1
|
Ferreira CP, Lima D, Paiva R, Vilke JM, Mattos JJ, Almeida EA, Grott SC, Alves TC, Corrêa JN, Jorge MB, Uczay M, Vogel CIG, Gomes CHAM, Bainy ACD, Lüchmann KH. Metal bioaccumulation, oxidative stress and antioxidant responses in oysters Crassostrea gasar transplanted to an estuary in southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:332-344. [PMID: 31176220 DOI: 10.1016/j.scitotenv.2019.05.384] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
The present study assessed the spatial and temporal variations on metal bioaccumulation and biochemical biomarker responses in oysters Crassostrea gasar transplanted to two different sites (S1 and S2) at the Laguna Estuarine System (LES), southern Brazil, over a 45-days period. A multi-biomarker approach was used, including the evaluation of lipid peroxidation (MDA) levels, and antioxidant defense enzymes (CAT, GPx, GR and G6PDH) and phase II biotransformation enzyme (GST) in the gills and digestive gland of oysters in combination with the quantification of Al, Cd, Cu, Pb, Fe, Ni and Zn in both tissues. The exposed oysters bioaccumulated metals, especially Al, Cd and Zn in gills and digestive gland, with most prominent biomarker responses in the gills. Results showed that GPx, GR and G6PDH enzymes offered an increased and coordinated response possibly against metal (Zn, Ni, Cd and Cu) contamination in gills. GST was inversely correlated to Cd levels, being its activity significantly lowered over the 45-d exposure periods at S2. On contrary, in digestive gland GST was slightly positively correlated to Cd, revealing a compensatory mechanism between tissues to protect oysters' cells against oxidative damages, since MDA levels also decreased. CAT also appeared to be involved in the cellular protection against oxidative stress, being increased in gills. However, CAT was negatively correlated to Al levels, which might suggest a possible inhibitory effect of this metal in the gills of C. gasar. Differences between tissues were evident by the Integrative Biomarker Responses version 2 (IBRv2) indexes, which showed different pattern between tissues when studying the sites and exposure periods separately. This study provided evidence for the effectiveness of using a multi-biomarker approach in oyster C. gasar to monitor estuarine metal pollution.
Collapse
|
|
6 |
29 |
2
|
Grott SC, Israel N, Lima D, Bitschinski D, Abel G, Alves TC, da Silva EB, de Albuquerque CAC, Mattos JJ, Bainy ACD, de Almeida EA. Influence of temperature on growth, development and thyroid metabolism of American bullfrog tadpoles (Lithobates catesbeianus) exposed to the herbicide tebuthiuron. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103910. [PMID: 35718323 DOI: 10.1016/j.etap.2022.103910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The influence of temperature (25 and 32 °C) on the negative effects of the herbicide tebuthiuron (TBU, 0, 10, 50 and 200 ng.L-1, 16 days) on thyroid function and metamorphosis of Lithobates catesbeianus tadpoles was evaluated. Metamorphosis was accelerated by TBU exposure at 25 ºC, but delayed at 32 ºC with considerable losses of body mass. T3 and T4 levels were not altered. The highest TBU concentrarion at 25 ºC increased TR β and DIO3 transcript levels, which is consistent with development acceleration in tadpoles. At 32 ºC TR β transcript levels were lower than the values recorded at 25 ºC, and those tadpoles exposed to the highest TBU concentration presented increased diameter of thyroid follicles compared to controls at same temperature. This study evidences that TBU at environmentally realistic concentrations is able to disrupt thyroidogenesis in bullfrog tadpoles, impairing their development. These effects are influenced by temperature.
Collapse
|
|
3 |
8 |
3
|
Dos Santos AP, Navarro AM, Schwingel A, Alves TC, Abdalla PP, Venturini ACR, de Santana RC, Machado DRL. Lipodystrophy diagnosis in people living with HIV/AIDS: prediction and validation of sex-specific anthropometric models. BMC Public Health 2018; 18:806. [PMID: 29945584 PMCID: PMC6020387 DOI: 10.1186/s12889-018-5707-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Body composition alterations, or lipodystrophy, can lead to serious health problems in people living with HIV/AIDS (PLWHA). The objectives of this study are to predict and validate sex-specific anthropometric predictive models for the diagnosis of lipodystrophy in PLWHA. METHODS A cross-sectional design was employed to recruit 106 PLWHA (men = 65 and women = 41) in Brazil during 2013-2014. They were evaluated using dual-energy X-ray absorptiometry, and 19 regions of body perimeters and 6 skinfold thicknesses were taken. Sex-specific predictive models for lipodystrophy diagnosis were developed through stepwise linear regression analysis. Cross-validations using predicted residual error sum of squares was performed to validate each predictive model. RESULTS Results support the use of anthropometry for the diagnosis of lipodystrophy in men and women living with HIV/AIDS. A high power of determination with a small degree of error was observed for lipodystrophy diagnosis for men in model six (r2 = 0.77, SEE = 0.14, r2PRESS = 0.73, SEE PRESS = 0.15), that included ratio of skinfold thickness of subscapular to medial calf, skinfold thickness of thigh, body circumference of waist, formal education years, time of diagnosis to HIV months, and type of combined antiretroviral therapy (cART) (with protease inhibitor "WI/PI = 1" or without protease inhibitor "WO/PI = 0"); and model five for women (r2 = 0.78, SEE = 0.11, r2PRESS = 0.71, SEE PRESS = 0.12), that included skinfold thickness of thigh, skinfold thickness of subscapular, time of exposure to cART months, body circumference of chest, and race (Asian) ("Yes" for Asian race = 1; "No" = 0). CONCLUSIONS The proposed anthropometric models advance the field of public health by facilitating early diagnosis and better management of lipodystrophy, a serious adverse health effect experienced by PLWHA.
