1
|
Brown JH, Jardetzky T, Saper MA, Samraoui B, Bjorkman PJ, Wiley DC. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature 1988; 332:845-50. [PMID: 3258651 DOI: 10.1038/332845a0] [Citation(s) in RCA: 981] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Class II and class I histocompatibility molecules allow T cells to recognize 'processed' polypeptide antigens. The two polypeptide chains of class II molecules, alpha and beta, are each composed of two domains (for review see ref. 6); the N-terminal domains of each, alpha 1 and beta 1, are highly polymorphic and appear responsible for binding peptides at what appears to be a single site and for being recognized by MHC-restricted antigen-specific T cells. Recently, the three-dimensional structure of the foreign antigen binding site of a class I histocompatibility antigen has been described. Because a crystal structure of a class II molecule is not available, we have sought evidence in class II molecules for the structural features observed in the class I binding site by comparing the patterns of conserved and polymorphic residues of twenty-six class I and fifty-four class II amino acid sequences. The hypothetical class II foreign-antigen binding site we present is consistent with mutation experiments and provides a structural framework for proposing peptide binding models to help understand recent peptide binding data.
Collapse
|
|
37 |
981 |
2
|
Shamji MH, Valenta R, Jardetzky T, Verhasselt V, Durham SR, Würtzen PA, van Neerven RJ. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy 2021; 76:3627-3641. [PMID: 33999439 PMCID: PMC8601105 DOI: 10.1111/all.14908] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Immunoglobulin E (IgE)‐mediated allergy is the most common hypersensitivity disease affecting more than 30% of the population. Exposure to even minute quantities of allergens can lead to the production of IgE antibodies in atopic individuals. This is termed allergic sensitization, which occurs mainly in early childhood. Allergen‐specific IgE then binds to the high (FcεRI) and low‐affinity receptors (FcεRII, also called CD23) for IgE on effector cells and antigen‐presenting cells. Subsequent and repeated allergen exposure increases allergen‐specific IgE levels and, by receptor cross‐linking, triggers immediate release of inflammatory mediators from mast cells and basophils whereas IgE‐facilitated allergen presentation perpetuates T cell–mediated allergic inflammation. Due to engagement of receptors which are highly selective for IgE, even tiny amounts of allergens can induce massive inflammation. Naturally occurring allergen‐specific IgG and IgA antibodies usually recognize different epitopes on allergens compared with IgE and do not efficiently interfere with allergen‐induced inflammation. However, IgG and IgA antibodies to these important IgE epitopes can be induced by allergen‐specific immunotherapy or by passive immunization. These will lead to competition with IgE for binding with the allergen and prevent allergic responses. Similarly, anti‐IgE treatment does the same by preventing IgE from binding to its receptor on mast cells and basophils. Here, we review the complex interplay of allergen‐specific IgE, IgG and IgA and the corresponding cell receptors in allergic diseases and its relevance for diagnosis, treatment and prevention of allergy.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
145 |
3
|
Sesterhenn F, Yang C, Bonet J, Cramer JT, Wen X, Wang Y, Chiang CI, Abriata LA, Kucharska I, Castoro G, Vollers SS, Galloux M, Dheilly E, Rosset S, Corthésy P, Georgeon S, Villard M, Richard CA, Descamps D, Delgado T, Oricchio E, Rameix-Welti MA, Más V, Ervin S, Eléouët JF, Riffault S, Bates JT, Julien JP, Li Y, Jardetzky T, Krey T, Correia BE. De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science 2020; 368:eaay5051. [PMID: 32409444 PMCID: PMC7391827 DOI: 10.1126/science.aay5051] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/30/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022]
Abstract
De novo protein design has been successful in expanding the natural protein repertoire. However, most de novo proteins lack biological function, presenting a major methodological challenge. In vaccinology, the induction of precise antibody responses remains a cornerstone for next-generation vaccines. Here, we present a protein design algorithm called TopoBuilder, with which we engineered epitope-focused immunogens displaying complex structural motifs. In both mice and nonhuman primates, cocktails of three de novo-designed immunogens induced robust neutralizing responses against the respiratory syncytial virus. Furthermore, the immunogens refocused preexisting antibody responses toward defined neutralization epitopes. Overall, our design approach opens the possibility of targeting specific epitopes for the development of vaccines and therapeutic antibodies and, more generally, will be applicable to the design of de novo proteins displaying complex functional motifs.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
129 |
4
|
Thibodeau J, Cloutier I, Lavoie PM, Labrecque N, Mourad W, Jardetzky T, Sékaly RP. Subsets of HLA-DR1 molecules defined by SEB and TSST-1 binding. Science 1994; 266:1874-8. [PMID: 7997881 DOI: 10.1126/science.7997881] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Superantigens bind to major histocompatibility complex class II molecules on antigen-presenting cells and stimulate T cells. Staphylococcus aureus enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1) bind to the same region of human lymphocyte antigen (HLA)-DR1 but do not compete with each other, which indicates that they bind to different subsets of DR1 molecules. Here, a mutation in the peptide-binding groove disrupted the SEB and TSST-1 binding sites, which suggests that peptides can influence the interaction with bacterial toxins. In support of this, the expression of the DR1 molecule in various cell types differentially affected the binding of these toxins.
