1
|
Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D'Angelo C, Massi-Benedetti C, Fallarino F, Carvalho A, Puccetti P, Romani L. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013; 39:372-85. [PMID: 23973224 DOI: 10.1016/j.immuni.2013.08.003] [Citation(s) in RCA: 1635] [Impact Index Per Article: 136.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023]
Abstract
Endogenous tryptophan (Trp) metabolites have an important role in mammalian gut immune homeostasis, yet the potential contribution of Trp metabolites from resident microbiota has never been addressed experimentally. Here, we describe a metabolic pathway whereby Trp metabolites from the microbiota balance mucosal reactivity in mice. Switching from sugar to Trp as an energy source (e.g., under conditions of unrestricted Trp availability), highly adaptive lactobacilli are expanded and produce an aryl hydrocarbon receptor (AhR) ligand-indole-3-aldehyde-that contributes to AhR-dependent Il22 transcription. The resulting IL-22-dependent balanced mucosal response allows for survival of mixed microbial communities yet provides colonization resistance to the fungus Candida albicans and mucosal protection from inflammation. Thus, the microbiota-AhR axis might represent an important strategy pursued by coevolutive commensalism for fine tuning host mucosal reactivity contingent on Trp catabolism.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/deficiency
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Candida albicans/immunology
- Candidiasis/immunology
- Energy Metabolism
- Female
- Gastrointestinal Tract/immunology
- Gastrointestinal Tract/metabolism
- Gastrointestinal Tract/microbiology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoles/metabolism
- Interleukin-17/deficiency
- Interleukin-17/genetics
- Interleukins/metabolism
- Limosilactobacillus reuteri/growth & development
- Limosilactobacillus reuteri/immunology
- Limosilactobacillus reuteri/metabolism
- Metagenome
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Myeloid Differentiation Factor 88/deficiency
- Myeloid Differentiation Factor 88/genetics
- Probiotics
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Toll-Like Receptor 2/deficiency
- Toll-Like Receptor 2/genetics
- Tryptophan/chemistry
- Tryptophan/metabolism
- Interleukin-22
Collapse
|
|
12 |
1635 |
2
|
Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D, Ho A, See P, Shin A, Wasan P, Hoeffel G, Malleret B, Heiseke A, Chew S, Jardine L, Purvis H, Hilkens C, Tam J, Poidinger M, Stanley E, Krug A, Renia L, Sivasankar B, Ng L, Collin M, Ricciardi-Castagnoli P, Honda K, Haniffa M, Ginhoux F. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 2013; 38:970-83. [PMID: 23706669 PMCID: PMC3666057 DOI: 10.1016/j.immuni.2013.04.011] [Citation(s) in RCA: 651] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/25/2013] [Indexed: 12/11/2022]
Abstract
Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24+CD64− DCs and contaminating CSF-1R-dependent CD24−CD64+ macrophages. Functionally, loss of CD24+CD11b+ DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24+CD11b+ DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies.