Collapse
|
Journal Article |
7 |
7 |
4
|
Bornstein SR, Guan K, Brunßen C, Mueller G, Kamvissi-Lorenz V, Lechler R, Trembath R, Mayr M, Poston L, Sancho R, Ahmed S, Alfar E, Aljani B, Alves TC, Amiel S, Andoniadou CL, Bandral M, Belavgeni A, Berger I, Birkenfeld A, Bonifacio E, Chavakis T, Chawla P, Choudhary P, Cujba AM, Delgadillo Silva LF, Demcollari T, Drotar DM, Duin S, El-Agroudy NN, El-Armouche A, Eugster A, Gado M, Gavalas A, Gelinsky M, Guirgus M, Hansen S, Hanton E, Hasse M, Henneicke H, Heller C, Hempel H, Hogstrand C, Hopkins D, Jarc L, Jones PM, Kamel M, Kämmerer S, King AJF, Kurzbach A, Lambert C, Latunde-Dada Y, Lieberam I, Liers J, Li JW, Linkermann A, Locke S, Ludwig B, Manea T, Maremonti F, Marinicova Z, McGowan BM, Mickunas M, Mingrone G, Mohanraj K, Morawietz H, Ninov N, Peakman M, Persaud SJ, Pietzsch J, Cachorro E, Pullen TJ, Pyrina I, Rubino F, Santambrogio A, Schepp F, Schlinkert P, Scriba LD, Siow R, Solimena M, Spagnoli FM, Speier S, Stavridou A, Steenblock C, Strano A, Taylor P, Tiepner A, Tonnus W, Tree T, Watt F, Werdermann M, Wilson M, Yusuf N, Ziegler CG. The transCampus Metabolic Training Programme Explores the Link of SARS-CoV-2 Virus to Metabolic Disease. Horm Metab Res 2021; 53:204-206. [PMID: 33652492 DOI: 10.1055/a-1377-6583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Currently, we are experiencing a true pandemic of a communicable disease by the virus SARS-CoV-2 holding the whole world firmly in its grasp. Amazingly and unfortunately, this virus uses a metabolic and endocrine pathway via ACE2 to enter our cells causing damage and disease. Our international research training programme funded by the German Research Foundation has a clear mission to train the best students wherever they may come from to learn to tackle the enormous challenges of diabetes and its complications for our society. A modern training programme in diabetes and metabolism does not only involve a thorough understanding of classical physiology, biology and clinical diabetology but has to bring together an interdisciplinary team. With the arrival of the coronavirus pandemic, this prestigious and unique metabolic training programme is facing new challenges but also new opportunities. The consortium of the training programme has recognized early on the need for a guidance and for practical recommendations to cope with the COVID-19 pandemic for the community of patients with metabolic disease, obesity and diabetes. This involves the optimal management from surgical obesity programmes to medications and insulin replacement. We also established a global registry analyzing the dimension and role of metabolic disease including new onset diabetes potentially triggered by the virus. We have involved experts of infectious disease and virology to our faculty with this metabolic training programme to offer the full breadth and scope of expertise needed to meet these scientific challenges. We have all learned that this pandemic does not respect or heed any national borders and that we have to work together as a global community. We believe that this transCampus metabolic training programme provides a prime example how an international team of established experts in the field of metabolism can work together with students from all over the world to address a new pandemic.
Collapse
|
|
4 |
1 |
5
|
Righetti BPH, Lima D, Dias VHV, Mattos JJ, Piazza CE, Vilas-Boas LOB, Alves TC, Almeida EA, Lüchmann KH, Bainy ACD. Life after death? Exploring biochemical and molecular changes following organismal death in green turtles, Chelonia mydas (Linnaeus, 1758). CHEMOSPHERE 2022; 308:136569. [PMID: 36155023 DOI: 10.1016/j.chemosphere.2022.136569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Green turtles, Chelonia mydas, have been included in biomonitoring efforts given its status as an endangered species. Many studies, however, rely on samples from stranded animals, raising the question of how death affects important biochemical and molecular biomarkers. The goal of this study was to investigate post mortem fluctuations in the antioxidant response and metabolism of carbohydrates in the liver of C. mydas. Liver samples were obtained from six green turtles which were submitted to rehabilitation and euthanized due to the impossibility of recovery. Samples were collected immediately after death (t = 0) and at various time intervals (1, 2, 3, 4, 5, 6, 12, 18 and 24 h post mortem), frozen in liquid nitrogen and stored at -80 °C. The activities of catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH) were analyzed, as were the levels of lipid peroxidation, glycogen concentration, RNA integrity (RNA IQ) and transcript levels of carbonic anhydrase and pyruvate carboxylase genes. Comparison between post mortem intervals showed a temporal stability for all the biomarkers evaluated, suggesting that changes in biochemical and molecular parameters following green turtle death are not immediate, and metabolism may remain somewhat unaltered up to 24 h after death. Such stability may be associated with the overall lower metabolism of turtles, especially under an oxygen deprivation scenario such as organismal death. Overall, this study supports the use of biomarkers in sea turtles sampled within a period of 24 h post mortem for biomonitoring purposes, though it is recommended that post mortem fluctuations of particular biomarkers be evaluated prior to their application, given that proteins may show varying degrees of susceptibility to proteolysis.
