1
|
Almukainzi M, A El-Masry T, A Negm W, Elekhnawy E, Saleh A, E Sayed A, A Khattab M, H Abdelkader D. Gentiopicroside PLGA Nanospheres: Fabrication, in vitro Characterization, Antimicrobial Action, and in vivo Effect for Enhancing Wound Healing in Diabetic Rats. Int J Nanomedicine 2022; 17:1203-1225. [PMID: 35330694 PMCID: PMC8938172 DOI: 10.2147/ijn.s358606] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Gentiopicroside (GPS), an adequate bioactive candidate, has a promising approach for enhancing wound healing due to its antioxidant and antimicrobial properties. Its poor aqueous solubility negatively affects oral absorption accompanied by low bioavailability due to intestinal/hepatic first-pass metabolism. Our aim in this study is to fabricate GPS into appropriate nanocarriers (PLGA nanospheres, NSs) to enhance its solubility and hence its oral absorption would be improved. Methods Normal and ODS silica gel together with Sephadex LH20 column used for isolation of GPS from Gentiana lutea roots. Crude GPS would be further processed for nanospheres fabrication using a single o/w emulsion solvent evaporation technique followed by in vitro optimization study to examine the effect of two formulation variables: polymer (PLGA) and stabilizer (PVA) concentrations on the physical characterizations of prepared NSs. Possible GPS-PLGA chemical and physical interactions have been analyzed using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The optimum GPS-PLGA NSs have been chosen for antimicrobial study to investigate its inhibitory action on Staphylococcus aureus compared with unloaded GPS NSs. Also, a well-designed in vivo study on streptozotocin-induced diabetic rats has been performed to examine the wound healing effect of GPS-PLGA NSs followed by histological examination of wound incisions at different day intervals throughout the study. Results The optimum GPS PLGA NSs (F5) with well-controlled particle size (250.10±07.86 nm), relative high entrapment efficiency (83.35±5.71), and the highest % cumulative release (85.79±8.74) have increased the antimicrobial activity as it exhibited a higher inhibitory effect on bacterial growth than free GPS. F5 showed a greater enhancing impact on wound healing and a significant stimulating effect on the synthesis of collagen fibers compared with free GPS. Conclusion These findings demonstrate that loading GPS into PLGA NSs is considered a promising strategy ensuring optimum GPS delivery for potential management of wounds.
Collapse
|
|
3 |
36 |
2
|
Negm WA, El-Kadem AH, Elekhnawy E, Attallah NGM, Al-Hamoud GA, El-Masry TA, Zayed A. Wound-Healing Potential of Rhoifolin-Rich Fraction Isolated from Sanguisorba officinalis Roots Supported by Enhancing Re-Epithelization, Angiogenesis, Anti-Inflammatory, and Antimicrobial Effects. Pharmaceuticals (Basel) 2022; 15:178. [PMID: 35215291 PMCID: PMC8874642 DOI: 10.3390/ph15020178] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
A wound is a complicated bioprocess resulting in significant tissue damage, which is worsened by a secondary bacterial infection, commonly Pseudomonas aeruginosa and Staphylococcus aureus. The goal of our study was to investigate the metabolic profile and possible wound-healing effect of Sanguisorba officinalis roots rhoifolin rich fraction (RRF). The LC-ESI-MS/MS analysis of S. officinalis roots crude ethanol extract resulted in a tentative identification of 56 bioactive metabolites, while a major flavonoid fraction was isolated by column chromatography and identified by thin-layer chromatography coupled with electrospray ionization/mass spectrometry (TLC-ESI/MS), where rhoifolin was the major component representing 94.5% of its content. The antibiofilm activity of RRF on the mono-species and dual-species biofilm of P. aeruginosa and S. aureus was investigated. RRF exhibited inhibitory activity on P. aeruginosa and S. aureus mono-species biofilm at 2× minimum inhibitory concentration (MIC) and 4× MIC values. It also significantly inhibited the dual-species biofilm at 4× MIC values. Moreover, the wound-healing characteristics of RRF gel formulation were investigated. Rats were randomly allocated into four groups (eight rats in each): Untreated control; Blank gel; Betadine cream, and RRF gel groups. Animals were anesthetized, and full-thickness excisional skin wounds were created on the shaved area in the dorsal skin. The gels were topically applied to the wound's surface daily for 10 days. The results demonstrated that RRF had a promising wound-healing effect by up-regulating the platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF), and fibronectin, while metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), IL-1β, and nitric oxide (NO) levels were suppressed. It also enhanced the immune staining of transforming growth factor (TGF-β) and improved histopathological findings. Furthermore, it displayed an immunomodulatory action on lipopolysaccharide-induced peripheral blood mononuclear cells. Hence, the wound-healing effect of rhoifolin was confirmed by supporting re-epithelization, angiogenesis, antibacterial, immunomodulatory, and anti-inflammatory activities.
Collapse
|
research-article |
3 |
32 |
3
|
Alotaibi B, El-Masry TA, Elekhnawy E, El-Kadem AH, Saleh A, Negm WA, Abdelkader DH. Aqueous core epigallocatechin gallate PLGA nanocapsules: characterization, antibacterial activity against uropathogens, and in vivo reno-protective effect in cisplatin induced nephrotoxicity. Drug Deliv 2022; 29:1848-1862. [PMID: 35708451 PMCID: PMC9225707 DOI: 10.1080/10717544.2022.2083725] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) was isolated from Cycas thouarsii leaves for the first time and encapsulated in aqueous core poly(lactide-co-glycolide) (PLGA) nanocapsules (NCs). This work investigates antimicrobial activity and in vivo reno-protective effects of EGCG-PLGA NCs in cisplatin-induced nephrotoxicity. A double emulsion solvent evaporation process was adopted to prepare PLGA NCs loaded with EGCG. Particle size, polydispersity index (PDI), zeta potential, percent entrapment efficiency (%EE), structural morphology, and in vitro release platform were all studied in vitro. The optimum formula (F2) with particle size (61.37 ± 5.90 nm), PDI (0.125 ± 0.027), zeta potential (-11.83 ± 3.22 mV), %EE (85.79 ± 5.89%w/w), initial burst (36.85 ± 4.79), and percent cumulative release (87.79 ± 9.84) was selected for further in vitro/in vivo studies. F2 exhibited an enhanced antimicrobial activity against uropathogens as it had lower minimum inhibitory concentration (MIC) values and a more significant impact on bacterial growth than free EGCG. Forty male adult mice were randomly allocated into five groups: control vehicle, untreated methotrexate, MTX groups treated with a daily oral dose of free EGCG, placebo PLGA NCs, and EGCG PLGA NCs (F2) for 10 days. Results showed that EGCG PLGA NCs (F2) exerted promising renoprotective effects compared to free EGCG. EGCG PLGA NCs group induced a significant decrease in kidney index, serum creatinine, kidney injury molecule-1 (KIM-1), NGAL serum levels, and pronounced inhibition of NLPR-3/caspase-1/IL/1β inflammasome pathway. It also significantly ameliorated oxidative stress and decreased NFκB, Bax expression levels. Aqueous core PLGA NCs are a promising formulation strategy that provides high polymeric protection and sustained release pattern for hydrophilic therapeutic agents.