Mucosal CD11b+ DCs consist of CD24+CD64− DCs and CD24−CD64+ macrophages Mucosal CD24+CD11b+ DCs are IRF4-dependent IRF4-dependent CD24+CD11b+ DCs secrete IL-23α and control mucosal IL-17 responses Human CD1c+CD11b+ DCs are functional homologs of murine CD24+CD11b+ DCs
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
651 |
3
|
Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, Bicciato S, Mazza EMC, Macchiarulo A, Vacca C, Iannitti R, Tissi L, Volpi C, Belladonna ML, Orabona C, Bianchi R, Lanz TV, Platten M, Della Fazia MA, Piobbico D, Zelante T, Funakoshi H, Nakamura T, Gilot D, Denison MS, Guillemin GJ, DuHadaway JB, Prendergast GC, Metz R, Geffard M, Boon L, Pirro M, Iorio A, Veyret B, Romani L, Grohmann U, Fallarino F, Puccetti P. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 2014; 511:184-90. [PMID: 24930766 DOI: 10.1038/nature13323] [Citation(s) in RCA: 537] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/10/2014] [Indexed: 01/17/2023]
Abstract
Disease tolerance is the ability of the host to reduce the effect of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (endotoxin tolerance). We found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR-complex-associated Src kinase activity promoted IDO1 phosphorylation and signalling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in Gram-negative and Gram-positive infections, pointing to a role for AhR in contributing to host fitness.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
537 |
4
|
Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, Bistoni F, Puccetti P, Kastelein RA, Kopf M, Romani L. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 2007; 37:2695-706. [PMID: 17899546 DOI: 10.1002/eji.200737409] [Citation(s) in RCA: 426] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although inflammation is an essential component of the protective response to fungi, its dysregulation may significantly worsen fungal diseases. We found here that the IL-23/IL-17 developmental pathway acted as a negative regulator of the Th1-mediated immune resistance to fungi and played an inflammatory role previously attributed to uncontrolled Th1 cell responses. Both inflammation and infection were exacerbated by a heightened Th17 response against Candida albicans and Aspergillus fumigatus, two major human fungal pathogens. IL-23 acted as a molecular connection between uncontrolled fungal growth and inflammation, being produced by dendritic cells in response to a high fungal burden and counter-regulating IL-12p70 production. Both IL-23 and IL-17 subverted the inflammatory program of neutrophils, which resulted in severe tissue inflammatory pathology associated with infection. Our data are the first demonstrating that the IL-23/IL-17 pathway promotes inflammation and susceptibility in an infectious disease model. As IL-23-driven inflammation promotes infection and impairs antifungal resistance, modulation of the inflammatory response represents a potential strategy to stimulate protective immune responses to fungi.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
426 |
5
|
Romani L, Fallarino F, De Luca A, Montagnoli C, D'Angelo C, Zelante T, Vacca C, Bistoni F, Fioretti MC, Grohmann U, Segal BH, Puccetti P. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 2008; 451:211-5. [PMID: 18185592 DOI: 10.1038/nature06471] [Citation(s) in RCA: 426] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 11/13/2007] [Indexed: 01/01/2023]
Abstract
Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
426 |
6
|
De Luca A, Zelante T, D'Angelo C, Zagarella S, Fallarino F, Spreca A, Iannitti RG, Bonifazi P, Renauld JC, Bistoni F, Puccetti P, Romani L. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol 2010; 3:361-73. [PMID: 20445503 DOI: 10.1038/mi.2010.22] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of IL-17 and Th17 cells in immunity vs. pathology associated with the human commensal Candida albicans remains controversial. Both positive and negative effects on immune resistance have been attributed to IL-17/Th17 in experimental candidiasis. In this study, we provide evidence that IL-22, which is also produced by Th17 cells, has a critical, first-line defense in candidiasis by controlling the growth of infecting yeasts as well as by contributing to the host's epithelial integrity in the absence of acquired Th1-type immunity. The two pathways are reciprocally regulated, and IL-22 is upregulated under Th1 deficiency conditions and vice versa. Whereas both IL-17A and F are dispensable for antifungal resistance, IL-22 mediates protection in IL-17RA-deficient mice, in which IL-17A contributes to disease susceptibility. Thus, our findings suggest that protective immunity to candidiasis is made up of a staged response involving an early, IL-22-dominated response followed by Th1/Treg reactivity that will prevent fungal dissemination and supply memory.
