1
|
Veerasubramanian PK, Wynn TA, Quan J, Karlsson FJ. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J Exp Med 2024; 221:e20240806. [PMID: 39297883 PMCID: PMC11413425 DOI: 10.1084/jem.20240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs). This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms, disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination antagonists of TNF/TNFR signaling.
Collapse
|
2
|
Mukherjee PK, Nguyen QT, Li J, Zhao S, Christensen SM, West GA, Chandra J, Gordon IO, Lin S, Wang J, Mao R, Czarnecki D, Rayan C, Goren I, Banerjee S, Kotak P, Plesec T, Lal S, Fabre T, Asano S, Bound K, Hart K, Park C, Martinez R, Dower K, Wynn TA, Hu S, Naydenov N, Decaris M, Turner S, Holubar SD, Steele SR, Fiocchi C, Ivanov AI, Kravarik KM, Rieder F. Stricturing Crohn's Disease Single-Cell RNA Sequencing Reveals Fibroblast Heterogeneity and Intercellular Interactions. Gastroenterology 2023; 165:1180-1196. [PMID: 37507073 DOI: 10.1053/j.gastro.2023.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND & AIMS Fibroblasts play a key role in stricture formation in Crohn's disease (CD) but understanding its pathogenesis requires a systems-level investigation to uncover new treatment targets. We studied full-thickness CD tissues to characterize fibroblast heterogeneity and function by generating the first single-cell RNA sequencing (scRNAseq) atlas of strictured bowel and providing proof of principle for therapeutic target validation. METHODS We performed scRNAseq of 13 fresh full-thickness CD resections containing noninvolved, inflamed nonstrictured, and strictured segments as well as 7 normal non-CD bowel segments. Each segment was separated into mucosa/submucosa or muscularis propria and analyzed separately for a total of 99 tissue samples and 409,001 cells. We validated cadherin-11 (CDH11) as a potential therapeutic target by using whole tissues, isolated intestinal cells, NanoString nCounter, next-generation sequencing, proteomics, and animal models. RESULTS Our integrated dataset revealed fibroblast heterogeneity in strictured CD with the majority of stricture-selective changes detected in the mucosa/submucosa, but not the muscle layer. Cell-cell interaction modeling revealed CXCL14+ as well as MMP/WNT5A+ fibroblasts displaying a central signaling role in CD strictures. CDH11, a fibroblast cell-cell adhesion molecule, was broadly expressed and up-regulated, and its profibrotic function was validated using NanoString nCounter, RNA sequencing, tissue target expression, in vitro gain- and loss-of-function experiments, proteomics, and knock-out and antibody-mediated CDH11 blockade in experimental colitis. CONCLUSIONS A full-thickness bowel scRNAseq atlas revealed previously unrecognized fibroblast heterogeneity and interactions in CD strictures and CDH11 was validated as a potential therapeutic target. These results provide a new resource for a better understanding of CD stricture formation and open potential therapeutic developments. This work has been posted as a preprint on Biorxiv under doi: 10.1101/2023.04.03.534781.
Collapse
|
3
|
Fabre T, Barron AMS, Christensen SM, Asano S, Bound K, Lech MP, Wadsworth MH, Chen X, Wang C, Wang J, McMahon J, Schlerman F, White A, Kravarik KM, Fisher AJ, Borthwick LA, Hart KM, Henderson NC, Wynn TA, Dower K. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci Immunol 2023; 8:eadd8945. [PMID: 37027478 DOI: 10.1126/sciimmunol.add8945] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Macrophages are central orchestrators of the tissue response to injury, with distinct macrophage activation states playing key roles in fibrosis progression and resolution. Identifying key macrophage populations found in human fibrotic tissues could lead to new treatments for fibrosis. Here, we used human liver and lung single-cell RNA sequencing datasets to identify a subset of CD9+TREM2+ macrophages that express SPP1, GPNMB, FABP5, and CD63. In both human and murine hepatic and pulmonary fibrosis, these macrophages were enriched at the outside edges of scarring and adjacent to activated mesenchymal cells. Neutrophils expressing MMP9, which participates in the activation of TGF-β1, and the type 3 cytokines GM-CSF and IL-17A coclustered with these macrophages. In vitro, GM-CSF, IL-17A, and TGF-β1 drive the differentiation of human monocytes into macrophages expressing scar-associated markers. Such differentiated cells could degrade collagen IV but not collagen I and promote TGF-β1-induced collagen I deposition by activated mesenchymal cells. In murine models blocking GM-CSF, IL-17A or TGF-β1 reduced scar-associated macrophage expansion and hepatic or pulmonary fibrosis. Our work identifies a highly specific macrophage population to which we assign a profibrotic role across species and tissues. It further provides a strategy for unbiased discovery, triage, and preclinical validation of therapeutic targets based on this fibrogenic macrophage population.
