1
|
Van der Stede T, Blancquaert L, Stassen F, Everaert I, Van Thienen R, Vervaet C, Gliemann L, Hellsten Y, Derave W. Histamine H 1 and H 2 receptors are essential transducers of the integrative exercise training response in humans. SCIENCE ADVANCES 2021; 7:7/16/eabf2856. [PMID: 33853781 PMCID: PMC8046361 DOI: 10.1126/sciadv.abf2856] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/25/2021] [Indexed: 05/12/2023]
Abstract
Exercise training is a powerful strategy to prevent and combat cardiovascular and metabolic diseases, although the integrative nature of the training-induced adaptations is not completely understood. We show that chronic blockade of histamine H1/H2 receptors led to marked impairments of microvascular and mitochondrial adaptations to interval training in humans. Consequently, functional adaptations in exercise capacity, whole-body glycemic control, and vascular function were blunted. Furthermore, the sustained elevation of muscle perfusion after acute interval exercise was severely reduced when H1/H2 receptors were pharmaceutically blocked. Our work suggests that histamine H1/H2 receptors are important transducers of the integrative exercise training response in humans, potentially related to regulation of optimal post-exercise muscle perfusion. These findings add to our understanding of how skeletal muscle and the cardiovascular system adapt to exercise training, knowledge that will help us further unravel and develop the exercise-is-medicine concept.
Collapse
|
research-article |
4 |
18 |
2
|
Van Vossel K, Hardeel J, Van de Casteele F, Van der Stede T, Weyns A, Boone J, Blemker SS, Lievens E, Derave W. Can muscle typology explain the inter-individual variability in resistance training adaptations? J Physiol 2023; 601:2307-2327. [PMID: 37038845 DOI: 10.1113/jp284442] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
Considerable inter-individual heterogeneity exists in the muscular adaptations to resistance training. It has been proposed that fast-twitch fibres are more sensitive to hypertrophic stimuli and thus that variation in muscle fibre type composition is a contributing factor to the magnitude of training response. This study investigated if the inter-individual variability in resistance training adaptations is determined by muscle typology and if the most appropriate weekly training frequency depends on muscle typology. In strength-training novices, 11 slow (ST) and 10 fast typology (FT) individuals were selected by measuring muscle carnosine with proton magnetic resonance spectroscopy. Participants trained both upper arm and leg muscles to failure at 60% of one-repetition maximum (1RM) for 10 weeks, whereby one arm and leg trained 3×/week and the contralateral arm and leg 2×/week. Muscle volume (MRI-based 3D segmentation), maximal dynamic strength (1RM) and fibre type-specific cross-sectional area (vastus lateralis biopsies) were evaluated. The training response for total muscle volume (+3 to +14%), fibre size (-19 to +22%) and strength (+17 to +47%) showed considerable inter-individual variability, but these could not be attributed to differences in muscle typology. However, ST individuals performed a significantly higher training volume to gain these similar adaptations than FT individuals. The limb that trained 3×/week had generally more pronounced hypertrophy than the limb that trained 2×/week, and there was no interaction with muscle typology. In conclusion, muscle typology cannot explain the high variability in resistance training adaptations when training is performed to failure at 60% of 1RM. KEY POINTS: This study investigated the influence of muscle typology (muscle fibre type composition) on the variability in resistance training adaptations and on its role in the individualization of resistance training frequency. We demonstrate that an individual's muscle typology cannot explain the inter-individual variability in resistance training-induced increases in muscle volume, maximal dynamic strength and fibre cross-sectional area when repetitions are performed to failure. Importantly, slow typology individuals performed a significantly higher training volume to obtain similar adaptations compared to fast typology individuals. Muscle typology does not determine the most appropriate resistance training frequency. However, regardless of muscle typology, an additional weekly training (3×/week vs. 2×/week) increases muscle hypertrophy but not maximal dynamic strength. These findings expand on our understanding of the underlying mechanisms for the large inter-individual variability in resistance training adaptations.