Collapse
|
research-article |
3 |
31 |
4
|
Alotaibi B, Tousson E, El-Masry TA, Altwaijry N, Saleh A. Ehrlich ascites carcinoma as model for studying the cardiac protective effects of curcumin nanoparticles against cardiac damage in female mice. ENVIRONMENTAL TOXICOLOGY 2021; 36:105-113. [PMID: 32865349 DOI: 10.1002/tox.23016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
While clinical innovation has improved, cancer or malignant growth stays a genuine medical issue and has been perceived as a significant factor in mortality and morbidity. Current work aimed to define the cardiac defensive effects of curcumin nanoparticles (Cur Nps) against EAC induced cardiac toxicity, injury, and alterations in apoptosis, proliferation, and cytokines immunoreactivity. Forty female mice were aimlessly and equally divided into four groups [Gp1, Control; Gp2, Cur NPs; Gp3, Ehrlich ascites carcinoma (EAC); Gp4, Co-treatment of EAC with Cur NPs (Cur NPs + EAC)]. Serum lactate dehydrogenase (LDH), phosphocreatine kinase (CPK), creatine kinase myoglobin (CK-MB), alkaline phosphatase (ALP), glutamic oxaloacetic transaminase (GOT), cholesterol, triglycerides, potassium ions, cardiac injury, P53, vascular endothelial growth factor protein (VEGF), Bax, and tumor necrosis factor alpha (TNFα) expressions were significantly elevated while sodium ions levels were significantly depleted in EAC when compared to control. Co-treatment of EAC with Cur NPs (Cur NPs + EAC) improved these parameters as compared with EAC group. So, our results indicate that; Cur NPs induced protection to the blood and heart tissue during Ehrlich ascites carcinoma.
Collapse
|
|
4 |
31 |
5
|
Alotaibi B, Mokhtar FA, El-Masry TA, Elekhnawy E, Mostafa SA, Abdelkader DH, Elharty ME, Saleh A, Negm WA. Antimicrobial Activity of Brassica rapa L. Flowers Extract on Gastrointestinal Tract Infections and Antiulcer Potential Against Indomethacin-Induced Gastric Ulcer in Rats Supported by Metabolomics Profiling. J Inflamm Res 2021; 14:7411-7430. [PMID: 35002276 PMCID: PMC8721290 DOI: 10.2147/jir.s345780] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The gastrointestinal tract (GIT) is vulnerable to various diseases. In this study, we explored the therapeutic effects of Brassica rapa flower extract (BRFE) on GIT diseases. METHODS Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used for phytochemical identification of the compounds in BRFE. The antibacterial activity of BRFE was investigated, and its impact on the bacterial outer and inner membrane permeability and membrane depolarization (using flow cytometry) was studied. In addition, the immunomodulatory activity of BRFE was investigated in vitro on lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the anti-inflammatory activity of BRFE was investigated by histopathological examination and qRT-PCR on indomethacin-induced gastric ulcers in rats. RESULTS AND DISCUSSION LC-ESI-MS/MS phytochemically identified 57 compounds in BRFE for the first time. BRFE displayed antibacterial activity against bacteria that cause GIT infections, with increasing outer and inner membrane permeability. However, membrane depolarization was unaffected. BRFE also exhibited immunomodulatory activity in LPS-stimulated PBMCs by attenuating the upregulation of cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κB) gene expression compared with untreated LPS-stimulated PBMCs. In addition, BRFE exhibited anti-inflammatory activity required for maintaining gastric mucosa homeostasis by decreasing neutrophil infiltration with subsequent myeloperoxidase production, in addition to an increase in glutathione peroxidase (GPx) activity. Histopathological findings presented the gastroprotective effects of BRFE, as a relatively normal stomach mucosa was found in treated rats. In addition, BRFE modulated the expression of genes encoding IL-10, NF-κB, GPx, and myeloperoxidase (MPO). CONCLUSION BRFE can be a promising source of therapeutic agents for treatment of GIT diseases.
Collapse
|
research-article |
4 |
30 |
6
|
Alotaibi B, Negm WA, Elekhnawy E, El-Masry TA, Elharty ME, Saleh A, Abdelkader DH, Mokhtar FA. Antibacterial activity of nano zinc oxide green-synthesised from Gardenia thailandica triveng. Leaves against Pseudomonas aeruginosa clinical isolates: in vitro and in vivo study. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:96-106. [PMID: 35361019 DOI: 10.1080/21691401.2022.2056191] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The increasing emergence of bacterial resistance is a challenge for the research community, thus novel antibacterial agents should be developed. Metal nanoparticles are promising antibacterial agents and could solve the problem of antibiotic resistance. Herein, we used Gardenia thailandica methanol extract (GTME) to biogenically synthesise zinc oxide nanoparticles (ZnO-NPs). The characterisation of ZnO-NPs was performed by UV spectroscopy, FTIR, scanning and transmission electron microscopes, dynamic light scattering, and X-ray diffraction. The antibacterial activity of ZnO-NPs was studied both in vitro and in vivo against Pseudomonas aeruginosa clinical isolates. Its minimum inhibitory concentration values ranged from 2 to 64 µg/mL, and it significantly decreased the membrane integrity and resulted in a significant increase in the inner and outer membrane permeability. Also, the ZnO-NPs treated cells possessed a distorted and deformed shape when examined by scanning electron microscope. The in vivo study (biochemical parameters and histological investigation) was conducted and it revealed a protective effect of ZnO-NPs against the deleterious influences of P. aeruginosa bacteria on lung, liver, and kidney tissues. LC-ESI-MS/MS revealed a phytochemical tentative identification of 57 compounds for the first time. We propose that GTME is a useful source for ZnO-NPs which has a promising antibacterial activity.