Collapse
|
4
|
Mukherjee PK, Nguyen QT, Li J, Zhao S, Christensen SM, West GA, Chandra J, Gordon IO, Lin S, Wang J, Mao R, Czarnecki D, Rayan C, Kotak P, Plesec T, Lal S, Fabre T, Asano S, Bound K, Hart K, Park C, Martinez R, Dower K, Wynn TA, Hu S, Naydenov N, Decaris M, Turner S, Holubar SD, Steele SR, Fiocchi C, Ivanov AI, Kravarik KM, Rieder F. Stricturing Crohn's disease single-cell RNA sequencing reveals fibroblast heterogeneity and intercellular interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.534781. [PMID: 37066202 PMCID: PMC10103967 DOI: 10.1101/2023.04.03.534781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Fibroblasts play a key role in stricture formation in Crohn's disease (CD) but understanding it's pathogenesis requires a systems-level investigation to uncover new treatment targets. We studied full thickness CD tissues to characterize fibroblast heterogeneity and function by generating the first single cell RNA sequencing (scRNAseq) atlas of strictured bowel and providing proof of principle for therapeutic target validation. Methods We performed scRNAseq of 13 fresh full thickness CD resections containing non-involved, inflamed non-strictured, and strictured segments as well as 7 normal non-CD bowel segments. Each segment was separated into mucosa/submucosa or muscularis propria and analyzed separately for a total of 99 tissue samples and 409,001 cells. We validated cadherin-11 (CDH11) as a potential therapeutic target by using whole tissues, isolated intestinal cells, NanoString nCounter, next generation sequencing, proteomics and animal models. Results Our integrated dataset revealed fibroblast heterogeneity in strictured CD with the majority of stricture-selective changes detected in the mucosa/submucosa, but not the muscle layer. Cell-cell interaction modeling revealed CXCL14+ as well as MMP/WNT5A+ fibroblasts displaying a central signaling role in CD strictures. CDH11, a fibroblast cell-cell adhesion molecule, was broadly expressed and upregulated, and its pro-fibrotic function was validated by NanoString nCounter, RNA sequencing, tissue target expression, in vitro gain- and loss-of-function experiments, proteomics, and two animal models of experimental colitis. Conclusion A full-thickness bowel scRNAseq atlas revealed previously unrecognized fibroblast heterogeneity and interactions in CD strictures and CDH11 was validated as a potential therapeutic target. These results provide a new resource for a better understanding of CD stricture formation and opens potential therapeutic developments.
Collapse
|
5
|
Laky K, Kinard JL, Li JM, Moore IN, Lack J, Fischer ER, Kabat J, Latanich R, Zachos NC, Limkar AR, Weissler KA, Thompson RW, Wynn TA, Dietz HC, Guerrerio AL, Frischmeyer-Guerrerio PA. Epithelial-intrinsic defects in TGFβR signaling drive local allergic inflammation manifesting as eosinophilic esophagitis. Sci Immunol 2023; 8:eabp9940. [PMID: 36608150 PMCID: PMC10106118 DOI: 10.1126/sciimmunol.abp9940] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Allergic diseases are a global health challenge. Individuals harboring loss-of-function variants in transforming growth factor-β receptor (TGFβR) genes have an increased prevalence of allergic disorders, including eosinophilic esophagitis. Allergic diseases typically localize to mucosal barriers, implicating epithelial dysfunction as a cardinal feature of allergic disease. Here, we describe an essential role for TGFβ in the control of tissue-specific immune homeostasis that provides mechanistic insight into these clinical associations. Mice expressing a TGFβR1 loss-of-function variant identified in atopic patients spontaneously develop disease that clinically, immunologically, histologically, and transcriptionally recapitulates eosinophilic esophagitis. In vivo and in vitro, TGFβR1 variant-expressing epithelial cells are hyperproliferative, fail to differentiate properly, and overexpress innate proinflammatory mediators, which persist in the absence of lymphocytes or external allergens. Together, our results support the concept that TGFβ plays a fundamental, nonredundant, epithelial cell-intrinsic role in controlling tissue-specific allergic inflammation that is independent of its role in adaptive immunity.
Collapse
|
6
|
Chen Y, Seo JK, Sun Y, Wynn TA, Olguin M, Zhang M, Wang J, Xi S, Du Y, Yuan K, Chen W, Fisher AC, Wang M, Feng Z, Gracia J, Huang L, Du S, Gao HJ, Meng YS, Xu ZJ. Enhanced oxygen evolution over dual corner-shared cobalt tetrahedra. Nat Commun 2022; 13:5510. [PMID: 36127321 PMCID: PMC9489709 DOI: 10.1038/s41467-022-33000-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Developing efficient catalysts is of paramount importance to oxygen evolution, a sluggish anodic reaction that provides essential electrons and protons for various electrochemical processes, such as hydrogen generation. Here, we report that the oxygen evolution reaction (OER) can be efficiently catalyzed by cobalt tetrahedra, which are stabilized over the surface of a Swedenborgite-type YBCo4O7 material. We reveal that the surface of YBaCo4O7 possesses strong resilience towards structural amorphization during OER, which originates from its distinctive structural evolution toward electrochemical oxidation. The bulk of YBaCo4O7 composes of corner-sharing only CoO4 tetrahedra, which can flexibly alter their positions to accommodate the insertion of interstitial oxygen ions and mediate the stress during the electrochemical oxidation. The density functional theory calculations demonstrate that the OER is efficiently catalyzed by a binuclear active site of dual corner-shared cobalt tetrahedra, which have a coordination number switching between 3 and 4 during the reaction. We expect that the reported active structural motif of dual corner-shared cobalt tetrahedra in this study could enable further development of compounds for catalyzing the OER.