Collapse
|
|
15 |
207 |
7
|
Montagnoli C, Fallarino F, Gaziano R, Bozza S, Bellocchio S, Zelante T, Kurup WP, Pitzurra L, Puccetti P, Romani L. Immunity and Tolerance to Aspergillus Involve Functionally Distinct Regulatory T Cells and Tryptophan Catabolism. THE JOURNAL OF IMMUNOLOGY 2006; 176:1712-23. [PMID: 16424201 DOI: 10.4049/jimmunol.176.3.1712] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The inherent resistance to diseases caused by Aspergillus fumigatus suggests the occurrence of regulatory mechanisms that provide the host with adequate defense without necessarily eliminating the fungus or causing unacceptable levels of host damage. In this study, we show that a division of labor occurs between functionally distinct regulatory T cells (Treg) that are coordinately activated by a CD28/B-7-dependent costimulatory pathway after exposure of mice to Aspergillus conidia. Early in infection, inflammation is controlled by the expansion, activation and local recruitment of CD4+CD25+ Treg capable of suppressing neutrophils through the combined actions of IL-10 and CTLA-4 on indoleamine 2,3-dioxygenase. The levels of IFN-gamma produced in this early phase set the subsequent adaptive stage by conditioning the indoleamine 2,3-dioxygenase-dependent tolerogenic program of dendritic cells and the subsequent activation and expansion of tolerogenic Treg, which produce IL-10 and TGF-beta, inhibit Th2 cells, and prevent allergy to the fungus. The coordinate activation of Treg may, however, be subverted by the fungus, as germinating conidia are capable of interfering with anti-inflammatory and tolerogenic Treg programs. Thus, regulation is an essential component of the host response in infection and allergy to the fungus, and its manipulation may allow the pathogen to overcome host resistance and promote disease.
Collapse
MESH Headings
- Animals
- Aspergillosis/enzymology
- Aspergillosis/immunology
- Aspergillosis/metabolism
- Aspergillus fumigatus/immunology
- B7-1 Antigen/genetics
- B7-2 Antigen/genetics
- CD28 Antigens/genetics
- Cells, Cultured
- Coculture Techniques
- Disease Susceptibility
- Female
- Hypersensitivity/immunology
- Immune Tolerance/physiology
- Immunity, Cellular
- Immunity, Innate
- Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/microbiology
- Tryptophan/metabolism
Collapse
|
|
19 |
150 |
8
|
De Luca A, Montagnoli C, Zelante T, Bonifazi P, Bozza S, Moretti S, D’Angelo C, Vacca C, Boon L, Bistoni F, Puccetti P, Fallarino F, Romani L. Functional yet Balanced Reactivity to Candida albicans Requires TRIF, MyD88, and IDO-Dependent Inhibition of Rorc. THE JOURNAL OF IMMUNOLOGY 2007; 179:5999-6008. [DOI: 10.4049/jimmunol.179.9.5999] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
|
18 |
139 |
9
|
Bozza S, Bistoni F, Gaziano R, Pitzurra L, Zelante T, Bonifazi P, Perruccio K, Bellocchio S, Neri M, Iorio AM, Salvatori G, De Santis R, Calvitti M, Doni A, Garlanda C, Mantovani A, Romani L. Pentraxin 3 protects from MCMV infection and reactivation through TLR sensing pathways leading to IRF3 activation. Blood 2006; 108:3387-96. [PMID: 16840729 DOI: 10.1182/blood-2006-03-009266] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AbstractReactivation of latent human cytomegalovirus (HCMV) following allogeneic transplantation is a major cause of morbidity and mortality and predisposes to severe complications, including superinfection by Aspergillus species (spp). Antimicrobial polypeptides, including defensins and mannan-binding lectin, are known to block viral fusion by cross-linking sugars on cell surface. Pentraxin 3 (PTX3), a member of the long pentraxin family, successfully restored antifungal immunity in experimental hematopoietic transplantation. We assessed here whether PTX3 binds HCMV and murine virus (MCMV) and the impact on viral infectivity and superinfection in vivo. We found that PTX3 bound both viruses, reduced viral entry and infectivity in vitro, and protected from MCMV primary infection and reactivation as well as Aspergillus superinfection. This occurred through the activation of interferon (IFN) regulatory factor 3 (IRF3) in dendritic cells via the TLR9/MyD88-independent viral recognition sensing and the promotion of the interleukin-12 (IL-12)/IFN-γ–dependent effector pathway.