Collapse
|
|
3 |
29 |
7
|
Attallah NGM, Negm WA, Elekhnawy E, Elmongy EI, Altwaijry N, El-Haroun H, El-Masry TA, El-Sherbeni SA. Elucidation of Phytochemical Content of Cupressus macrocarpa Leaves: In Vitro and In Vivo Antibacterial Effect against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Antibiotics (Basel) 2021; 10:antibiotics10080890. [PMID: 34438940 PMCID: PMC8388636 DOI: 10.3390/antibiotics10080890] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/25/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen that causes various infections. The increasing resistance of MRSA to different antibiotics is widely spreading; therefore, plant extracts may be novel therapeutic alternatives. The phytochemical profiling of Cupressus macrocarpa Hartw. ex Gordon leaves in vitro, and in vivo, antimicrobial potential of its extracts against MRSA clinical isolates were explored. A phytochemical tentative identification of 49 compounds was performed in the leaves using LC-ESI-MS/MS; in addition, isolation, and structure elucidation of hesperidin and eriocitrin were achieved for the first time. The diethyl ether extract (DEEL) exhibited the best antibacterial effect with MIC values ranging from 2 to 8 µg/mL, which significantly reduced the growth and efflux activity in 48.78% and 29.26% of isolates, respectively. qRT-PCR showed a significant down expression of norA and norB genes, which significantly affected the bacterial cell morphology and had a non-significant effect on membrane depolarization (using flow cytometry). In a rat model, four groups were wounded and treated with normal saline or DEEL, or infected with MRSA, or infected and treated with DEEL. The regeneration of the epidermis, maturation of granulation tissue, and reduction of inflammatory cell infiltration were observed after treatment with DEEL. Thus, C. macrocarpa leaves may be a promising source for new antimicrobials against MRSA.
Collapse
|
|
4 |
28 |
8
|
Alherz FA, Negm WA, Elekhnawy E, El-Masry TA, Haggag EM, Alqahtani MJ, Hussein IA. Silver Nanoparticles Prepared Using Encephalartos laurentianus De Wild Leaf Extract Have Inhibitory Activity against Candida albicans Clinical Isolates. J Fungi (Basel) 2022; 8:jof8101005. [PMID: 36294570 PMCID: PMC9604723 DOI: 10.3390/jof8101005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is a major human opportunistic pathogen causing infections, which range from cutaneous to invasive systemic infections. Herein, the antifungal and anti-biofilm potential of silver nanoparticles (AgNPs) green synthesized in the presence of Encephalartos laurentianus leaf extract (ELLE) were investigated. The bioactive chemicals of ELLE, including phenolics, flavonoids, and glycosides were identified and quantified for the first time. AgNPs showed minimum inhibitory concentration (MIC) values against C. albicans clinical isolates ranging from 8 to 256 µg/mL. In addition, AgNPs significantly decreased biofilm formation. The impact of AgNPs on the expression of the genes encoding biofilm formation was assessed using qRT-PCR. AgNPs had a beneficial role in the macroscopic wound healing, and they resulted in complete epithelization without any granulation tissue or inflammation. Treatment with AgNPs resulted in negative immunostaining of tumor necrosis factor-α. The levels of the inflammation markers, interleukin-6 and interleukin-1β, significantly decreased (p < 0.05) in the AgNPs-treated group. There was also a pronounced increase in the gene expression of fibronectin and platelet-derived growth factor in the wound tissues. Thus, AgNPs synthesized using ELLE may be a promising antifungal and wound healing agent.
Collapse
|
research-article |
3 |
27 |
9
|
Altwaijry N, El-Masry TA, Alotaibi B, Tousson E, Saleh A. Therapeutic effects of rocket seeds (Eruca sativa L.) against testicular toxicity and oxidative stress caused by silver nanoparticles injection in rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:952-960. [PMID: 32293792 DOI: 10.1002/tox.22931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 05/11/2023]
Abstract
Silver nanoparticles (AgNPs), one of the most well-known nanomaterials, are regularly utilized in everyday consumer products. The present study aimed to investigate the testicular toxicity and oxidative stress by AgNPs and the therapeutic role of the rocket seeds (Eruca sativa) in treatments. Forty male Wistar rats were divided into four equivalent groups (group 1, control; group 2, rocket seeds extract [RS]; group 3, AgNPs; group 4, AgNPs+RS). Our results showed that AgNPs induced a significant decrease in serum total testosterone, FSH (follicle-animating hormone), prolactin and LH (luteinizing hormone), testicular glutathione (GSH), superoxide dismutase (SOD), and glutathione S-transferase (GST). In contrast, a significant increase in testicular DNA, injury, testicular thiobarbituric acid, proliferating cell nuclear antigen, and tumor necrosis factor-α (TNFα) expressions after treatments with AgNPs when contrasted with the control group. Treatments of AgNPs with rocket seeds extract (AgNPs+RS) improved testicular functions and structure. Rocket seeds extract might offer benefits against the toxic nature of AgNPs.
Collapse
|
|
5 |
13 |
10
|
Altwaijry N, El-Ghlban S, El Sayed IET, El-Bahnsawye M, Bayomi AI, Samaka RM, Shaban E, Elmongy EI, El-Masry TA, Ahmed HMA, Attallah NGM. In Vitro and In Vivo Antitumor Activity of Indolo[2,3- b] Quinolines, Natural Product Analogs from Neocryptolepine Alkaloid. Molecules 2021; 26:754. [PMID: 33535575 PMCID: PMC7867085 DOI: 10.3390/molecules26030754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 11/27/2022] Open
Abstract
Neocryptolepine (5-methyl-5H-indolo[2,3-b] quinoline) analogs were synthesized and evaluated in vitro and in vivo for their effect versus Ehrlich ascites carcinoma (EAC). The analogs showed stronger cytotoxic activity against EAC cells than the reference drug. The in vivo evaluation of the target compounds against EAC-induced solid tumor in the female albino Swiss mice revealed a remarkable decrease in the tumor volume (TV) and hepatic lipid peroxidation. A noticeable increase of both superoxide dismutase (SOD) and catalase (CAT) levels was reported (p < 0.001), which set-forth proof of their antioxidant effect. In addition, the in vitro antioxidant activity of the neocryptolepine analogs was screened out using the DPPH method and showed promising activities activity. The histopathological investigations affirmed that the tested analogs have a remarkable curative effect on solid tumors with minimal side-effect on the liver. The study also includes illustrated mechanism of the antitumor activity at the cell level by flow cytometry. The cell cycle analysis showed that the neocryptolepine analogs extensively increase the aggregation of tumor cells in three phases of the cell cycle (G0/G1, S and G2/M) with the emergence of a hypo-diploid DNA content peak (sub-G1) in the cell cycle experiments, which is a clear-cut for the apoptotic cell population. Furthermore, the immunological study manifested a significant elevation in splenic lymphocyte count (p < 0.001) with the elevation of the responsiveness of lymphocytes to phytohemagglutinin (PHA). These results indicate that these naturally-based neocryptolepine alkaloids exhibit marked antitumor activity in vivo and represent an important lead in the development of natural-based anticancer drugs.