Collapse
|
7
|
Jaeger N, Gamini R, Cella M, Schettini JL, Bugatti M, Zhao S, Rosadini CV, Esaulova E, Di Luccia B, Kinnett B, Vermi W, Artyomov MN, Wynn TA, Xavier RJ, Jelinsky SA, Colonna M. Heterogeneity of human intestinal intraepithelial T cells and their abnormal distribution in Crohn’s disease revealed at high resolution. THE JOURNAL OF IMMUNOLOGY 2021. [DOI: 10.4049/jimmunol.206.supp.17.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Crohn’s disease (CD) is a chronic transmural inflammation of intestinal segments caused by dysregulated interaction between microbiome and gut immune system. Recurrent/relapsing CD and resistance to medical treatments result in complications requiring surgery. High-dimensional single-cell profiling approaches, such as scRNA-seq and mass cytometry, have been recently performed on intestinal specimens from patients with IBD and controls. However, most of these studies have analyzed whole mucosal biopsies or the lamina propria (LP) compartment, while few have addressed the intraepithelial lymphocytes (IEL) compartment. Here, we profiled T cells purified from the IEL and LP from terminal ileum resections of adult severe CD cases by single cell technologies. Our study defined a vast heterogeneity of T cell lineages in the IEL compartment. IEL included, among others, unique γδT cell subsets: NKp30+γδ T cells expressing RORγt, which produced IL-26 upon NKp30 engagement and a subset expressing PDGFD and CSF1, which may act on epithelial cells, IEL ILC1s, and macrophages, respectively. We have also observed long-lived memory TCF7+CD8+ T cells expressing DC chemoattractants and TFH subsets that may respond to distinct glutathione-conjugated lipids. CD IEL showed a significant increase of activated TH17, coupled with decreased CD8+ T cells, γδT cells, TFH, and Treg. Conversely, the LP showed increased CD8+ T cells and reduced CD4+ T cells with a relative increase of TH17 over Treg/TFH. Results provide an unbiased view of diversity of cell lineages and their functional states in the intestinal mucosa of controls and CD and identify an altered spatial distribution of T cell subsets between the IEL and the LP compartments.
Collapse
|
8
|
dos Santos Ferreira D, Arora G, Gieseck RL, Rotile NJ, Waghorn PA, Tanabe KK, Wynn TA, Caravan P, Fuchs BC. Molecular Magnetic Resonance Imaging of Liver Fibrosis and Fibrogenesis Is Not Altered by Inflammation. Invest Radiol 2021; 56:244-251. [PMID: 33109919 PMCID: PMC7956154 DOI: 10.1097/rli.0000000000000737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
METHODS Three groups of mice that develop either mild type 2 inflammation and fibrosis (wild type), severe fibrosis with exacerbated type 2 inflammation (Il10-/-Il12b-/-Il13ra2-/-), or minimal fibrosis with marked type 1 inflammation (Il4ra∂/∂) after infection with S. mansoni were imaged using both probes for determination of signal enhancement. Schistosoma mansoni-infected wild-type mice developed chronic liver fibrosis. RESULTS The liver MR signal enhancement after either probe administration was significantly higher in S. mansoni-infected wild-type mice compared with naive animals. The S. mansoni-infected Il4ra∂/∂ mice presented with little liver signal enhancement after probe injection despite the presence of substantial inflammation. Schistosoma mansoni-infected Il10-/-Il12b-/-Il13ra2-/- mice presented with marked fibrosis, which correlated to increased signal enhancement after injection of either probe. CONCLUSIONS Both MR probes, EP-3533 and Gd-Hyd, were specific for fibrosis in this model of chronic liver disease regardless of the presence or severity of the underlying inflammation. These results, in addition to previous findings, show the potential application of both molecular MR probes for detection and quantification of fibrosis from various etiologies.