Collapse
|
|
19 |
110 |
10
|
Bozza S, Fallarino F, Pitzurra L, Zelante T, Montagnoli C, Bellocchio S, Mosci P, Vacca C, Puccetti P, Romani L. A Crucial Role for Tryptophan Catabolism at the Host/Candida albicansInterface. THE JOURNAL OF IMMUNOLOGY 2005; 174:2910-8. [PMID: 15728502 DOI: 10.4049/jimmunol.174.5.2910] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
By mediating tryptophan catabolism, the enzyme indoleamine 2,3-dioxygenase (IDO) has a complex role in immunoregulation in infection, pregnancy, autoimmunity, transplantation, and neoplasia. We hypothesized that IDO might affect the outcome of the infection in mice infected with Candida albicans by virtue of its potent regulatory effects on inflammatory and T cell responses. IDO expression was examined in mice challenged with the fungus along with the consequences of its blockade by in vivo treatment with an enzyme inhibitor. We found that IDO activity was induced at sites of infection as well as in dendritic cells and effector neutrophils via IFN-gamma- and CTLA-4-dependent mechanisms. IDO inhibition greatly exacerbated infection and associated inflammatory pathology as a result of deregulated innate and adaptive/regulatory immune responses. However, a role for tryptophan catabolism was also demonstrated in a fungus-autonomous fashion; its blockade in vitro promoted yeast-to-hyphal transition. These results provide novel mechanistic insights into complex events that, occurring at the fungus/pathogen interface, relate to the dynamics of host adaptation to the fungus. The production of IFN-gamma may be squarely placed at this interface, where IDO activation probably exerts a fine control over fungal morphology as well as inflammatory and adaptive antifungal responses.
Collapse
|
|
20 |
101 |
11
|
Fallarino F, Volpi C, Zelante T, Vacca C, Calvitti M, Fioretti MC, Puccetti P, Romani L, Grohmann U. IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2009; 183:6303-12. [DOI: 10.4049/jimmunol.0901577] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
|
16 |
92 |
12
|
Romani L, Zelante T, De Luca A, Fallarino F, Puccetti P. IL-17 and therapeutic kynurenines in pathogenic inflammation to fungi. THE JOURNAL OF IMMUNOLOGY 2008; 180:5157-62. [PMID: 18390695 DOI: 10.4049/jimmunol.180.8.5157] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Largely viewed as proinflammatory, innate responses combine with adaptive immunity to generate the most effective form of antifungal resistance, and T cells exercise feedback control over diverse effects of inflammation on infection. Some degree of inflammation is required for protection, particularly in mucosal tissues, during the transitional response occurring between the rapid innate and slower adaptive response. However, progressive inflammation worsens disease and ultimately prevents pathogen eradication. IDO, tryptophan catabolites ("kynurenines"), and regulatory T cells help to tame overzealous and exaggerated inflammatory responses. In this context, IL-23 and the Th17 pathway, which down-regulate tryptophan catabolism, may instead favor pathology and serve to accommodate the seemingly paradoxical association of chronic inflammation with fungal persistence. Recent data support a view in which IL-23/IL-17 antagonistic strategies, including the administration of synthetic kynurenines, could represent a new means of harnessing progressive or potentially harmful inflammation.