Collapse
|
|
2 |
14 |
3
|
Van der Stede T, Spaas J, de Jager S, De Brandt J, Hansen C, Stautemas J, Vercammen B, De Baere S, Croubels S, Van Assche CH, Pastor BC, Vandenbosch M, Van Thienen R, Verboven K, Hansen D, Bové T, Lapauw B, Van Praet C, Decaestecker K, Vanaudenaerde B, Eijnde BO, Gliemann L, Hellsten Y, Derave W. Extensive profiling of histidine-containing dipeptides reveals species- and tissue-specific distribution and metabolism in mice, rats, and humans. Acta Physiol (Oxf) 2023; 239:e14020. [PMID: 37485756 DOI: 10.1111/apha.14020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
AIM Histidine-containing dipeptides (HCDs) are pleiotropic homeostatic molecules with potent antioxidative and carbonyl quenching properties linked to various inflammatory, metabolic, and neurological diseases, as well as exercise performance. However, the distribution and metabolism of HCDs across tissues and species are still unclear. METHODS Using a sensitive UHPLC-MS/MS approach and an optimized quantification method, we performed a systematic and extensive profiling of HCDs in the mouse, rat, and human body (in n = 26, n = 25, and n = 19 tissues, respectively). RESULTS Our data show that tissue HCD levels are uniquely produced by carnosine synthase (CARNS1), an enzyme that was preferentially expressed by fast-twitch skeletal muscle fibres and brain oligodendrocytes. Cardiac HCD levels are remarkably low compared to other excitable tissues. Carnosine is unstable in human plasma, but is preferentially transported within red blood cells in humans but not rodents. The low abundant carnosine analogue N-acetylcarnosine is the most stable plasma HCD, and is enriched in human skeletal muscles. Here, N-acetylcarnosine is continuously secreted into the circulation, which is further induced by acute exercise in a myokine-like fashion. CONCLUSION Collectively, we provide a novel basis to unravel tissue-specific, paracrine, and endocrine roles of HCDs in human health and disease.
Collapse
|
|
2 |
10 |
4
|
Everaert I, He J, Hanssens M, Stautemas J, Bakker K, Albrecht T, Zhang S, Van der Stede T, Vanhove K, Hoetker D, Howsam M, Tessier FJ, Yard B, Baba SP, Baelde HJ, Derave W. Carnosinase-1 overexpression, but not aerobic exercise training, affects the development of diabetic nephropathy in BTBR ob/ob mice. Am J Physiol Renal Physiol 2020; 318:F1030-F1040. [PMID: 32150446 DOI: 10.1152/ajprenal.00329.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Manipulation of circulating histidine-containing dipeptides (HCD) has been shown to affect the development of diabetes and early-stage diabetic nephropathy (DN). The aim of the present study was to investigate whether such interventions, which potentially alter levels of circulating HCD, also affect the development of advanced-stage DN. Two interventions, aerobic exercise training and overexpression of the human carnosinase-1 (hCN1) enzyme, were tested. BTBR ob/ob mice were either subjected to aerobic exercise training (20 wk) or genetically manipulated to overexpress hCN1, and different diabetes- and DN-related markers were compared with control ob/ob and healthy (wild-type) mice. An acute exercise study was performed to elucidate the effect of obesity, acute running, and hCN1 overexpression on plasma HCD levels. Chronic aerobic exercise training did not affect the development of diabetes or DN, but hCN1 overexpression accelerated hyperlipidemia and aggravated the development of albuminuria, mesangial matrix expansion, and glomerular hypertrophy of ob/ob mice. In line, plasma, kidney, and muscle HCD were markedly lower in ob/ob versus wild-type mice, and plasma and kidney HCD in particular were lower in ob/ob hCN1 versus ob/ob mice but were unaffected by aerobic exercise. In conclusion, advanced glomerular damage is accelerated in mice overexpressing the hCN1 enzyme but not protected by chronic exercise training. Interestingly, we showed, for the first time, that the development of DN is closely linked to renal HCD availability. Further research will have to elucidate whether the stimulation of renal HCD levels can be a therapeutic strategy to reduce the risk for developing DN.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
9 |
5
|
Everaert I, Van der Stede T, Stautemas J, Hanssens M, van Aanhold C, Baelde H, Vanhaecke L, Derave W. Oral anserine supplementation does not attenuate type-2 diabetes or diabetic nephropathy in BTBR ob/ob mice. Amino Acids 2021; 53:1269-1277. [PMID: 34264387 DOI: 10.1007/s00726-021-03033-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Carnosine, a naturally occurring dipeptide present in an omnivorous diet, has been shown to ameliorate the development of metabolic syndrome, type-2 diabetes (T2D) and early- and advanced-stage diabetic nephropathy in different rodent models. Anserine, its methylated analogue, is more bio-available in humans upon supplementation without affecting its functionality. In this work, we investigated the effect of oral supplementation with anserine or carnosine on circulating and tissue anserine and carnosine levels and on the development of T2D and diabetic nephropathy in BTBR ob/ob mice. BTBR ob/ob mice were either supplemented with carnosine or anserine in drinking water (4 mM) for 18 weeks and compared with non-supplemented BTBR ob/ob and wild-type (WT) mice. Circulating and kidney, but not muscle, carnosine, and anserine levels were enhanced by supplementation with the respective dipeptides in ob/ob mice compared to non-treated ob/ob mice. The evolution of fasting blood glucose, insulin, fructosamine, triglycerides, and cholesterol was not affected by the supplementation regimens. The albumin/creatine ratio, glomerular hypertrophy, and mesangial matrix expansion were aggravated in ob/ob vs. WT mice, but not alleviated by supplementation. To conclude, long-term supplementation with anserine elevates circulating and kidney anserine levels in diabetic mice. However, anserine supplementation was not able to attenuate the development of T2D or diabetic nephropathy in BTBR ob/ob mice. Further research will have to elucidate whether anserine can attenuate milder forms of T2D or metabolic syndrome.