Collapse
|
9
|
Rimland CA, Tilson SG, Morell CM, Tomaz RA, Lu W, Adams SE, Georgakopoulos N, Otaizo‐Carrasquero F, Myers TG, Ferdinand JR, Gieseck RL, Sampaziotis F, Tysoe OC, Ross A, Kraiczy JM, Wesley B, Muraro D, Zilbauer M, Oniscu GC, Hannan NR, Forbes SJ, Saeb‐Parsy K, Wynn TA, Vallier L. Regional Differences in Human Biliary Tissues and Corresponding In Vitro-Derived Organoids. Hepatology 2021; 73:247-267. [PMID: 32222998 PMCID: PMC8641381 DOI: 10.1002/hep.31252] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Organoids provide a powerful system to study epithelia in vitro. Recently, this approach was applied successfully to the biliary tree, a series of ductular tissues responsible for the drainage of bile and pancreatic secretions. More precisely, organoids have been derived from ductal tissue located outside (extrahepatic bile ducts; EHBDs) or inside the liver (intrahepatic bile ducts; IHBDs). These organoids share many characteristics, including expression of cholangiocyte markers such as keratin (KRT) 19. However, the relationship between these organoids and their tissues of origin, and to each other, is largely unknown. APPROACH AND RESULTS Organoids were derived from human gallbladder, common bile duct, pancreatic duct, and IHBDs using culture conditions promoting WNT signaling. The resulting IHBD and EHBD organoids expressed stem/progenitor markers leucine-rich repeat-containing G-protein-coupled receptor 5/prominin 1 and ductal markers KRT19/KRT7. However, RNA sequencing revealed that organoids conserve only a limited number of regional-specific markers corresponding to their location of origin. Of particular interest, down-regulation of biliary markers and up-regulation of cell-cycle genes were observed in organoids. IHBD and EHBD organoids diverged in their response to WNT signaling, and only IHBDs were able to express a low level of hepatocyte markers under differentiation conditions. CONCLUSIONS Taken together, our results demonstrate that differences exist not only between extrahepatic biliary organoids and their tissue of origin, but also between IHBD and EHBD organoids. This information may help to understand the tissue specificity of cholangiopathies and also to identify targets for therapeutic development.
Collapse
|
10
|
Marple MAT, Wynn TA, Cheng D, Shimizu R, Mason HE, Meng YS. Local Structure of Glassy Lithium Phosphorus Oxynitride Thin Films: A Combined Experimental and Ab Initio Approach. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature 2020; 587:555-566. [PMID: 33239795 DOI: 10.1038/s41586-020-2938-9] [Citation(s) in RCA: 915] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Fibrosis can affect any organ and is responsible for up to 45% of all deaths in the industrialized world. It has long been thought to be relentlessly progressive and irreversible, but both preclinical models and clinical trials in various organ systems have shown that fibrosis is a highly dynamic process. This has clear implications for therapeutic interventions that are designed to capitalize on this inherent plasticity. However, despite substantial progress in our understanding of the pathobiology of fibrosis, a translational gap remains between the identification of putative antifibrotic targets and conversion of this knowledge into effective treatments in humans. Here we discuss the transformative experimental strategies that are being leveraged to dissect the key cellular and molecular mechanisms that regulate fibrosis, and the translational approaches that are enabling the emergence of precision medicine-based therapies for patients with fibrosis.
Collapse
|
12
|
Marple MAT, Wynn TA, Cheng D, Shimizu R, Mason HE, Meng YS. Local Structure of Glassy Lithium Phosphorus Oxynitride Thin Films: A Combined Experimental and Ab Initio Approach. Angew Chem Int Ed Engl 2020; 59:22185-22193. [PMID: 32818306 DOI: 10.1002/anie.202009501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 11/10/2022]
Abstract
Lithium phosphorus oxynitride (LiPON) is an amorphous solid-state lithium ion conductor displaying exemplary cyclability against lithium metal anodes. There is no definitive explanation for this stability due to the limited understanding of the structure of LiPON. Herein, we provide a structural model of RF-sputtered LiPON. Information about the short-range structure results from 1D and 2D solid-state NMR experiments. These results are compared with first principles chemical shielding calculations of Li-P-O/N crystals and ab initio molecular dynamics-generated amorphous LiPON models to unequivocally identify the glassy structure as primarily isolated phosphate monomers with N incorporated in both apical and as bridging sites in phosphate dimers. Structural results suggest LiPON's stability is a result of its glassy character. Free-standing LiPON films are produced that exhibit a high degree of flexibility, highlighting the unique mechanical properties of glassy materials.
Collapse
|
13
|
Abstract
Immune tolerance is defined by an active state of immune system unresponsiveness to foreign and self-antigens. Loss of immune tolerance to self-antigens and the resulting overexpression of autoantibodies can lead to tissue injury and development of various autoimmune diseases. In drug development, the goal of newly emerging immune tolerance therapies is to treat autoimmune disorders by restoring the immunoregulatory capacity of the immune system. Development of immune tolerance targets is initiated with the establishment of pharmacological efficacy in relevant disease animal models, followed by their stepwise translation to humans. This review discusses the major challenges to developing tolerance inducing pharmaceutical drugs, including the selection of appropriate disease models to establish efficacy, adequate, and acceptable in vitro and in vivo safety assessments, relevant biomarkers of human safety and efficacy, and finally, some regulatory guidelines to successfully develop immune tolerance therapeutics. [Box: see text].