Collapse
|
Review |
17 |
91 |
13
|
Bozza S, Zelante T, Moretti S, Bonifazi P, DeLuca A, D'Angelo C, Giovannini G, Garlanda C, Boon L, Bistoni F, Puccetti P, Mantovani A, Romani L. Lack of Toll IL-1R8 exacerbates Th17 cell responses in fungal infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:4022-31. [PMID: 18322211 DOI: 10.4049/jimmunol.180.6.4022] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
TLRs contribute to the inflammatory response in fungal infections. Although inflammation is an essential component of the protective response to fungi, its dysregulation may significantly worsen fungal diseases. In this study, we tested the hypothesis that Toll IL-1R8 (TIR8)/single Ig IL-1-related receptor, a member of the IL-1R family acting as a negative regulator of TLR/IL-1R signaling, affects TLR responses in fungal infections. Genetically engineered Tir8(-/-) mice were assessed for inflammatory and adaptive Th cell responses to Candida albicans and Aspergillus fumigatus. Inflammatory pathology and susceptibility to infection were higher in Tir8(-/-) mice and were causally linked to the activation of the Th17 pathway. IL-1R signaling was involved in Th17 cell activation by IL-6 and TGF-beta in that limited inflammatory pathology and relative absence of Th17 cell activation were observed in IL-1RI(-/-) mice. These data demonstrate that TIR8 is required for host resistance to fungal infections and that it functions to negatively regulate IL-1-dependent activation of inflammatory Th17 responses. TIR8 may contribute toward fine-tuning the balance between protective immunity and immunopathology in infection.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
90 |
14
|
Armstrong-James D, Brown GD, Netea MG, Zelante T, Gresnigt MS, van de Veerdonk FL, Levitz SM. Immunotherapeutic approaches to treatment of fungal diseases. THE LANCET. INFECTIOUS DISEASES 2017; 17:e393-e402. [PMID: 28774700 DOI: 10.1016/s1473-3099(17)30442-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/20/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022]
Abstract
Fungal infections cause morbidity worldwide and are associated with an unacceptably high mortality despite the availability of antifungal drugs. The incidence of mycoses is rising because of the HIV pandemic and because immunomodulatory drugs are increasingly used to treat autoimmune diseases and cancer. New classes of antifungal drugs have only been partly successful in improving the prognosis for patients with fungal infection. Adjunctive host-directed therapy is therefore believed to be the only option to further improve patient outcomes. Recent advances in the understanding of complex interactions between fungi and host have led to the design and exploration of novel therapeutic strategies in cytokine therapy, vaccines, and cellular immunotherapy, each of which might become viable adjuncts to existing antifungal regimens. In this report, we discuss immunotherapeutic approaches-the rationale behind their design, the challenges in their use, and the progress that is so urgently needed to overcome the devastating effect of fungal diseases.
Collapse
|
Review |
8 |
86 |
15
|
Zelante T, De Luca A, D' Angelo C, Moretti S, Romani L. IL-17/Th17 in anti-fungal immunity: What's new? Eur J Immunol 2009; 39:645-8. [DOI: 10.1002/eji.200839102] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
|
16 |
85 |
16
|
Iannitti RG, Carvalho A, Cunha C, De Luca A, Giovannini G, Casagrande A, Zelante T, Vacca C, Fallarino F, Puccetti P, Massi-Benedetti C, Defilippi G, Russo M, Porcaro L, Colombo C, Ratclif L, De Benedictis FM, Romani L. Th17/Treg imbalance in murine cystic fibrosis is linked to indoleamine 2,3-dioxygenase deficiency but corrected by kynurenines. Am J Respir Crit Care Med 2013; 187:609-20. [PMID: 23306541 DOI: 10.1164/rccm.201207-1346oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Mutations in the cystic fibrosis (CF) transmembrane conductance regulator affect the innate epithelial immune function of the lung, resulting in exaggerated and ineffective airway inflammation that fails to eradicate pathogenic fungi. The appreciation of whether such fungi are primarily responsible for or a consequence of ineffective airway inflammation is important for future therapeutics