Collapse
|
Journal Article |
4 |
4 |
6
|
de Jager S, Blancquaert L, Van der Stede T, Lievens E, De Baere S, Croubels S, Gilardoni E, Regazzoni LG, Aldini G, Bourgois JG, Derave W. The ergogenic effect of acute carnosine and anserine supplementation: dosing, timing, and underlying mechanism. J Int Soc Sports Nutr 2022; 19:70-91. [PMID: 35599917 PMCID: PMC9116398 DOI: 10.1080/15502783.2022.2053300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Recent studies suggest that acute-combined carnosine and anserine supplementation has the potential to improve the performance of certain cycling protocols. Yet, data on optimal dose, timing of ingestion, effective exercise range, and mode of action are lacking. Three studies were conducted to establish dosing and timing guidelines concerning carnosine and anserine intake and to unravel the mechanism underlying the ergogenic effects. Methods First, a dose response study A was conducted in which 11 men randomly received placebo, 10, 20, or 30 mg.kg−1 of both carnosine and anserine. They performed 3x maximal voluntary isometric contractions (MVC), followed by a 5 x 6 s repeated cycling sprint ability test (RSA), once before the supplement and 30 and 60 minutes after. In a second study, 15 men performed 3x MVCs with femoral nerve electrical stimulation, followed by an RSA test, once before 30 mg.kg−1 carnosine and anserine and 60 minutes after. Finally, in study C, eight men performed a high intensity cycling training after randomly ingesting 30 mg.kg−1 of carnosine and anserine, a placebo or antihistamines (reduce post-exercise blood flow) to investigate effects on muscle perfusion. Results Study A showed a 3% peak power (p = 0.0005; 95% CI = 0.07 to 0.27; ES = 0.91) and 4.5% peak torque (p = 0.0006; 95% CI = 0.12 to 0.50; ES = 0.87) improvement on RSA and MVC, with 30 mg.kg−1 carnosine + anserine ingestion 60 minutes before the performance yielding the best results. Study B found no performance improvement on group level; however, a negative correlation (r = −0.54; p = 0.0053; 95% CI = −0.77 to −0.19) was found between carnosinase enzyme activity (responsible for carnosine and anserine breakdown) and performance improvement. No effect of the supplement on neuromuscular function nor on muscle perfusion was found. Conclusions These studies reveal that acute ingestion of 30 mg.kg−1 of both carnosine and anserine, 60 minutes before a high intensity exercise, can potentially improve performance, such as short cycling sprints or maximal muscle contractions. Subjects with lower carnosinase activity, and thus a slower breakdown of circulating dipeptides, appear to benefit more from this ergogenic effect. Finally, neither the involvement of a direct effect on neuromuscular function, nor an indirect effect on recovery through increased muscle perfusion could be confirmed as potential mechanism of action. The ergogenic mechanism therefore remains elusive.