Collapse
|
14
|
Tan SY, Kelkar Y, Hadjipanayis A, Shipstone A, Wynn TA, Hall JP. Metformin and 2-Deoxyglucose Collaboratively Suppress Human CD4 + T Cell Effector Functions and Activation-Induced Metabolic Reprogramming. THE JOURNAL OF IMMUNOLOGY 2020; 205:957-967. [PMID: 32641388 DOI: 10.4049/jimmunol.2000137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
Metabolic reprogramming plays a central role in T cell activation and differentiation, and the inhibition of key metabolic pathways in activated T cells represents a logical approach for the development of new therapeutic agents for treating autoimmune diseases. The widely prescribed antidiabetic drug metformin and the glycolytic inhibitor 2-deoxyglucose (2-DG) have been used to study the inhibition of oxidative phosphorylation and glycolysis, respectively, in murine immune cells. Published studies have demonstrated that combination treatment with metformin and 2-DG was efficacious in dampening mouse T cell activation-induced effector processes, relative to treatments with either metformin or 2-DG alone. In this study, we report that metformin + 2-DG treatment more potently suppressed IFN-γ production and cell proliferation in activated primary human CD4+ T cells than either metformin or 2-DG treatment alone. The effects of metformin + 2-DG on human T cells were accompanied by significant remodeling of activation-induced metabolic transcriptional programs, in part because of suppression of key transcriptional regulators MYC and HIF-1A. Accordingly, metformin + 2-DG treatment significantly suppressed MYC-dependent metabolic genes and processes, but this effect was found to be independent of mTORC1 signaling. These findings reveal significant insights into the effects of metabolic inhibition by metformin + 2-DG treatment on primary human T cells and provide a basis for future work aimed at developing new combination therapy regimens that target multiple pathways within the metabolic networks of activated human T cells.
Collapse
|
15
|
Qiu B, Zhang M, Lee SY, Liu H, Wynn TA, Wu L, Zhu Y, Wen W, Brown CM, Zhou D, Liu Z, Meng YS. Metastability and Reversibility of Anionic Redox-Based Cathode for High-Energy Rechargeable Batteries. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:10.1016/j.xcrp.2020.100028. [PMID: 33655226 PMCID: PMC7919000 DOI: 10.1016/j.xcrp.2020.100028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Great focus has recently been placed on anionic redox, to which high capacities of Li-rich layered oxides are attributed. With almost doubled capacity compared with state-of-the-art cathode materials, Li-rich layered oxides still fall short in other performance metrics. Among these, voltage decay upon cycling remains the most hindering obstacle, in which defect electrochemistry plays a critical role. Here, we reveal that the metastable state of cycled Li-rich layered oxide, which stems from structural defects in different dimensions, is responsible for the voltage decay. More importantly, through mild thermal energy, the metastable state can be driven to a stable state, bringing about structural and voltage recovery. However, for the classic layered oxide without reversible anionic redox, thermal energy can only introduce cation disordering, leading to performance deterioration. These insights elucidate that understanding the structure metastability and reversibility is essential for implementing design strategies to improve cycling stability for high-capacity layered oxides.
Collapse
|
16
|
Banerjee A, Tang H, Wang X, Cheng JH, Nguyen H, Zhang M, Tan DHS, Wynn TA, Wu EA, Doux JM, Wu T, Ma L, Sterbinsky GE, D'Souza MS, Ong SP, Meng YS. Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43138-43145. [PMID: 31642661 DOI: 10.1021/acsami.9b13955] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against sulfide solid electrolytes. While protective oxide coating layers such as LiNbO3 (LNO) have been proposed, its precise working mechanisms are still not fully understood. Existing literature attributes reductions in interfacial impedance growth to the coating's ability to prevent interfacial reactions. However, its true nature is more complex, with cathode interfacial reactions and electrolyte electrochemical decomposition occurring simultaneously, making it difficult to decouple each effect. Herein, we utilized various advanced characterization tools and first-principles calculations to probe the interfacial phenomenon between solid electrolyte Li6PS5Cl (LPSCl) and high-voltage cathode LiNi0.85Co0.1Al0.05O2 (NCA). We segregated the effects of spontaneous reaction between LPSCl and NCA at the interface and quantified the intrinsic electrochemical decomposition of LPSCl during cell cycling. Both experimental and computational results demonstrated improved thermodynamic stability between NCA and LPSCl after incorporation of the LNO coating. Additionally, we revealed the in situ passivation effect of LPSCl electrochemical decomposition. When combined, both these phenomena occurring at the first charge cycle result in a stabilized interface, enabling long cyclability of all-solid-state batteries.