development. OBJECTIVES To characterize the impact of the tryptophan/kynurenine pathway on pathogenic airway inflammation preventing effective fungal clearance in CF. METHODS We studied the expression of indoleamine 2,3-dioxygenase (IDO), the first enzyme in the kynurenine pathway of tryptophan degradation, in human and murine CF, the impact of IDO on lung inflammation and immunity in murine CF, and the potential role of tryptophan catabolism in pathogenesis and therapy of fungus-associated lung inflammation. MEASUREMENTS AND MAIN RESULTS IDO was defective in murine and human CF. Genetic and transcriptional regulatory mechanisms contributed to dysfunctional IDO activity that, in turn, correlated with imbalanced Th17/Treg-cell responses to Aspergillus fumigatus in murine CF. Treatments enhancing IDO function or preventing pathogenic Th17-cell activation restored protective immunity to the fungus and improved lung inflammation in murine CF. CONCLUSIONS This study provides a link between tryptophan catabolism and lung immune homeostasis in murine CF, representing a proof-of-concept that targeting pathogenic inflammation via IDO-mimetic drugs may benefit patients with CF.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
82 |
17
|
Zelante T, Iannitti RG, De Luca A, Arroyo J, Blanco N, Servillo G, Sanglard D, Reichard U, Palmer GE, Latgè JP, Puccetti P, Romani L. Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat Commun 2012; 3:683. [PMID: 22353714 DOI: 10.1038/ncomms1685] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 01/13/2012] [Indexed: 12/19/2022] Open
Abstract
Infections by opportunistic fungi have traditionally been viewed as the gross result of a pathogenic automatism, which makes a weakened host more vulnerable to microbial insults. However, fungal sensing of a host's immune environment might render this process more elaborate than previously appreciated. Here we show that interleukin (IL)-17A binds fungal cells, thus tackling both sides of the host-pathogen interaction in experimental settings of host colonization and/or chronic infection. Global transcriptional profiling reveals that IL-17A induces artificial nutrient starvation conditions in Candida albicans, resulting in a downregulation of the target of rapamycin signalling pathway and in an increase in autophagic responses and intracellular cAMP. The augmented adhesion and filamentous growth, also observed with Aspergillus fumigatus, eventually translates into enhanced biofilm formation and resistance to local antifungal defenses. This might exemplify a mechanism whereby fungi have evolved a means of sensing host immunity to ensure their own persistence in an immunologically dynamic environment.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
82 |
18
|
Sorci G, Giovannini G, Riuzzi F, Bonifazi P, Zelante T, Zagarella S, Bistoni F, Donato R, Romani L. The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog 2011; 7:e1001315. [PMID: 21423669 PMCID: PMC3053348 DOI: 10.1371/journal.ppat.1001315] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/08/2011] [Indexed: 01/01/2023] Open
Abstract
Humans inhale hundreds of Aspergillus conidia without adverse consequences. Powerful protective mechanisms may ensure prompt control of the pathogen and inflammation. Here we reveal a previously unknown mechanism by which the danger molecule S100B integrates pathogen– and danger–sensing pathways to restrain inflammation. Upon forming complexes with TLR2 ligands, S100B inhibited TLR2 via RAGE, through a paracrine epithelial cells/neutrophil circuit that restrained pathogen-induced inflammation. However, upon binding to nucleic acids, S100B activated intracellular TLRs eventually resolve danger-induced inflammation via transcriptional inhibition of S100B. Thus, the spatiotemporal regulation of TLRs and RAGE by S100B provides evidence for an evolving braking circuit in infection whereby an endogenous danger protects against pathogen–induced inflammation and a pathogen–sensing mechanism resolves danger–induced inflammation. Inflammation results from recognition of invading microorganisms through pathogen–associated molecular patterns (PAMPs) and from reaction to tissue damage–associated molecular patterns (DAMPs). Despite the identification of specific