Collapse
|
research-article |
4 |
13 |
11
|
Abdelkader DH, Elekhnawy E, Negm WA, El-Masry TA, Almukainzi M, Zayed A, Ulber R. Insight into Fucoidan-Based PEGylated PLGA Nanoparticles Encapsulating Methyl Anthranilic Acid: In Vitro Evaluation and In Vivo Anti-Inflammatory Study. Mar Drugs 2022; 20:694. [PMID: 36355017 PMCID: PMC9693061 DOI: 10.3390/md20110694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
A potential fucoidan-based PEGylated PLGA nanoparticles (NPs) offering a proper delivery of N-methyl anthranilic acid (MA, a model of hydrophobic anti-inflammatory drug) have been developed via the formation of fucoidan aqueous coating surrounding PEGylated PLGA NPs. The optimum formulation (FuP2) composed of fucoidan:m-PEG-PLGA (1:0.5 w/w) with particle size (365 ± 20.76 nm), zeta potential (-22.30 ± 2.56 mV), % entrapment efficiency (85.45 ± 7.41), drug loading (51.36 ± 4.75 µg/mg of NPs), % initial burst (47.91 ± 5.89), and % cumulative release (102.79 ± 6.89) has been further investigated for the anti-inflammatory in vivo study. This effect of FuP2 was assessed in rats' carrageenan-induced acute inflammation model. The average weight of the paw edema was significantly lowered (p ≤ 0.05) by treatment with FuP2. Moreover, cyclooxygenase-2 and tumor necrosis factor-alpha immunostaining were decreased in FuP2 treated group compared to the other groups. The levels of prostaglandin E2, nitric oxide, and malondialdehyde were significantly reduced (p ≤ 0.05) in the FuP2-treated group. A significant reduction (p ≤ 0.05) in the expression of interleukins (IL-1β and IL-6) with an improvement of the histological findings of the paw tissues was observed in the FuP2-treated group. Thus, fucoidan-based PEGylated PLGA-MA NPs are a promising anti-inflammatory delivery system that can be applied for other similar drugs potentiating their pharmacological and pharmacokinetic properties.
Collapse
|
research-article |
3 |
11 |
12
|
Al-Kuraishy HM, Al-Gareeb AI, Alarfaj SJ, Al-Akeel RK, Faidah H, El-Bouseary MM, Sabatier JM, De Waard M, El-Masry TA, Batiha GES. Long COVID and risk of erectile dysfunction in recovered patients from mild to moderate COVID-19. Sci Rep 2023; 13:5977. [PMID: 37045862 PMCID: PMC10092929 DOI: 10.1038/s41598-023-32211-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) were shown to have reduced serum testosterone levels compared to healthy individuals. Low testosterone levels are linked with the development of erectile dysfunction (ED). In this case-controlled study, 20 healthy controls and 39 patients with ED 3 months after recovering from mild-to-moderate COVID-19 pneumonia were studied. The patients ranged in age from 31 to 47 years. To identify early and late COVID-19 infections, real-time polymerase-chain reaction (RT-PCR) and COVID-19 antibody testing were done. The levels of luteinizing hormone (LH), follicular stimulating hormone (FSH), total testosterone (TT), free testosterone (FT), free androgenic index (FAI), and sex hormone-binding globulin (SHBG) were measured. The sexual health inventory for patients (SHIM) score was used to measure the erectile function of the patients and controls. When compared to the controls, the TT serum level in long COVID-19 (LC) patients with ED was low (p = 0.01). In contrast to controls, FT and FAI were both lower in LC patients with ED. (p = 0.001). FSH serum levels did not significantly differ (p = 0.07), but in ED patients, LH serum levels were elevated. SHIM scores were associated with low TT (p = 0.30), FT (p = 0.09), and high LH (p = 0.76) in LC patients with ED. Male patients with decreased serum levels of LH and testosterone may have hypothalamic-pituitary-gonadal axis dysfunction, which could lead to the development of LC-induced ED. Therefore, an in-depth research is necessary to confirm the causal link between COVID-19 and ED in LC patients.
Collapse
|
|
2 |
9 |
13
|
El-Beheiry KM, El-Sayed El-Sayad M, El-Masry TA, Elsisi AE. Combination of metformin and hesperidin mitigates cyclophosphamide-induced hepatotoxicity. Emerging role of PPAR-γ/Nrf-2/NF-κB signaling pathway. Int Immunopharmacol 2023; 117:109891. [PMID: 36812672 DOI: 10.1016/j.intimp.2023.109891] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Cyclophosphamide (CP) is widely used as an immunosuppressive and chemotherapeutic drug. However, its therapeutic application is restricted by its adverse effects, particularly hepatotoxicity. Both metformin (MET) and hesperidin (HES) have promising antioxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, the principal aim of the current study is to investigate the hepatoprotective effects of MET, HES, and their combinations on the CP-induced hepatotoxicity model. Hepatotoxicity was evoked by a single (I.P) injection of CP (200 mg/kg) on day 7. For this study, 64 albino rats were randomly categorized into eight equal groups; naïve, control vehicle, untreated CP (200 mg/kg, IP), and CP 200 groups treated with MET 200, HES 50, HES 100 or a combination of MET 200 with HES 50 and HES 100 respectively orally daily for 12 days. At the end of the study, the liver function biomarkers, oxidative stress, inflammatory parameters, histopathological and immunohistochemical analysis of PPAR-γ, Nrf-2, NF-κB, Bcl-2, and caspase3 were assessed. CP significantly increased serum ALT, AST, total bilirubin, hepatic MDA, NO content, NF-κB, and TNF-α. Otherwise, albumin, hepatic GSH content, Nrf-2, and PPAR-γ expression decreased considerably compared to the control vehicle group. The combinations of MET200 with HES50 or HES100 induced pronounced hepatoprotective, anti-oxidative, anti-inflammatory, and anti-apoptotic effects on CP-treated rats. The possible explanation of such hepatoprotective effects may be mediated via upregulation of Nrf-2, PPAR-γ, Bcl-2 expression, hepatic GSH content, and marked suppression of TNF-α and NF-κB expression. In conclusion, the current study showed that combining MET and HES revealed a remarkable hepatoprotective effect against CP-induced hepatotoxicity.