Collapse
|
17
|
Yombo DJK, Mentink-Kane MM, Wilson MS, Wynn TA, Madala SK. Heat shock protein 70 is a positive regulator of airway inflammation and goblet cell hyperplasia in a mouse model of allergic airway inflammation. J Biol Chem 2019; 294:15082-15094. [PMID: 31431507 DOI: 10.1074/jbc.ra119.009145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Heat shock proteins (Hsps) are highly conserved molecular chaperones that are ubiquitously expressed in all species to aid the solubilization of misfolded proteins, protein degradation, and transport. Elevated levels of Hsp70 have been found in the sputum, serum, and bronchoalveolar lavage (BAL) fluid of asthma patients and are known to correlate with disease severity. However, the function of Hsp70 in allergic airway inflammation has remained largely unknown. This study aimed to determine the role of Hsp70 in airway inflammation and remodeling using a mouse model of allergic airway inflammation. WT and Hsp70 double-knockout (Hsp70.1/.3-/-) mice were sensitized and challenged intratracheally with Schistosoma mansoni soluble egg antigens (SEAs) to induce robust Th2 responses and airway inflammation in the lungs. The lack of Hsp70 resulted in a significant reduction in airway inflammation, goblet cell hyperplasia, and Th2 cytokine production, including IL-4, IL-5, and IL-13. An analysis of the BAL fluid suggested that Hsp70 is critically required for eosinophilic infiltration, collagen accumulation, and Th2 cytokine production in allergic airways. Furthermore, our bone marrow (BM) transfer studies show that SEA-induced airway inflammation, goblet cell hyperplasia, and Th2 cytokine production were attenuated in WT mice that were reconstituted with Hsp70-deficient BM, but these effects were not attenuated in Hsp70-deficient mice that were reconstituted with WT BM. Together, these studies identify a pathogenic role for Hsp70 in hematopoietic cells during allergic airway inflammation; this illustrates the potential utility of targeting Hsp70 to alleviate allergen-induced Th2 cytokines, goblet cell hyperplasia, and airway inflammation.
Collapse
|
18
|
Sciurba JC, Gieseck RL, Jiwrajka N, White SD, Karmele EP, Redes J, Vannella KM, Henderson NC, Wynn TA, Hart KM. Fibroblast-specific integrin-alpha V differentially regulates type 17 and type 2 driven inflammation and fibrosis. J Pathol 2019; 248:16-29. [PMID: 30536905 DOI: 10.1002/path.5215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023]
Abstract
Fibroproliferative diseases affect a significant proportion of the world's population. Despite this, core mechanisms driving organ fibrosis of diverse etiologies remain ill defined. Recent studies suggest that integrin-alpha V serves as a master driver of fibrosis in multiple organs. Although diverse mechanisms contribute to the progression of fibrosis, TGF-β and IL-13 have emerged as central mediators of fibrosis during type 1/type 17, and type 2 polarized inflammatory responses, respectively. To investigate if integrin-alpha V interactions or signaling is critical to the development of type 2 fibrosis, we analyzed fibroblast-specific integrin-alpha V knockout mice in three type 2-driven inflammatory disease models. While we confirmed a role for integrin-alpha V in type 17-associated fibrosis, integrin-alpha V was not critical to the development of type 2-driven fibrosis. Additionally, our studies support a novel mechanism through which fibroblasts, via integrin-alpha V expression, are capable of regulating immune polarization. We show that when integrin-alpha V is deleted on fibroblasts, initiation of type 17 inflammation is inhibited leading to a deregulation of type 2 inflammation. This mechanism is most evident in a model of severe asthma, which is characterized by a mixed type 2/type 17 inflammatory response. Together, these findings suggest dual targeting of integrin-alpha V and type 2 pathways may be needed to ameliorate fibrosis and prevent rebound of opposing pro-fibrotic and inflammatory mechanisms. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|
19
|
Sutherland TE, Rückerl D, Logan N, Duncan S, Wynn TA, Allen JE. Ym1 induces RELMα and rescues IL-4Rα deficiency in lung repair during nematode infection. PLoS Pathog 2018; 14:e1007423. [PMID: 30500858 PMCID: PMC6291165 DOI: 10.1371/journal.ppat.1007423] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/12/2018] [Accepted: 10/21/2018] [Indexed: 01/21/2023] Open
Abstract
Ym1 and RELMα are established effector molecules closely synonymous with Th2-type inflammation and associated pathology. Here, we show that whilst largely dependent on IL-4Rα signaling during a type 2 response, Ym1 and RELMα also have IL-4Rα-independent expression patterns in the lung. Notably, we found that Ym1 has opposing effects on type 2 immunity during nematode infection depending on whether it is expressed at the time of innate or adaptive responses. During the lung migratory stage of Nippostrongylus brasiliensis, Ym1 promoted the subsequent reparative type 2 response but once that response was established, IL-4Rα-dependent Ym1 was important for limiting the magnitude of type 2 cytokine production from both CD4+ T cells and innate lymphoid cells in the lung. Importantly, our study demonstrates that delivery of Ym1 to IL-4Rα deficient animals drives RELMα production and overcomes lung repair deficits in mice deficient in type 2 immunity. Together, Ym1 and RELMα, exhibit time and dose-dependent interactions that determines the outcome of lung repair during nematode infection.