signaling pathways negatively regulating responses to PAMPs or DAMPs, the unexpected convergence of molecular pathways responsible for recognition of either one raised the question of whether and how the host discriminates between the two distinct molecular patterns. Here we reveal a previously unknown mechanism by which the danger molecule S100B integrates pathogen– and danger–sensing pathways to restrain inflammation in Aspergillus fumigatus infection. By disclosing protective mechanisms that ensure prompt control of the pathogen and inflammation, our results may help to explain why humans inhale hundreds of Aspergillus conidia without adverse consequences.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
75 |
19
|
Romani L, Bistoni F, Montagnoli C, Gaziano R, Bozza S, Bonifazi P, Zelante T, Moretti S, Rasi G, Garaci E, Puccetti P. Thymosin alpha1: an endogenous regulator of inflammation, immunity, and tolerance. Ann N Y Acad Sci 2007; 1112:326-38. [PMID: 17495242 DOI: 10.1196/annals.1415.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thymosin alpha1 (Talpha1), first described and characterized by Allan Goldstein in 1972, is used worldwide for the treatment of some immunodeficiencies, malignancies, and infections. Although Talpha1 has shown a variety of effects on cells and pathways of the immune system, its central role in modulating dendritic cell (DC) function has only recently been appreciated. As DCs have the ability to sense infection and tissue stress and to translate collectively this information into an appropriate immune response, an action on DCs would predict a central role for Talpha1 in inducing different forms of immunity and tolerance. Recent results have shown that Talpha1: (a) primed DCs for antifungal Th1 resistance through Toll-like receptor (TLR)/MyD88-dependent signaling and this translated in vivo in protection against aspergillosis; (b) activated plasmacytoid DCs (pDC) via the TLR9/MyD88-dependent viral recognition, thus leading to the activation of interferon regulatory factor 7 and the promotion of the IFN-alpha/IFN-gamma-dependent effector pathway, which resulted in vivo in protection against primary murine cytomegalovirus infection; (c) induced indoleamine 2,3-dioxygenase activity in DCs, thus affecting tolerization toward self as well as microbial non-self-antigens, and this resulted in vivo in transplantation tolerance and protection from inflammatory allergy. Talpha1 is produced in vivo by cleavage of prothymosin alpha in diverse mammalian tissues. Our data qualify Talpha1 as an endogenous regulator of immune homeostasis and suggest that instructive immunotherapy with Talpha1, via DCs and tryptophan catabolism, could be at work to control inflammation, immunity, and tolerance in a variety of clinical settings.
Collapse
|
Review |
18 |
71 |
20
|
Zelante T, Wong A, Ping T, Chen J, Sumatoh H, Viganò E, Hong Bing Y, Lee B, Zolezzi F, Fric J, Newell E, Mortellaro A, Poidinger M, Puccetti P, Ricciardi-Castagnoli P. CD103+ Dendritic Cells Control Th17 Cell Function in the Lung. Cell Rep 2015; 12:1789-801. [DOI: 10.1016/j.celrep.2015.08.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 06/17/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022] Open
|
|
10 |
70 |
21
|
D'Angelo C, De Luca A, Zelante T, Bonifazi P, Moretti S, Giovannini G, Iannitti RG, Zagarella S, Bozza S, Campo S, Salvatori G, Romani L. Exogenous pentraxin 3 restores antifungal resistance and restrains inflammation in murine chronic granulomatous disease. THE JOURNAL OF IMMUNOLOGY 2009; 183:4609-18. [PMID: 19734205 DOI: 10.4049/jimmunol.0900345] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by life-threatening bacterial and fungal infections and hyperinflammation. The susceptibility to aspergillosis in experimental CGD (p47(phox-/-) mice) is associated with the failure to control the inherent inflammatory response to the fungus and to restrict the activation of inflammatory Th17 cells. We assessed whether pentraxin (PTX)3, a member of a family of multimeric pattern-recognition proteins with potent anti-Aspergillus activity, could limit pathogenic inflammation in p47(phox-/-) mice by curbing the IL-23/Th17 inflammatory axis in response to the fungus. We found that the production of PTX3 was delayed in CGD mice in infection but exogenous administration of PTX3 early in infection restored antifungal resistance and restrained the inflammatory response to the fungus. This occurred through down-regulation of IL-23 production by dendritic cells and epithelial cells which resulted in limited expansion of IL-23R+ gammadelta+ T cells producing IL-17A and the emergence of Th1/Treg responses with minimum pathology. Thus, PTX3 could be therapeutically used for the exploitation of NADPH-independent mechanism(s) of antifungal immune protection with limited immunopathology in CGD.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