Collapse
|
|
31 |
77 |
5
|
Dashdorj NJ, Wirz OF, Röltgen K, Haraguchi E, Buzzanco AS, Sibai M, Wang H, Miller JA, Solis D, Sahoo MK, Arunachalam PS, Lee AS, Shah MM, Liu J, Byambabaatar S, Bat-Ulzii P, Enkhbat A, Batbold E, Zulkhuu D, Ochirsum B, Khurelsukh T, Dalantai G, Burged N, Baatarsuren U, Ariungerel N, Oidovsambuu O, Bungert AS, Genden Z, Yagaanbuyant D, Mordorj A, Pulendran B, Chinthrajah S, Nadeau KC, Jardetzky T, Wilbur JL, Wohlstadter JN, Sigal GB, Pinsky BA, Boyd SD, Dashdorj ND. Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia. Cell Host Microbe 2021; 29:1738-1743.e4. [PMID: 34861167 PMCID: PMC8585611 DOI: 10.1016/j.chom.2021.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
Different SARS-CoV-2 vaccines are approved in various countries, but few direct comparisons of the antibody responses they stimulate have been reported. We collected plasma specimens in July 2021 from 196 Mongolian participants fully vaccinated with one of four COVID-19 vaccines: Pfizer/BioNTech, AstraZeneca, Sputnik V, and Sinopharm. Functional antibody testing with a panel of nine SARS-CoV-2 viral variant receptor binding domain (RBD) proteins revealed marked differences in vaccine responses, with low antibody levels and RBD-ACE2 blocking activity stimulated by the Sinopharm and Sputnik V vaccines in comparison to the AstraZeneca or Pfizer/BioNTech vaccines. The Alpha variant caused 97% of infections in Mongolia in June and early July 2021. Individuals who recover from SARS-CoV-2 infection after vaccination achieve high antibody titers in most cases. These data suggest that public health interventions such as vaccine boosting, potentially with more potent vaccine types, may be needed to control COVID-19 in Mongolia and worldwide.
Collapse
|
Comparative Study |
4 |
52 |
6
|
Gorga JC, Brown JH, Jardetzky T, Wiley DC, Strominger JL. Crystallization of HLA-DR antigens. RESEARCH IN IMMUNOLOGY 1991; 142:401-7. [PMID: 1754711 DOI: 10.1016/0923-2494(91)90038-k] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The class II major histocompatibility antigens HLA-DR1, DR2, DR3, DR4, DR7 and DR8 were purified by immunoaffinity chromatography from homozygous human B lymphoblastoid cell lines. The purified, detergent-soluble molecules were cleaved with the protease papain to remove the hydrophobic transmembrane regions and cytoplasmic tails. Crystals were obtained for each of the papain-solubilized fragments. DR1 crystallized under a variety of different conditions, resulting in two different orthorhombic crystal forms, one of which diffracts as far as 3.5A. Crystals of DR2, DR3, DR4 and DR8 have the same unit cell dimensions as the DR1 crystals, and crystals of DR3 and DR4 have the same diffracting power as the DR1 crystals. The best DR7 crystals obtained thus far are hexagonal and diffract to only about 8A. Crystals of similar hexagonal form have also been observed for most of the other DR subsets.