Collapse
|
|
3 |
1 |
7
|
Van de Casteele F, Van Thienen R, Horwath O, Apró W, Van der Stede T, Moberg M, Lievens E, Derave W. Does one biopsy cut it? Revisiting human muscle fiber type composition variability using repeated biopsies in the vastus lateralis and gastrocnemius medialis. J Appl Physiol (1985) 2024; 137:1341-1353. [PMID: 39359186 DOI: 10.1152/japplphysiol.00394.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
Human skeletal muscle fiber type composition varies greatly along the muscle, so one biopsy may not accurately represent the whole muscle. Recommendations on the number of biopsies and fiber counts using immunohistochemistry and whether these findings can be extrapolated to other muscles are lacking. We assessed fiber type composition in the vastus lateralis and gastrocnemius medialis muscles of 40 individuals. Per muscle, we took four biopsy samples from one incision, collecting two samples each from a proximally and distally directed needle. Based on another dataset involving 10 vastus lateralis biopsies per participant (n = 7), we calculated 95% limits of agreement for subsets of biopsies and fiber counts compared with the 10-biopsy average. Average absolute differences in type I fiber proportions between proximal and distal, and between within-needle samples were 6.9 and 4.5 percentage points in the vastus lateralis, and 5.5 and 4.4 percentage points in the gastrocnemius medialis, respectively. The 95% limits of agreement narrowed to ±10 percentage points when 200 fibers from at least three biopsies were analyzed, with minimal improvements with greater fiber counts. Type I fiber proportions in the vastus lateralis and gastrocnemius medialis showed a moderate positive association (r2 = 0.22; P = 0.006; at least 200 fibers in each of three to four samples per muscle). In conclusion, three biopsies with a minimum of 200 counted fibers are required to estimate the vastus lateralis fiber type composition within ±10 percentage points. Even when using these standards, researchers should be cautious when extrapolating muscle fiber type proportions from one muscle to another.NEW & NOTEWORTHY Fiber type composition is equally variable in muscle biopsy samples taken from one incision as from multiple incisions. Hence, we propose two biopsies from a single incision-needles directed proximally and distally, and each rotated 180° for cutting a second sample-as a more feasible, less invasive alternative to three biopsies from as many incisions. In addition, we identified the gastrocnemius medialis as a slow-twitch muscle with an average of 64.7% slow fibers.
Collapse
|
|
1 |
|
8
|
Van der Stede T, Van de Loock A, Lievens E, Yigit N, Anckaert J, Van Thienen R, Weyns A, Mestdagh P, Vandesompele J, Derave W. Transcriptomic signatures of human single skeletal muscle fibers in response to high-intensity interval exercise. Am J Physiol Cell Physiol 2024; 327:C1249-C1262. [PMID: 39316684 DOI: 10.1152/ajpcell.00299.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
The heterogeneous fiber type composition of skeletal muscle makes it challenging to decipher the molecular signaling events driving the health- and performance benefits of exercise. We developed an optimized workflow for transcriptional profiling of individual human muscle fibers before, immediately after, and after 3 h of recovery from high-intensity interval cycling exercise. From a transcriptional point-of-view, we observe that there is no dichotomy in fiber activation, which could refer to a fiber being recruited or nonrecruited. Rather, the activation pattern displays a continuum with a more uniform response within fast versus slow fibers during the recovery from exercise. The transcriptome-wide response immediately after exercise is characterized by some distinct signatures for slow versus fast fibers, although the most exercise-responsive genes are common between the two fiber types. The temporal transcriptional waves further converge the gene signatures of both fiber types toward a more similar profile during the recovery from exercise. Furthermore, a large heterogeneity among all resting and exercised fibers was observed, with the principal drivers being independent of a slow/fast typology. This profound heterogeneity extends to distinct exercise responses of fibers beyond a classification based on myosin heavy chains. Collectively, our single-fiber methodological approach points to a substantial between-fiber diversity in muscle fiber responses to high-intensity interval exercise.NEW & NOTEWORTHY By development of a single-fiber transcriptomics technology, we assessed the transcriptional events in individual human skeletal muscle fibers upon high-intensity exercise. We demonstrate a large variability in transcriptional activation of fibers, with shared and distinct gene signatures for slow and fast fibers. The heterogeneous fiber-specific exercise response extends beyond this traditional slow/fast categorization. These findings expand on our understanding of exercise responses and uncover a profound between-fiber diversity in muscle fiber activation and transcriptional perturbations.