Collapse
|
|
2 |
9 |
14
|
Alherz FA, Negm WA, El-Masry TA, Elmorshedy KE, El-Kadem AH. The potential beneficial role of Ginkgetin in doxorubicin-induced hepatotoxicity: Elucidating the underlying claim. Biomed Pharmacother 2023; 165:115010. [PMID: 37343436 DOI: 10.1016/j.biopha.2023.115010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023] Open
Abstract
Doxorubicin (DOX) is a widely used chemotherapeutic agent for various tumors treatment; apart from its chemotherapeutic activity, the traditional usage of DOX has been limited by its adverse effects on multiple organs, mainly hepatotoxicity. The molecular mechanisms underlying DOX hepatotoxicity are mainly due to the production of reactive oxygen species (ROS) inducing oxidative stress, diminishing antioxidant enzymes, apoptosis, inflammation, and mitochondrial dysfunction. Thus, there is an urgent need to develop a therapy that minimizes DOX hepatotoxicity and widens its use in various types of cancers without fear of its serious hepatotoxicity. Ginkgetin (GINK), a natural biflavonoid, exhibits diverse actions, including promising free radical scavenging, antioxidant, and anti-inflammatory activities. So, this study's objectives were to determine whether GINK could mitigate DOX's hepatotoxic effects and look into a putative hepatoprotective molecular pathway. Mice were divided into five groups: Normal control, control GINK 100, Untreated DOX group, and DOX groups treated with GINK (50 and 100 mg/kg) intraperitoneally daily for four days before DOX administration and an additional three days afterward. GINK 100 pretreatment showed marked protection from DOX hepatotoxicity and also attenuation of histopathological structural alterations. These outcomes were corroborated biochemically by a considerable decrease in alanine aminotransferases, aspartate aminotransferase, and alkaline phosphatase levels. GINK significantly augmented silent information regulator 1 and nuclear translocation of NF-E2-related factor 2 and repressed the expression and protein levels of forkhead box protein O1, inducible nitric oxide synthase, and P53 relative to DOX group. GINK alleviated oxidative stress and induced significant anti-inflammatory effects via suppression of interleukin-6, nuclear factor Kabba B, and iNOS respectively. This study is the first to investigate GINK's potentially beneficial effects in acute DOX hepatotoxicity, possibly exhibiting antioxidant, anti-inflammatory, and anti-apoptotic effects by modulation of Sirt1/FOXO-1/NF-κB Signal.
Collapse
|
|
2 |
7 |
15
|
Alarfaj SJ, Mostafa SA, Negm WA, El-Masry TA, Kamal M, Elsaeed M, El Nakib AM. Mucosal Genes Expression in Inflammatory Bowel Disease Patients: New Insights. Pharmaceuticals (Basel) 2023; 16:324. [PMID: 37259466 PMCID: PMC9966817 DOI: 10.3390/ph16020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 11/21/2024] Open
Abstract
Individual differences in IBD illness severity, behavior, progression, and therapy response are evident. Since a break in the intestinal epithelial barrier causes IBD to begin, mucosal gene expression in IBD is crucial. Due to its high sensitivity and dynamic nature, molecular analysis of biomarkers in intestinal biopsies is feasible and provides a reliable means of evaluating localized inflammation. The goal of this investigation was to discover alterations in gene expression in the inflamed mucosa of IBD patients undergoing treatment with 5-amino salicylic acid (5ASA) (N = 39) or anti-TNF drugs (N = 22). The mucosal expression of numerous IBD-related genes was evaluated using qPCR. We discovered that the levels of the proteins Lipocalin-2 (LCN2), Nitric Oxide Synthase 2 (NOS2), Mucin 2 (MUC2), Mucin 5AC (MUC5AC), and Trefoil factor 1 (TFF1), which are overexpressed in untreated IBD patients compared to non-IBD subjects, are decreased by both therapy regimens. On the other hand, anti-TNF medicine helped the levels of ABCB1 and E-cadherin return to normal in IBD patients who were not receiving treatment.
Collapse
|
research-article |
2 |
6 |
16
|
Alamoudi JA, El-Masry TA, Nasr M, Ibrahim IT, Ibrahim HA, Saad HM, El-Nagar MMF, Alshawwa SZ, Alrashidi A, El Zahaby EI. Fabrication of Nanocrystals for Enhanced Distribution of a Fatty Acid Synthase Inhibitor (Orlistat) as a Promising Method to Relieve Solid Ehrlich Carcinoma-Induced Hepatic Damage in Mice. Pharmaceuticals (Basel) 2024; 17:96. [PMID: 38256929 PMCID: PMC10820129 DOI: 10.3390/ph17010096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Orlistat (ORL) is an effective irreversible inhibitor of the lipase enzyme, and it possesses anticancer effects and limited aqueous solubility. This study was designed to improve the aqueous solubility, oral absorption, and tissue distribution of ORL via the formulation of nanocrystals (NCs). METHODS ORL-NC was prepared using the liquid antisolvent precipitation method (bottom-up technology), and it demonstrated significantly improved solubility compared with that of the blank crystals (ORL-BCs) and untreated ORL powder. The biodistribution and relative bioavailability of ORL-NC were investigated via the radiolabeling technique using Technetium-99m (99mTc). Female Swiss albino mice were used to examine the antitumor activity of ORL-NC against solid Ehrlich carcinoma (SEC)-induced hepatic damage in mice. RESULTS The prepared NCs improved ORL's solubility, bioavailability, and tissue distribution, with evidence of 258.70% relative bioavailability. In the in vivo study, the ORL-NC treatment caused a reduction in all tested liver functions (total and direct bilirubin, AST, ALT, and ALP) and improved modifications in liver sections that were marked using hematoxylin and eosin staining (H&E) and immunohistochemical staining (Ki-67 and ER-α) compared with untreated SEC mice. CONCLUSIONS The developed ORL-NC could be considered a promising formulation approach to enhance the oral absorption tissue distribution of ORL and suppress the liver damage caused by SEC.
