photocatalytic system based on solvothermal WO3 shows much better results in terms of photocurrent generation and photocatalyst stability with respect to state-of-the-art WO3 nanoparticles. Results herein obtained demonstrate that the proposed flow system is a promising prototype for enhanced contaminant degradation exploiting advanced oxidation processes.
Collapse
|
research-article |
1 |
|
21
|
Corviseri MC, Polidoro A, De Poli M, Stevanin C, Chenet T, D'Anna C, Cavazzini A, Pasti L, Franchina FA. Targeted determination of volatile fluoroalkyl pollutants and non-targeted screening for environmental monitoring. Talanta 2025; 292:127944. [PMID: 40120512 DOI: 10.1016/j.talanta.2025.127944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants known for their toxicity, mobility, and bioaccumulation. Efficient sample preparation and analysis of these compounds are critical for environmental monitoring. In this study, a novel analytical methodology is presented, integrating dynamic headspace extraction (DHS) and thermal desorption (TD) with one-dimensional (1D) and two-dimensional (2D) gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) for the quantification of target volatile and semi-volatile PFAS. Such an approach also enables the non-targeted screening of other classes of contaminants in aqueous samples. The method was optimized and validated for nine (semi-)volatile PFAS, including fluorotelomer alcohols (FTOHs), acrylate (FTAc), and alkyl sulfonamides (FOSA, FOSE). Three types of adsorbent materials were evaluated during the enrichment step, among which Tenax TA demonstrated superior recovery and reproducibility. Extraction volumes of 1 L, 2 L, and 5 L were tested, with 1 L providing the most consistent recoveries and reproducibility. The optimized method achieved detection limits as low as 2.17 ng L-1, indicating high sensitivity. In a case study involving water from an industrial site, the enhanced separation and detection capabilities of GC×GC-TOFMS enabled the identification of 115 additional environmentally relevant compounds, including halogen-containing compounds, monoaromatics, and polycyclic aromatic hydrocarbons. This integrated DHS-TD-GC×GC-TOFMS approach provides a robust and suitable analytical solution for targeted PFAS monitoring, combining high sensitivity and selectivity with simultaneous non-targeted analytical capabilities - a particularly advantageous feature for the environmental monitoring of (semi-)volatile chemicals in real samples.
Collapse
|
|
1 |
|
22
|
Beltrami G, Martucci A, Pasti L, Chenet T, Ardit M, Gigli L, Cescon M, Suard E. Front Cover: L−Lysine Amino Acid Adsorption on Zeolite L: a Combined Synchrotron, X‐Ray and Neutron Diffraction Study (ChemistryOpen 10/2020). Chemistry 2020. [DOI: 10.1002/open.202000271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
5 |
|
23
|
Beltrami G, Martucci A, Pasti L, Chenet T, Ardit M, Gigli L, Cescon M, Suard E. L-Lysine Amino Acid Adsorption on Zeolite L: a Combined Synchrotron, X-Ray and Neutron Diffraction Study. ChemistryOpen 2020; 9:977. [PMID: 33024650 PMCID: PMC7528759 DOI: 10.1002/open.202000270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Invited for this month's cover are the groups of Annalisa Martucci and Luisa Pasti at the University of Ferrara (Italy). The cover picture shows L-lysine amino acid adsorption on zeolite L. The role of zeolite channels in the stabilization of the lysine absorbed and the effect of water on protein structure are elucidated at atomistic level. The stabilization of the L α-helical conformation is related to strong H-bonds between the tail aminogroups of lysine molecules and the Brønsted acid site as well as to complex intermolecular H-bond system between water molecules, zeolite and amino acid. Read the full text of their Full Paper at 10.1002/open.202000183.
Collapse
|
other |
5 |
|