65 |
22
|
Romani L, Zelante T, De Luca A, Iannitti RG, Moretti S, Bartoli A, Aversa F, Puccetti P. Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi. Eur J Immunol 2014; 44:3192-200. [PMID: 25256754 DOI: 10.1002/eji.201344406] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/30/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023]
Abstract
An increased understanding of the importance of microbiota in shaping the host's immune and metabolic activities has rendered fungal interactions with their hosts more complex than previously appreciated. The aryl hydrocarbon receptor (AhR) has a pivotal role in connecting tryptophan catabolism by microbial communities and the host's own pathway of tryptophan metabolite production with the orchestration of T-cell function. AhR activation by a Lactobacillus-derived AhR ligand leads to the production of IL-22 to the benefit of mucosal defense mechanisms, an activity upregulated in the absence of the host tryptophan catabolic enzyme, indoleamine 2,3-dioxygenase 1 (IDO1), which is required for protection from fungal diseases ("disease tolerance"). As AhR activation in turn leads to the activation-in a feedback fashion-of IDO1, the regulatory loop involving AhR and IDO1 may have driven the coevolution of commensal fungi with the mammalian immune system and the microbiota, to the benefit of host survival and fungal commensalism. This review will discuss the essential help the microbiota provides in controlling the balance between the dual nature of the fungal-host relationship, namely, commensalism vs. infection.
Collapse
|
Review |
11 |
64 |
23
|
Zelante T, Bozza S, De Luca A, D'angelo C, Bonifazi P, Moretti S, Giovannini G, Bistoni F, Romani L. Th17 cells in the setting ofAspergillusinfection and pathology. Med Mycol 2009; 47 Suppl 1:S162-9. [DOI: 10.1080/13693780802140766] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
|
16 |
63 |
24
|
Zelante T, Fric J, Wong AYW, Ricciardi-Castagnoli P. Interleukin-2 production by dendritic cells and its immuno-regulatory functions. Front Immunol 2012; 3:161. [PMID: 22719740 PMCID: PMC3376408 DOI: 10.3389/fimmu.2012.00161] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/30/2012] [Indexed: 11/26/2022] Open
Abstract
Dendritic cells (DCs) are uniquely potent antigen presenting cells that acquire microbial products and prime adaptive immune responses against pathogens. Furthermore, DCs also play a key role in induction and maintenance of tolerance. Although numerous studies have assessed the diverse functions of DCs, many unanswered questions remain regarding the molecular mechanisms that DCs use to achieve immunoregulation. While not widely regarded as a significant provider of T-cell growth factors, DCs have previously been identified as a potential source of IL-2 cytokine. Recent research indicates that microbes are the most effective stimuli to trigger IL-2 production in DCs by activating the calcineurin/NFAT signaling pathway. Herein we describe recent insights into the production and function of IL-2 cytokine and IL-2 receptor in DCs early after stimulation through pattern recognition receptors. These findings clarify how DCs fine-tune effector and regulatory responses by modulating IL-2 production in both tolerance and immunity.
Collapse
|
Journal Article |
13 |
63 |
25
|
Zelante T, Iannitti RG, Fallarino F, Gargaro M, De Luca A, Moretti S, Bartoli A, Romani L. Tryptophan Feeding of the IDO1-AhR Axis in Host-Microbial Symbiosis. Front Immunol 2014; 5:640. [PMID: 25566253 PMCID: PMC4266093 DOI: 10.3389/fimmu.2014.00640] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022] Open
|
Review |
11 |
59 |