Collapse
|
research-article |
1 |
5 |
17
|
Almurshedi AS, El-Masry TA, Selim H, El-Sheekh MM, Makhlof MEM, Aldosari BN, Alfagih IM, AlQuadeib BT, Almarshidy SS, El-Bouseary MM. New investigation of anti-inflammatory activity of Polycladia crinita and biosynthesized selenium nanoparticles: isolation and characterization. Microb Cell Fact 2023; 22:173. [PMID: 37670273 PMCID: PMC10478239 DOI: 10.1186/s12934-023-02168-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Marine macroalgae have gained interest recently, mostly due to their bioactive components. Polycladia crinita is an example of marine macroalgae from the Phaeophyceae class, also known as brown algae. They are characterized by a variety of bioactive compounds with valuable medical applications. The prevalence of such naturally active marine resources has made macroalgae-mediated manufacturing of nanoparticles an appealing strategy. In the present study, we aimed to evaluate the antioxidant and anti-inflammatory features of an aqueous extract of Polycladia crinita and biosynthesized P. crinita selenium nanoparticles (PCSeNPs) via a carrageenan-induced rat paw edema model. The synthesized PCSeNPs were fully characterized by UV-visible spectroscopy, FTIR, XRD, and EDX analyses. RESULTS FTIR analysis of Polycladia crinita extract showed several sharp absorption peaks at 3435.2, 1423.5, and 876.4 cm-1 which represent O-H, C=O and C=C groups. Moreover, the most frequent functional groups identified in P. crinita aqueous extract that are responsible for producing SeNPs are the -NH2-, -C=O-, and -SH- groups. The EDX spectrum analysis revealed that the high percentages of Se and O, 1.09 ± 0.13 and 36.62 ± 0.60%, respectively, confirmed the formation of SeNPs. The percentages of inhibition of the edema in pretreated groups with doses of 25 and 50 mg/kg, i.p., of PCSeNPs were 62.78% and 77.24%, respectively. Furthermore, the pretreated groups with 25, 50 mg/kg of P. crinita extract displayed a substantial decrease in the MDA levels (P < 0.00, 26.9%, and 51.68% decrease, respectively), indicating potent antioxidant effect. Additionally, the pretreated groups with PCSeNPs significantly suppressed the MDA levels (P < 0.00, 54.77%, and 65.08% decreases, respectively). The results of immune-histochemical staining revealed moderate COX-2 and Il-1β expressions with scores 2 and 1 in rats pre-treated with 25 and 50 mg/kg of free extract, respectively. Additionally, the rats pre-treated with different doses of PCSeNPs demonstrated weak COX-2 and Il-1β expressions with score 1 (25 mg/kg) and negative expression with score 0 (50 mg/kg). Both antioxidant and anti-inflammatory effects were dose-dependent. CONCLUSIONS These distinguishing features imply that this unique alga is a promising anti-inflammatory agent. Further studies are required to investigate its main active ingredients and possible side effects.
Collapse
|
research-article |
2 |
4 |
18
|
Elekhnawy E, Almurshedi AS, Abdelkader DH, El-Masry TA, Aldosari BN, El-Bouseary MM, Donia AA, Negm WA. Green synthesised zinc oxide nanoparticles reveal potent in vivo and in vitro antibacterial efficacy against Proteus mirabilis isolates. Int J Pharm 2023:123111. [PMID: 37302668 DOI: 10.1016/j.ijpharm.2023.123111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Currently, the spread of antimicrobial resistance dissemination is expanding at an accelerated rate. Therefore, numerous researchers haveinvestigatedalternative treatments in an effort to combat this significant issue. This study evaluated the antibacterial properties of zinc-oxide nanoparticles (ZnO NPs) synthesised by Cycas circinalis against Proteus mirabilis clinical isolates. HPLC was utilised for the identification and quantification of C. circinalis metabolites. The green synthesis of ZnO NPs has been confirmed using UV-VIS spectrophotometry. The Fourier transform infrared spectrum of metal oxide bonds has been compared to the free C. circinalis extract spectrum. The crystalline structure and elemental composition were investigated using X-ray diffraction and Energy-dispersive X-ray techniques. The morphology of nanoparticles was assessed by scanning and transmission electron microscopies, which revealed an average particle size of 26.83±5.87 nm with spherical outlines. The dynamic light scattering technique confirms the optimum stability of ZnO NPs with a zeta potential value equal to 26.4±0.49 mV. Using agar well diffusion and broth microdilution methods, we elucidated the antibacterial activity of ZnO NPs in vitro. MIC values for ZnO NPs ranged from 32 to 128 µg/mL. In 50% of the tested isolates, the membrane integrity was compromised by ZnO nanoparticles. In addition, we assessed the in vivo antibacterial capacity of ZnO NPs by a systemic infection induction using P. mirabilis bacteria in mice. The bacterial count in the kidney tissues was determined, and a significant decrease in CFU/g tissues was observed. The survival rate was evaluated, and the ZnO NPs treated group had higher survival rates. The histopathological studies demonstrated that kidney tissues treated with ZnO NPs had normal structures and architecture. Moreover, the immunohistochemical examinations and ELISA revealed that ZnO NPs substantially decreased the proinflammatory mediators NF-kβ, COX-2, TNF-α, IL-6, and IL-1β in kidney tissues. In conclusion, the results of this study suggest that ZnO NPs are effective against bacterial infections caused by P. mirabilis.