Collapse
|
20
|
Hart KM, Fabre T, Sciurba JC, Gieseck RL, Borthwick LA, Vannella KM, Acciani TH, de Queiroz Prado R, Thompson RW, White S, Soucy G, Bilodeau M, Ramalingam TR, Arron JR, Shoukry NH, Wynn TA. Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGF-β. Sci Transl Med 2018; 9:9/396/eaal3694. [PMID: 28659437 DOI: 10.1126/scitranslmed.aal3694] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/07/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the most common progressive liver disease in developed countries and is the second leading indication for liver transplantation due to the extensive fibrosis it causes. NAFLD progression is thought to be tied to chronic low-level type 1 inflammation originating in the adipose tissue during obesity; however, the specific immunological mechanisms regulating the progression of NAFLD-associated fibrosis in the liver are unclear. To investigate the immunopathogenesis of NAFLD more completely, we investigated adipose dysfunction, nonalcoholic steatohepatitis (NASH), and fibrosis in mice that develop polarized type 1 or type 2 immune responses. Unexpectedly, obese interleukin-10 (IL-10)/IL-4-deficient mice (type 1-polarized) were highly resistant to NASH. This protection was associated with an increased hepatic interferon-γ (IFN-γ) signature. Conversely, IFN-γ-deficient mice progressed rapidly to NASH with evidence of fibrosis dependent on transforming growth factor-β (TGF-β) and IL-13 signaling. Unlike increasing type 1 inflammation and the marked loss of eosinophils seen in expanding adipose tissue, progression of NASH was associated with increasing eosinophilic type 2 liver inflammation in mice and human patient biopsies. Finally, simultaneous inhibition of TGF-β and IL-13 signaling attenuated the fibrotic machinery more completely than TGF-β alone in NAFLD-associated fibrosis. Thus, although type 2 immunity maintains healthy metabolic signaling in adipose tissues, it exacerbates the progression of NAFLD collaboratively with TGF-β in the liver.
Collapse
|
21
|
Lee JZ, Wynn TA, Meng YS, Santhanagopalan D. Focused Ion Beam Fabrication of LiPON-based Solid-state Lithium-ion Nanobatteries for In Situ Testing. J Vis Exp 2018. [PMID: 29578496 PMCID: PMC5931483 DOI: 10.3791/56259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Solid-state electrolytes are a promising replacement for current organic liquid electrolytes, enabling higher energy densities and improved safety of lithium-ion (Li-ion) batteries. However, a number of setbacks prevent their integration into commercial devices. The main limiting factor is due to nanoscale phenomena occurring at the electrode/electrolyte interfaces, ultimately leading to degradation of battery operation. These key problems are highly challenging to observe and characterize as these batteries contain multiple buried interfaces. One approach for direct observation of interfacial phenomena in thin film batteries is through the fabrication of electrochemically active nanobatteries by a focused ion beam (FIB). As such, a reliable technique to fabricate nanobatteries was developed and demonstrated in recent work. Herein, a detailed protocol with a step-by-step process is presented to enable the reproduction of this nanobattery fabrication process. In particular, this technique was applied to a thin film battery consisting of LiCoO2/LiPON/a-Si, and has further been previously demonstrated by in situ cycling within a transmission electron microscope.
Collapse
|
22
|
Vannella KM, Ramalingam TR, Borthwick LA, Barron L, Hart KM, Thompson RW, Kindrachuk KN, Cheever AW, White S, Budelsky AL, Comeau MR, Smith DE, Wynn TA. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci Transl Med 2017; 8:337ra65. [PMID: 27147589 DOI: 10.1126/scitranslmed.aaf1938] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), interleukin-25 (IL-25), and IL-33 are important initiators of type 2-associated mucosal inflammation and immunity. However, their role in the maintenance of progressive type 2 inflammation and fibrosis is much less clear. Using chronic models of helminth infection and allergic lung inflammation, we show that collective disruption of TSLP, IL-25, and IL-33 signaling suppresses chronic and progressive type 2 cytokine-driven inflammation and fibrosis. In a schistosome lung granuloma model or during chronic Schistosoma mansoni infection in the liver, individual ablation of TSLP, IL-25, or IL-33/ST2 had no impact on the development of IL-4/IL-13-dependent inflammation or fibrosis. However, significant reductions in granuloma-associated eosinophils, hepatic fibrosis, and IL-13-producing type 2 innate lymphoid cells (ILC2s) were observed when signaling of all three mediators was simultaneously disrupted. Combined blockade through monoclonal antibody (mAb) treatment also reduced IL-5 and IL-13 expression during primary and secondary granuloma formation in the lungs. In a model of chronic house dust mite-induced allergic lung inflammation, combined mAb treatment did not decrease established inflammation or fibrosis. TSLP/IL-33 double-knockout mice treated with anti-IL-25 mAb during priming, however, displayed decreased inflammation, mucus production, and lung remodeling in the chronic phase. Together, these studies reveal partially redundant roles for TSLP, IL-25, and IL-33 in the maintenance of type 2 pathology and suggest that in some settings, early combined targeting of these mediators is necessary to ameliorate progressive type 2-driven disease.