Collapse
|
|
34 |
20 |
7
|
Moñino-Romero S, Erkert L, Schmidthaler K, Diesner SC, Sallis BF, Pennington L, Jardetzky T, Oettgen HC, Bohle B, Fiebiger E, Szépfalusi Z. The soluble isoform of human FcɛRI is an endogenous inhibitor of IgE-mediated mast cell responses. Allergy 2019; 74:236-245. [PMID: 30030936 DOI: 10.1111/all.13567] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The soluble isoform of FcɛRI, the high-affinity IgE receptor (sFcεRI), is a protein of the IgE network with poorly defined functions. OBJECTIVE To define cellular sources and signals that result in the production of human sFcεRI and study its in vivo functions. METHODS FcεRI-transfected human cell lines (MelJuso), human monocyte-derived dendritic cells (moDCs), and murine bone marrow-derived mast cells (MC) were stimulated by FcεRI cross-linking and release of sFcεRI was analyzed (ELISA, Western Blot). Lysosomal-associated membrane protein 1 degranulation assays and human basophil activation tests (BATs) were used to study IgE-dependent activation. Recombinant sFcεRI (rsFcεRI) was used to assess its role in murine models of anaphylaxis with WT (wild-type) and IgE-/- (IgE-deficient) mice. RESULTS Antigen-specific cross-linking of IgE-loaded FcɛRI on MelJuso cells that express the trimeric or tetrameric receptor isoform induced the production of sFcεRI. Using MCs and moDCs, we confirmed that IgE/FcɛRI activation induces sFcɛRI release. We demonstrated that generation of sFcɛRI requires Src phosphorylation and endo/lysosomal acidification. In experimental mouse models, sFcɛRI diminishes the severity of IgE-mediated anaphylaxis. BATs confirmed that, comparable to the anti-IgE monoclonal antibody omalizumab, sFcɛRI is an inhibitor of the human innate IgE effector axis, implying that sFcɛRI and omalizumab potentially inhibit each other in vivo. CONCLUSION sFcɛRI is produced after antigen-specific IgE/FcɛRI-mediated activation signals and functions as an endogenous inhibitor of IgE loading to FcɛRI and IgE-mediated activation. Our results imply, therefore, that sFcɛRI contributes to a negative regulatory feedback loop that aims at preventing overshooting responses after IgE-mediated immune activation.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
20 |
8
|
Abstract
The structure of a ternary complex formed between a T-cell receptor, a major histocompatibility complex (MHC) protein and a viral peptide provides new insights into the cellular immune response. The results provide a molecular basis for understanding the development of T cells and the reactions leading to transplant rejection and autoimmunity.
Collapse
MESH Headings
- Gene Products, tax/chemistry
- Gene Products, tax/immunology
- Gene Products, tax/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Infant, Newborn
- Macromolecular Substances
- Models, Molecular
- Protein Binding
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Substrate Specificity
Collapse
|
Review |
28 |
14 |
9
|
|
News |
23 |
9 |
10
|
Neuhaus F, Widom J, MacDonald R, Jardetzky T, Radhakrishnan I. Program review. Challenges and opportunities for training the next generation of biophysicists: perspectives of the directors of the Molecular Biophysics Training Program at Northwestern University. Biopolymers 2008; 89:253-5. [PMID: 18293401 DOI: 10.1002/bip.20929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Molecular biophysics is a broad, diverse, and dynamic field that has presented a variety of unique challenges and opportunities for training future generations of investigators. Having been or currently being intimately associated with the Molecular Biophysics Training Program at Northwestern, we present our perspectives on various issues that we have encountered over the years. We propose no cookie-cutter solutions, as there is no consensus on what constitutes the "ideal" program. However, there is uniformity in opinion on some key issues that might be useful to those interested in establishing a biophysics training program.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
2 |
11
|
Kilgus J, Jardetzky T, Gorga JC, Trzeciak A, Gillessen D, Sinigaglia F. Analysis of the permissive association of a malaria T cell epitope with DR molecules. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1991; 146:307-15. [PMID: 1701796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study we examined the association of a promiscuous malaria T cell epitope, CS.T3, to different HLA-DR alleles. A large series of singly substituted or truncated variants of CS.T3 was prepared and tested for the ability to be recognised in association with, or to bind to, three distinct HLA-DR alleles (DR1, DRw11, and DRw14(w6)) and three natural variants of HLA-DRw11. We found that although association with the different DR molecules mapped to identical or closely overlapping regions of the peptide, distinct substitutions could drastically influence the capacity of the peptide to interact with one but not another of the three DR molecules tested. Based on analysis of the distribution of residues recognized by T cell clones restricted to the different DR alleles, we suggest that the peptide CS.T3 is not bound, at least for the three DR examined, as an alpha-helix. In addition we tested three subtypes of DRw11 as APC for the CS.T3 analogues and observed that the peptide is most likely bound in the same conformation to the three natural variants of the DRw11 molecule.