Collapse
|
|
2 |
4 |
19
|
Alshawwa SZ, El-Masry TA, Nasr M, Kira AY, Alotaibi HF, Sallam AS, Elekhnawy E. Celecoxib-Loaded Cubosomal Nanoparticles as a Therapeutic Approach for Staphylococcus aureus In Vivo Infection. Microorganisms 2023; 11:2247. [PMID: 37764091 PMCID: PMC10535980 DOI: 10.3390/microorganisms11092247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
There is a great need for novel approaches to treating bacterial infections, due to the vast dissemination of resistance among pathogenic bacteria. Staphylococcus aureus are ubiquitous Gram-positive pathogenic bacteria and are rapidly acquiring antibiotic resistance. Here, celecoxib was encapsulated into cubosomal nanoparticles, and the particle morphology, size distribution, zeta potential, entrapment efficiency, and celecoxib release were evaluated in vitro. Also, a systemic infection model in mice elucidated the in vivo antibacterial action of the celecoxib cubosomes. Cubosomes are a nanotechnology-based delivery system which can adhere to the external peptidoglycan layers of Gram-positive bacteria and penetrate them. The size distribution investigation revealed that the prepared celecoxib-loaded cubosomes had a mean particle size of 128.15 ± 3.04 nm with a low polydispersity index of 0.235 ± 0.023. The zeta potential measurement showed that the prepared cubosomes had a negative surface charge of -17.50 ± 0.45, indicating a highly stable nanodispersion formation with little susceptibility to particle aggregation. The cubosomal dispersion exhibited an entrapment efficiency of 88.57 ± 2.36%. The transmission electron micrograph for the prepared celecoxib-loaded cubosomes showed a narrow size distribution for the cubosomal nanoparticles, which had a spherical shape and were non-aggregated. The tested cubosomes diminished the inflammation in the treated mice's liver and spleen tissues, as revealed by hematoxylin and eosin stain and Masson's trichrome stain. The immunostained tissues with nuclear factor kappa B and caspase-3 monoclonal antibodies revealed a marked decrease in these markers in the celecoxib-treated group, as it resulted in negative or weak immunostaining in liver and spleen that ranged from 4.54% to 17.43%. This indicates their inhibitory effect on the inflammatory pathway and apoptosis, respectively. Furthermore, they reduced the bacterial burden in the studied tissues. This is alongside a decrease in the inflammatory markers (interleukin-1 beta, interleukin-6, cyclooxygenase-2, and tumor necrosis factor-alpha) determined by ELISA and qRT-PCR. The IL-1β levels were 16.66 ± 0.5 pg/mg and 17 ± 0.9 pg/mg in liver and spleen, respectively. Also, IL-6 levels were 85 ± 3.2 pg/mg and 84 ± 2.4 pg/mg in liver and spleen, respectively. In conclusion, the current study introduced cubosomes as an approach for the formulation of celecoxib to enhance its in vivo antibacterial action by improving its oral bioavailability.
Collapse
|
research-article |
2 |
3 |
20
|
Alshawwa SZ, El-Masry TA, Elekhnawy E, Alotaibi HF, Sallam AS, Abdelkader DH. Fabrication of Celecoxib PVP Microparticles Stabilized by Gelucire 48/16 via Electrospraying for Enhanced Anti-Inflammatory Action. Pharmaceuticals (Basel) 2023; 16:258. [PMID: 37259403 PMCID: PMC9960083 DOI: 10.3390/ph16020258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 01/13/2025] Open
Abstract
Electrospraying (ES) technology is considered an efficient micro/nanoparticle fabrication technique with controlled dimensions and diverse morphology. Gelurice® 48/16 (GLR) has been employed to stabilize the aqueous dispersion of Celecoxib (CXB) for enhancing its solubility and oral bioavailability. Our formula is composed of CXB loaded in polyvinylpyllodine (PVP) stabilized with GLR to formulate microparticles (MPs) (CXB-GLR-PVP MPs). CXB-GLR-PVP MPs display excellent in vitro properties regarding particle size (548 ± 10.23 nm), zeta potential (-20.21 ± 2.45 mV), and drug loading (DL, 1.98 ± 0.059 mg per 10 mg MPs). CXB-GLR-PVP MPs showed a significant (p < 0.05) higher % cumulative release after ten minutes (50.31 ± 4.36) compared to free CXB (10.63 ± 2.89). CXB exhibited good dispersibility, proved by X-ray diffractometry (XRD), adequate compatibility of all components, confirmed by Fourier-Transform Infrared Spectroscopy (FTIR), and spherical geometry as revealed in scanning electron microscopy (SEM). Concerning our anti-inflammatory study, there was a significant decrease in the scores of the inflammatory markers' immunostaining in the CXB-GLR-PVP MPs treated group. Also, the amounts of the oxidative stress biomarkers, as well as mRNA expression of interleukins (IL-1β and IL-6), considerably declined (p < 0.05) in CXB-GLR-PVP MPs treated group alongside an enhancement in the histological features was revealed. CXB-GLR-PVP MPs is an up-and-coming delivery system that could be elucidated in future clinical investigations.
Collapse
|
research-article |
2 |
2 |
21
|
Alotaibi B, El-Masry TA, Seadawy MG, Farghali MH, El-Harty BE, Saleh A, Mahran YF, Fahim JS, Desoky MS, Abd El-Monsef MM, El-Bouseary MM. SARS-CoV-2 in Egypt: epidemiology, clinical characterization and bioinformatics analysis. Heliyon 2022; 8:e08864. [PMID: 35128118 PMCID: PMC8801622 DOI: 10.1016/j.heliyon.2022.e08864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 12/28/2022] Open
Abstract
COVID-19 is an infectious disease caused by SARS-CoV-2 and has spread globally, resulting in the ongoing coronavirus pandemic. The current study aimed to analyze the clinical and epidemiological features of COVID-19 in Egypt. Oropharyngeal swabs were collected from 197 suspected patients who were admitted to the Army Hospital and confirmation of the positivity was performed by rRT-PCR assay. Whole genomic sequencing was conducted using Illumina iSeq 100® System. The average age of the participants was 48 years, of which 132 (67%) were male. The main clinical symptoms were pneumonia (98%), fever (92%), and dry cough (66%). The results of the laboratory showed that lymphocytopenia (79.2%), decreased levels of haemoglobin (77.7%), increased levels of interleukin 6, C-reactive protein, serum ferritin, and D-dimer (77.2%, 55.3%, 55.3%, and 25.9%, respectively), and leukocytopenia (25.9%) were more common. The CT findings showed that scattered opacities (55.8%) and ground-glass appearance (27.9%) were frequently reported. The recovered validated sequences (n = 144) were submitted to NCBI Virus GenBank. All sequenced viruses have at least 99% identity to Wuhan-Hu-1. All variants were GH clade, B.1 PANGO lineage, and L.GP.YP.HT haplotype. The most predominant subclade was D614G/Q57H/V5F/G823S. Our findings have aided in a deep understanding of COVID-19 evolution and identifying strains with unique mutational patterns in Egypt.
Isolation and clinical characterization of SARS-CoV-2 from Egyptian patients. Whole Genome Sequencing of recovered isolates revealed unique sequences. Egyptian SARS-CoV-2 variants in 2020 with at least 99% identity to Wuhan-Hu-1. Egyptian SARS-CoV-2 variants were GH clade and L.GP.YP.HT haplotype. A unique mutation (D614G/Q57H/V5F/G823S) pattern was predominant among SARS-CoV-2.