Collapse
|
|
3 |
1 |
6
|
dos Reis RF, Alves TC. [Continuous fermentation using Saccharomyces cerevisiae 1133 (ATCC)]. REVISTA LATINOAMERICANA DE MICROBIOLOGIA 1972; 14:221-3. [PMID: 4578912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
|
53 |
|
7
|
Dourado PLR, Lima D, Mattos JJ, Bainy ACD, Grott SC, Alves TC, de Almeida EA, da Silva DGH. Fipronil impairs the GABAergic brain responses of Nile Tilapia during the transition from normoxia to acute hypoxia. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:138-152. [PMID: 36216792 DOI: 10.1002/jez.2662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
γ-aminobutyric acid (GABA) is one of the main neurotransmitters involved in the adaptation processes against the damage that hypoxia can cause to the brain. Due to its antagonist action on GABA receptors, the insecticide fipronil can turn the fish more susceptible to the negative effects of hypoxia. This study aimed to understand better if fipronil affects these GABAergic responses of Tilapia ahead to hypoxia. Oreochromis Niloticus (Nile Tilapia) were exposed for 3 and 8 h to fipronil (0.0, 0.1, and 0.5 µg.L-1 ) under normoxia (dissolved O2 > 6 mg.L-1 ) and moderate hypoxia (dissolved O2 < 2 mg.L-1 ) conditions. Briefly, hypoxia caused opposite effects on the gene transcription of the evaluated ionotropic and metabotropic GABA receptors. Unexpectedly, we obtained reduced HIF1A mRNA and brain GABA levels, mostly in the first 3 h of the experiment, for the hypoxic group compared with the normoxia one. Besides that, we also demonstrated that the insecticide fipronil impairs the brain GABAergic signaling of a hypoxia-tolerant fish during the transition from a normoxic to an acute hypoxic state. Thus, these results predict the relevant impact on the brain metabolic adaptations of fishes exposed to such stressful conditions in an aquatic environment, as well as the effects of fipronil in the GABAergic responses to hypoxia, which in turn may have ecological and physiological significance to hypoxia-tolerant fishes exposed to this insecticide.
Collapse
|
|
2 |
|
8
|
Bastolla CLV, Guerreiro FC, Saldaña-Serrano M, Gomes CHAM, Lima D, Rutkoski CF, Mattos JJ, Dias VHV, Righetti BPH, Ferreira CP, Martim J, Alves TC, Melo CMR, Marques MRF, Lüchmann KH, Almeida EA, Bainy ACD. Emerging and legacy contaminants on the Brazilian southern coast (Santa Catarina): A multi-biomarker approach in oysters Crassostrea gasar (Adanson, 1757). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171679. [PMID: 38494031 DOI: 10.1016/j.scitotenv.2024.171679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Coastal environments, such as those in the Santa Catarina State (SC, Brazil), are considered the primary receptors of anthropogenic pollutants. In this study, our objective was to evaluate the levels of emerging contaminants (ECs) and persistent organic pollutants (POPs) in indigenous Crassostrea gasar oysters from different regions of SC coast in the summer season (March 2022). Field collections were conducted in the São Francisco do Sul, Itajaí, Florianópolis and Laguna coastal zones. We analyzed the bioaccumulation levels of 75 compounds, including antibiotics (AB), endocrine disruptors (ED), non-steroidal anti-inflammatory drugs (NSAIDs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Furthermore, we assessed biomarker responses related to biotransformation, antioxidant defense, heat shock protection and oxidative damage in oysters' gills. Prevalence of ECs was observed in the central and southern regions, while the highest concentrations of POPs were detected in the central-northern regions of SC. Oysters exhibited an induction in biotransformation systems (cyp2au1 and cyp356a1, sult and GST activity) and antioxidant enzymes activities (SOD, CAT and GPx). Higher susceptibility to lipid peroxidation was observed in the animals from Florianópolis compared to other regions. Correlation analyses indicated possible associations between contaminants and environmental variables in the biomarker responses, serving as a warning related to climate change. Our results highlight the influence of anthropogenic activities on SC, serving as baseline of ECs and POPs levels in the coastal areas of Santa Catarina, indicating more critical zones for extensive monitoring, aiming to conserve coastal regions.
Collapse
|
|
1 |
|