Collapse
|
23
|
Abstract
Type 2 immunity is characterized by the production of IL-4, IL-5, IL-9 and IL-13, and this immune response is commonly observed in tissues during allergic inflammation or infection with helminth parasites. However, many of the key cell types associated with type 2 immune responses - including T helper 2 cells, eosinophils, mast cells, basophils, type 2 innate lymphoid cells and IL-4- and IL-13-activated macrophages - also regulate tissue repair following injury. Indeed, these cell populations engage in crucial protective activity by reducing tissue inflammation and activating important tissue-regenerative mechanisms. Nevertheless, when type 2 cytokine-mediated repair processes become chronic, over-exuberant or dysregulated, they can also contribute to the development of pathological fibrosis in many different organ systems. In this Review, we discuss the mechanisms by which type 2 immunity contributes to tissue regeneration and fibrosis following injury.
Collapse
|
24
|
Singh B, Kasam RK, Sontake V, Wynn TA, Madala SK. Repetitive intradermal bleomycin injections evoke T-helper cell 2 cytokine-driven pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L796-L806. [PMID: 28775096 DOI: 10.1152/ajplung.00184.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023] Open
Abstract
IL-4 and IL-13 are major T-helper cell (Th) 2 cytokines implicated in the pathogenesis of several lung diseases, including pulmonary fibrosis. In this study, using a novel repetitive intradermal bleomycin model in which mice develop extensive lung fibrosis and a progressive decline in lung function compared with saline-treated control mice, we investigated profibrotic functions of Th2 cytokines. To determine the role of IL-13 signaling in the pathogenesis of bleomycin-induced pulmonary fibrosis, wild-type, IL-13, and IL-4Rα-deficient mice were treated with bleomycin, and lungs were assessed for changes in lung function and pulmonary fibrosis. Histological staining and lung function measurements demonstrated that collagen deposition and lung function decline were attenuated in mice deficient in either IL-13 or IL-4Rα-driven signaling compared with wild-type mice treated with bleomycin. Furthermore, our results demonstrated that IL-13 and IL-4Rα-driven signaling are involved in excessive migration of macrophages and fibroblasts. Notably, our findings demonstrated that IL-13-driven migration involves increased phospho-focal adhesion kinase signaling and F-actin polymerization. Importantly, in vivo findings demonstrated that IL-13 augments matrix metalloproteinase (MMP)-2 and MMP9 activity that has also been shown to increase migration and invasiveness of fibroblasts in the lungs during bleomycin-induced pulmonary fibrosis. Together, our findings demonstrate a pathogenic role for Th2-cytokine signaling that includes excessive migration and protease activity involved in severe fibrotic lung disease.
Collapse
|
25
|
Sampaziotis F, Justin AW, Tysoe OC, Sawiak S, Godfrey EM, Upponi SS, Gieseck RL, de Brito MC, Berntsen NL, Gómez-Vázquez MJ, Ortmann D, Yiangou L, Ross A, Bargehr J, Bertero A, Zonneveld MCF, Pedersen MT, Pawlowski M, Valestrand L, Madrigal P, Georgakopoulos N, Pirmadjid N, Skeldon GM, Casey J, Shu W, Materek PM, Snijders KE, Brown SE, Rimland CA, Simonic I, Davies SE, Jensen KB, Zilbauer M, Gelson WTH, Alexander GJ, Sinha S, Hannan NRF, Wynn TA, Karlsen TH, Melum E, Markaki AE, Saeb-Parsy K, Vallier L. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat Med 2017; 23:954-963. [PMID: 28671689 DOI: 10.1038/nm.4360] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 05/24/2017] [Indexed: 02/02/2023]
Abstract
The treatment of common bile duct (CBD) disorders, such as biliary atresia or ischemic strictures, is restricted by the lack of biliary tissue from healthy donors suitable for surgical reconstruction. Here we report a new method for the isolation and propagation of human cholangiocytes from the extrahepatic biliary tree in the form of extrahepatic cholangiocyte organoids (ECOs) for regenerative medicine applications. The resulting ECOs closely resemble primary cholangiocytes in terms of their transcriptomic profile and functional properties. We explore the regenerative potential of these organoids in vivo and demonstrate that ECOs self-organize into bile duct-like tubes expressing biliary markers following transplantation under the kidney capsule of immunocompromised mice. In addition, when seeded on biodegradable scaffolds, ECOs form tissue-like structures retaining biliary characteristics. The resulting bioengineered tissue can reconstruct the gallbladder wall and repair the biliary epithelium following transplantation into a mouse model of injury. Furthermore, bioengineered artificial ducts can replace the native CBD, with no evidence of cholestasis or occlusion of the lumen. In conclusion, ECOs can successfully reconstruct the biliary tree, providing proof of principle for organ regeneration using human primary cholangiocytes expanded in vitro.
Collapse
|