Collapse
|
|
3 |
2 |
22
|
Alarfaj SJ, Abdallah Mostafa S, Abdelsalam RA, Negm WA, El-Masry TA, Hussein IA, El Nakib AM. Helicobacter pylori Infection in Cirrhotic Patients With Portal Hypertensive Gastropathy: A New Enigma? Front Med (Lausanne) 2022; 9:902255. [PMID: 35801205 PMCID: PMC9254718 DOI: 10.3389/fmed.2022.902255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
The relationship between Helicobacter pylori (H. pylori) infection and Portal hypertensive gastropathy (PHG) is still a debatable matter. The aim of this study is to find out how common H. pylori infection is in cirrhotic patients with PHG and to see if there’s a link between H. pylori infection and PHG severity. Out of 340 cirrhotic patients who had upper Gastrointestinal Tract (GIT) endoscopy for early varices screening, 160 cirrhotic patients were selected and divided into 2 groups; 80 cirrhotic patients with PHG (cases) and 80 cirrhotic patients without PHG (controls). Gastric biopsies were taken from all enrolled patients for histological evaluation for the presence or absence of H. pylori infection. H. pylori was found in 44 cirrhotic patients (55%) who had PHG (cases), compared to 22 cirrhotic patients (27.5%) who did not have PHG (controls). The prevalence of H. pylori infection was significantly higher in patients with PHG (p < 0.001). The severity of PHG was associated with H. pylori infection (p < 0.001). The response to eradication therapy of H. pylori infection was must better in patients without PHG (p = 0.045). By multi-variant analysis, H. pylori infection, splenic diameter, and portal vein diameter were independent predictors for PHG presence. After treating H. pylori infection in patients who tested positive for H. pylori, there was a significant reduction in PHG severity (p < 0.001). Patients with PHG have a greater prevalence of H. pylori infection. PHG is more severe in patients infected with H. pylori. To improve PHG severity, cirrhotic patients must have their H. pylori infection eradicated.
Collapse
|
|
3 |
1 |
23
|
Seadawy MG, Binsuwaidan R, Alotaibi B, El-Masry TA, El-Harty BE, Gad AF, Elkhatib WF, El-Bouseary MM. The Mutational Landscape of SARS-CoV-2 Variants of Concern Recovered From Egyptian Patients in 2021. Front Microbiol 2022; 13:923137. [PMID: 35875574 PMCID: PMC9300961 DOI: 10.3389/fmicb.2022.923137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
In December 2019, a mysterious viral pneumonia first developed in Wuhan, China, resulting in a huge number of fatal cases. This pneumonia, which was named COVID-19, was attributed to a novel coronavirus, SARS-CoV-2. The emerging SARS-CoV-2 mutations pose the greatest risk to human health because they could result in an increase in the COVID-19 severity or the failure of current vaccines. One of these notable mutations is the SARS-CoV-2 Delta variant (B.1.617) that was first detected in India and has rapidly expanded to 115 countries worldwide. Consequently, in this study, we performed next-generation sequencing and phylogenetic analysis of SARS-CoV-2 during the third wave of the pandemic to determine the SARS-CoV-2 variants of concern (VOC) prevalence in Egypt. We observed several mutational patterns, revealing that SARS-CoV-2 evolution has expanded in Egypt with a considerable increase in the number of VOC. Therefore, the Egyptian authorities should take an appropriate approach to investigate the compatibility of already employed vaccines with this VOC and to examine the efficacy of the existing therapeutic regimen against new SARS-CoV-2 variants.
Collapse
|
research-article |
3 |
1 |
24
|
Ashour NA, El-Masry TA, El-Mahdy NA, E Khodier A, Elmorshedy KE, Gaballa MMS, Negm WA. A novel combination therapy using Dapagliflozin and Cycas media extract in experimentally induced diabetic wounds by targeting novel pathways in wound healing. Int Immunopharmacol 2025; 144:113618. [PMID: 39615109 DOI: 10.1016/j.intimp.2024.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Diabetes mellitus, a globally prevalent condition, often complicates wound healing, leading to chronic, non-healing wounds. This study explores a novel combination therapy using Dapagliflozin and Cycas media extract for treating experimentally induced diabetic wounds in rats. By targeting the Notch signaling pathway, a critical pathway in wound healing, this research investigates the efficacy of this combination therapy in accelerating wound repair. Forty-two male Wistar albino rats were divided into control and treatment groups, receiving various Dapagliflozin and Cycas media gel combinations. The study evaluated wound healing, biochemical markers, gene expression, and histopathological changes. The findings suggest that the combination therapy significantly enhances wound healing, modulates oxidative stress, alters inflammatory responses, and influences key genes in the Notch pathway. This research provides a new perspective on diabetic wound management and underlines the potential of combining Dapagliflozin and Cycas media as a therapeutic approach.
Collapse
|
|
1 |
|
25
|
El-Mahdy NA, Tadros MG, El-Masry TA, Binsaleh AY, Alsubaie N, Alrossies A, Abd Elhamid MI, Osman EY, Shalaby HM, Saif DS. Efficacy of the cardiac glycoside digoxin as an adjunct to csDMARDs in rheumatoid arthritis patients: a randomized, double-blind, placebo-controlled trial. Front Pharmacol 2024; 15:1445708. [PMID: 39498340 PMCID: PMC11532073 DOI: 10.3389/fphar.2024.1445708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/17/2024] [Indexed: 11/07/2024] Open
Abstract
Background Inflammation and angiogenesis are two main mechanisms that act as mutual pathways in rheumatoid arthritis (RA). This work aimed to study the efficacy of digoxin as an adjunct therapy to conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs) in active RA patients. Methods In a randomized, double-blinded, placebo-controlled study, 60 adult patients with active RA received a placebo or digoxin (0.25 mg every other day) combined with csDMARDs for 6 months. The American College of Rheumatology (ACR) 20, ACR50, and ACR70 response rates and the disease activity score (DAS28) were assessed for patients. Flow cytometric analysis of Th17 cells and serum concentrations of IL-17A, IL-23, HIF-1α, and VEGF were evaluated before and after three and 6 months of therapy. Results Following three and 6 months of digoxin therapy combined with csDMARDs, significant differences were detected in laboratory and clinical parameters relative to the control group. After 6 months, 83.3% of patients in the digoxin group, compared to 56.7% in the control group, achieved an ACR20 response (p = 0.024). The digoxin group had a significantly higher percentage of patients who achieved DAS28 remission after 6 months (p = 0.024). Notable improvements in the Health Assessment Questionnaire Disability Index, ACR50, and ACR70 were detected in the digoxin group. Conclusion Digoxin was well tolerated and exerted profound immunomodulatory and anti-inflammatory effects in RA patients, and may also exhibit anti-angiogenic properties, indicating that it might be an effective adjunct to csDMARDs in treating RA. Clinical Trial Registration clinicaltrials.gov, identifier NCT04834557.
Collapse
|
research-article |
1 |
|