Collapse
|
|
1 |
|
9
|
Van Vossel K, Hardeel J, Van der Stede T, Weyns A, Boone J, Blemker SS, Derave W, Lievens E. Influence of intramuscular steroid receptor content and fiber capillarization on skeletal muscle hypertrophy. Scand J Med Sci Sports 2024; 34:e14668. [PMID: 38802727 DOI: 10.1111/sms.14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Multiple intramuscular variables have been proposed to explain the high variability in resistance training induced muscle hypertrophy across humans. This study investigated if muscular androgen receptor (AR), estrogen receptor α (ERα) and β (ERβ) content and fiber capillarization are associated with fiber and whole-muscle hypertrophy after chronic resistance training. Male (n = 11) and female (n = 10) resistance training novices (22.1 ± 2.2 years) trained their knee extensors 3×/week for 10 weeks. Vastus lateralis biopsies were taken at baseline and post the training period to determine changes in fiber type specific cross-sectional area (CSA) and fiber capillarization by immunohistochemistry and, intramuscular AR, ERα and ERβ content by Western blotting. Vastus lateralis volume was quantified by MRI-based 3D segmentation. Vastus lateralis muscle volume significantly increased over the training period (+7.22%; range: -1.82 to +18.8%, p < 0.0001) but no changes occurred in all fiber (+1.64%; range: -21 to +34%, p = 0.869), type I fiber (+1.33%; range: -24 to +41%, p = 0.952) and type II fiber CSA (+2.19%; range: -23 to +29%, p = 0.838). However, wide inter-individual ranges were found. Resistance training increased the protein expression of ERα but not ERβ and AR, and the increase in ERα content was positively related to changes in fiber CSA. Only for the type II fibers, the baseline capillary-to-fiber-perimeter index was positively related to type II fiber hypertrophy but not to whole muscle responsiveness. In conclusion, an upregulation of ERα content and an adequate initial fiber capillarization may be contributing factors implicated in muscle fiber hypertrophy responsiveness after chronic resistance training.
Collapse
|
|
1 |
|
10
|
Spaas J, Van der Stede T, de Jager S, van de Waterweg Berends A, Tiane A, Baelde H, Baba SP, Eckhardt M, Wolfs E, Vanmierlo T, Hellings N, Eijnde BO, Derave W. Carnosine synthase deficiency aggravates neuroinflammation in multiple sclerosis. Prog Neurobiol 2023; 231:102532. [PMID: 37774767 DOI: 10.1016/j.pneurobio.2023.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Multiple sclerosis (MS) pathology features autoimmune-driven neuroinflammation, demyelination, and failed remyelination. Carnosine is a histidine-containing dipeptide (HCD) with pluripotent homeostatic properties that is able to improve outcomes in an animal MS model (EAE) when supplied exogenously. To uncover if endogenous carnosine is involved in, and protects against, MS-related neuroinflammation, demyelination or remyelination failure, we here studied the HCD-synthesizing enzyme carnosine synthase (CARNS1) in human MS lesions and two preclinical mouse MS models (EAE, cuprizone). We demonstrate that due to its presence in oligodendrocytes, CARNS1 expression is diminished in demyelinated MS lesions and mouse models mimicking demyelination/inflammation, but returns upon remyelination. Carns1-KO mice that are devoid of endogenous HCDs display exaggerated neuroinflammation and clinical symptoms during EAE, which could be partially rescued by exogenous carnosine treatment. Worsening of the disease appears to be driven by a central, not peripheral immune-modulatory, mechanism possibly linked to impaired clearance of the reactive carbonyl acrolein in Carns1-KO mice. In contrast, CARNS1 is not required for normal oligodendrocyte precursor cell differentiation and (re)myelin to occur, and neither endogenous nor exogenous HCDs protect against cuprizone-induced demyelination. In conclusion, the loss of CARNS1 from demyelinated MS lesions can aggravate disease progression through weakening the endogenous protection against neuroinflammation.
Collapse
|
|
2 |
|
11
|
Moreno-Justicia R, Van der Stede T, Stocks B, Laitila J, Seaborne RA, Van de Loock A, Lievens E, Samodova D, Marín-Arraiza L, Dmytriyeva O, Browaeys R, Van Vossel K, Moesgaard L, Yigit N, Anckaert J, Weyns A, Van Thienen R, Sahl RE, Zanoteli E, Lawlor MW, Wierer M, Mestdagh P, Vandesompele J, Ochala J, Hostrup M, Derave W, Deshmukh AS. Human skeletal muscle fiber heterogeneity beyond myosin heavy chains. Nat Commun 2025; 16:1764. [PMID: 39971958 PMCID: PMC11839989 DOI: 10.1038/s41467-025-56896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
Skeletal muscle is a heterogenous tissue comprised primarily of myofibers, commonly classified into three fiber types in humans: one "slow" (type 1) and two "fast" (type 2A and type 2X). However, heterogeneity between and within traditional fiber types remains underexplored. We applied transcriptomic and proteomic workflows to 1050 and 1038 single myofibers from human vastus lateralis, respectively. Proteomics was conducted in males, while transcriptomics included ten males and two females. We identify metabolic, ribosomal, and cell junction proteins, in addition to myosin heavy chain isoforms, as sources of multi-dimensional variation between myofibers. Furthermore, whilst slow and fast fiber clusters are identified, our data suggests that type 2X fibers are not phenotypically distinct to other fast fibers. Moreover, myosin heavy chain-based classifications do not adequately describe the phenotype of myofibers in nemaline myopathy. Overall, our data indicates that myofiber heterogeneity is multi-dimensional with sources of variation beyond myosin heavy chain isoforms.