Collapse
|
|
34 |
|
12
|
Mbanefo E, Le L, Pennington L, Jardetzky T, Alouffi A, Falcone F, Hsieh M. MP29-06 THERAPEUTIC EXPLOITATION OF THE
SCHISTOSOMA HAEMATOBIUM
HOMOLOG OF INTERLEUKIN-4-INDUCING PRINCIPLE OF
SCHISTOSOMA MANSONI
EGGS FOR CHEMOTHERAPY-INDUCED HEMORRHAGIC CYSTITIS AND BLADDER HYPERSENSITIVITY. J Urol 2017. [DOI: 10.1016/j.juro.2017.02.918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
8 |
|
13
|
Kilgus J, Jardetzky T, Gorga JC, Trzeciak A, Gillessen D, Sinigaglia F. Analysis of the permissive association of a malaria T cell epitope with DR molecules. THE JOURNAL OF IMMUNOLOGY 1991. [DOI: 10.4049/jimmunol.146.1.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
In this study we examined the association of a promiscuous malaria T cell epitope, CS.T3, to different HLA-DR alleles. A large series of singly substituted or truncated variants of CS.T3 was prepared and tested for the ability to be recognised in association with, or to bind to, three distinct HLA-DR alleles (DR1, DRw11, and DRw14(w6)) and three natural variants of HLA-DRw11. We found that although association with the different DR molecules mapped to identical or closely overlapping regions of the peptide, distinct substitutions could drastically influence the capacity of the peptide to interact with one but not another of the three DR molecules tested. Based on analysis of the distribution of residues recognized by T cell clones restricted to the different DR alleles, we suggest that the peptide CS.T3 is not bound, at least for the three DR examined, as an alpha-helix. In addition we tested three subtypes of DRw11 as APC for the CS.T3 analogues and observed that the peptide is most likely bound in the same conformation to the three natural variants of the DRw11 molecule.
Collapse
|
|
34 |
|
14
|
Mbanefo E, Le L, Banskota N, Pennington L, Alouffi A, Ray D, Heery D, Jardetzky T, Falcone F, Hsieh M. MP39-15 IPSE, A UROGENITAL PARASITE DERIVED PROTEIN, DRIVES UROTHELIAL PROLIFERATION AND ALLEVIATES CHEMOTHERAPY INDUCED HEMORRHAGIC CYSTITIS. J Urol 2018. [DOI: 10.1016/j.juro.2018.02.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
|
7 |
|
15
|
Jardetzky T, Kuhn R, Lamb R. Editorial overview: Virus structure and functions. Curr Opin Virol 2017; 24:ix. [DOI: 10.1016/j.coviro.2017.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
8 |
|
16
|
Chin A, Liu J, Jardetzky T, Johnson DC, Vanarsdall A. Identification of functionally important domains of human cytomegalovirus gO that act after trimer binding to receptors. PLoS Pathog 2022; 18:e1010452. [PMID: 35452493 PMCID: PMC9032346 DOI: 10.1371/journal.ppat.1010452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) entry involves trimer (gH/gL/gO) that interacts with PDGFRα in fibroblasts. Entry into epithelial and endothelial cells requires trimer, which binds unidentified receptors, and pentamer (gH/gL/UL128-131), which binds neuropilin-2. To identify functionally important domains in trimer, we screened an overlapping 20-mer gO peptide library and identified two sets of peptides: 19/20 (a.a. 235–267) and 32/33 (a.a. 404–436) that could block virus entry. Soluble trimer containing wild type gO blocked HCMV entry, whereas soluble trimers with the 19/20 or 32/33 sequences mutated did not block entry. Interestingly, the mutant trimers retained the capacity to bind to cellular receptors including PDGFRα. Peptide 19/20 and 32/33 sequences formed a lobe extending from the surface of gO and an adjacent concave structure, respectively. Neither of these sets of sequences contacted PDGFRα. Instead, our data support a model in which the 19/20 and 32/33 trimer sequences function downstream of receptor binding, e.g. trafficking of HCMV into endosomes or binding to gB for entry fusion. We also screened for peptides that bound antibodies (Abs) in human sera, observing that peptides 20 and 26 bound Abs. These peptides engendered neutralizing Abs (NAbs) after immunization of rabbits and could pull out NAbs from human sera. Peptides 20 and 26 sequences represent the first NAb epitopes identified in trimer. These studies describe two important surfaces on gO defined by: i) peptides 19/20 and 32/33, which apparently act downstream of receptor binding and ii) peptide 26 that interacts with PDGFRα. Both these surfaces are targets of NAbs. Human cytomegalovirus (HCMV) infects 80% of the world population, causing severe morbidity and mortality in transplant patients and can be transmitted to the developing fetus leading to severe neurological defects. The current anti-viral agents used to treat HCMV are not very effective as viruses can develop resistance and there is no licensed HCMV vaccine available. Recently, there has been intense interest in the HCMV envelope glycoproteins involved in entry as a component of vaccines. One glycoprotein complex, the gH/gL/gO trimer is especially intriguing as it is required for infection of extracellular virus in all cell types. Here, we identify domains in the trimer that have an essential function in entry downstream of receptor binding and are also epitopes recognized by naturally induced neutralizing antibodies. These results will have implications for advancing the efforts to develop novel HCMV therapeutics.
Collapse
|
|
3 |
|
17
|
Zhu J, Lin J, Jardetzky T, Woodruff T. Inhibin α-subunit N-terminal Extension Interacts with ALK4 and Disrupts the Activin/ActRIIB/ALK4 Complex. Biol Reprod 2010. [DOI: 10.1093/biolreprod/83.s1.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
15 |
|