Collapse
|
research-article |
1 |
|
12
|
de Jager S, Vermeulen A, De Baere S, Van der Stede T, Lievens E, Croubels S, Jäger R, Purpura M, Bourgois JG, Derave W. Acute balenine supplementation in humans as a natural carnosinase-resistant alternative to carnosine. Sci Rep 2023; 13:6484. [PMID: 37081019 PMCID: PMC10119279 DOI: 10.1038/s41598-023-33300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
Balenine possesses some of carnosine's and anserine's functions, yet it appears more resistant to the hydrolysing CN1 enzyme. The aim of this study was to elucidate the stability of balenine in the systemic circulation and its bioavailability in humans following acute supplementation. Two experiments were conducted in which (in vitro) carnosine, anserine and balenine were added to plasma to compare degradation profiles and (in vivo) three increasing doses (1-4-10 mg/kg) of balenine were acutely administered to 6 human volunteers. Half-life of balenine (34.9 ± 14.6 min) was respectively 29.1 and 16.3 times longer than that of carnosine (1.20 ± 0.36 min, p = 0.0044) and anserine (2.14 ± 0.58 min, p = 0.0044). In vivo, 10 mg/kg of balenine elicited a peak plasma concentration (Cmax) of 28 µM, which was 4 and 18 times higher than with 4 (p = 0.0034) and 1 mg/kg (p = 0.0017), respectively. CN1 activity showed strong negative correlations with half-life (ρ = - 0.829; p = 0.0583), Cmax (r = - 0.938; p = 0.0372) and incremental area under the curve (r = - 0.825; p = 0.0433). Overall, balenine seems more resistant to CN1 hydrolysis resulting in better in vivo bioavailability, yet its degradation remains dependent on enzyme activity. Although a similar functionality as carnosine and anserine remains to be demonstrated, opportunities arise for balenine as nutraceutical or ergogenic aid.
Collapse
|
research-article |
2 |
|
13
|
Van der Stede T, Van de Loock A, Turiel G, Hansen C, Tamariz-Ellemann A, Ullrich M, Lievens E, Spaas J, Yigit N, Anckaert J, Nuytens J, De Baere S, Van Thienen R, Weyns A, De Wilde L, Van Eenoo P, Croubels S, Halliwill JR, Mestdagh P, Richter EA, Gliemann L, Hellsten Y, Vandesompele J, De Bock K, Derave W. Cellular deconstruction of the human skeletal muscle microenvironment identifies an exercise-induced histaminergic crosstalk. Cell Metab 2025; 37:842-856.e7. [PMID: 39919738 DOI: 10.1016/j.cmet.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/14/2024] [Accepted: 12/18/2024] [Indexed: 02/09/2025]
Abstract
Plasticity of skeletal muscle is induced by transcriptional and translational events in response to exercise, leading to multiple health and performance benefits. The skeletal muscle microenvironment harbors myofibers and mononuclear cells, but the rich cell diversity has been largely ignored in relation to exercise adaptations. Using our workflow of transcriptome profiling of individual myofibers, we observed that their exercise-induced transcriptional response was surprisingly modest compared with the bulk muscle tissue response. Through the integration of single-cell data, we identified a small mast cell population likely responsible for histamine secretion during exercise and for targeting myeloid and vascular cells rather than myofibers. We demonstrated through histamine H1 or H2 receptor blockade in humans that this paracrine histamine signaling cascade drives muscle glycogen resynthesis and coordinates the transcriptional exercise response. Altogether, our cellular deconstruction of the human skeletal muscle microenvironment uncovers a histamine-driven intercellular communication network steering muscle recovery and adaptation to exercise.
Collapse
|
|
1 |
|