1
|
Balshaw TG, Massey GJ, Maden-Wilkinson TM, Tillin NA, Folland JP. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training. J Appl Physiol (1985) 2016; 120:1364-73. [PMID: 27055984 DOI: 10.1152/japplphysiol.00091.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022] Open
Abstract
Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control ( n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17–34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17–28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function.
Collapse
|
|
9 |
69 |
2
|
Balshaw TG, Massey GJ, Maden-Wilkinson TM, Morales-Artacho AJ, McKeown A, Appleby CL, Folland JP. Changes in agonist neural drive, hypertrophy and pre-training strength all contribute to the individual strength gains after resistance training. Eur J Appl Physiol 2017; 117:631-640. [PMID: 28239775 DOI: 10.1007/s00421-017-3560-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/01/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE Whilst neural and morphological adaptations following resistance training (RT) have been investigated extensively at a group level, relatively little is known about the contribution of specific physiological mechanisms, or pre-training strength, to the individual changes in strength following training. This study investigated the contribution of multiple underpinning neural [agonist EMG (QEMGMVT), antagonist EMG (HEMGANTAG)] and morphological variables [total quadriceps volume (QUADSVOL), and muscle fascicle pennation angle (QUADSθ p)], as well as pre-training strength, to the individual changes in strength after 12 weeks of knee extensor RT. METHODS Twenty-eight healthy young men completed 12 weeks of isometric knee extensor RT (3/week). Isometric maximum voluntary torque (MVT) was assessed pre- and post-RT, as were simultaneous neural drive to the agonist (QEMGMVT) and antagonist (HEMGANTAG). In addition QUADSVOL was determined with MRI and QUADSθ p with B-mode ultrasound. RESULTS Percentage changes (∆) in MVT were correlated to ∆QEMGMVT (r = 0.576, P = 0.001), ∆QUADSVOL (r = 0.461, P = 0.014), and pre-training MVT (r = -0.429, P = 0.023), but not ∆HEMGANTAG (r = 0.298, P = 0.123) or ∆QUADSθ p (r = -0.207, P = 0.291). Multiple regression analysis revealed 59.9% of the total variance in ∆MVT after RT to be explained by ∆QEMGMVT (30.6%), ∆QUADSVOL (18.7%), and pre-training MVT (10.6%). CONCLUSIONS Changes in agonist neural drive, quadriceps muscle volume and pre-training strength combined to explain the majority of the variance in strength changes after knee extensor RT (~60%) and adaptations in agonist neural drive were the most important single predictor during this short-term intervention.
Collapse
|
Journal Article |
8 |
61 |
3
|
Maden-Wilkinson TM, Balshaw TG, Massey GJ, Folland JP. What makes long-term resistance-trained individuals so strong? A comparison of skeletal muscle morphology, architecture, and joint mechanics. J Appl Physiol (1985) 2019; 128:1000-1011. [PMID: 31873069 PMCID: PMC7191505 DOI: 10.1152/japplphysiol.00224.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The greater muscular strength of long-term resistance-trained (LTT) individuals is often attributed to hypertrophy, but the role of other factors, notably maximum voluntary specific tension (ST), muscle architecture, and any differences in joint mechanics (moment arm), have not been documented. The aim of the present study was to examine the musculoskeletal factors that might explain the greater quadriceps strength and size of LTT vs. untrained (UT) individuals. LTT (n = 16, age 21.6 ± 2.0 yr) had 4.0 ± 0.8 yr of systematic knee extensor heavy-resistance training experience, whereas UT (n = 52; age 25.1 ± 2.3 yr) had no lower-body resistance training experience for >18 mo. Knee extension dynamometry, T1-weighted magnetic resonance images of the thigh and knee, and ultrasonography of the quadriceps muscle group at 10 locations were used to determine quadriceps: isometric maximal voluntary torque (MVT), muscle volume (QVOL), patella tendon moment arm (PTMA), pennation angle (QΘP) and fascicle length (QFL), physiological cross-sectional area (QPCSA), and ST. LTT had substantially greater MVT (+60% vs. UT, P < 0.001) and QVOL (+56%, P < 0.001) and QPCSA (+41%, P < 0.001) but smaller differences in ST (+9%, P < 0.05) and moment arm (+4%, P < 0.05), and thus muscle size was the primary explanation for the greater strength of LTT. The greater muscle size (volume) of LTT was primarily attributable to the greater QPCSA (+41%; indicating more sarcomeres in parallel) rather than the more modest difference in FL (+11%; indicating more sarcomeres in series). There was no evidence in the present study for regional hypertrophy after LTT. NEW & NOTEWORTHY Here we demonstrate that the larger muscle strength (+60%) of a long-term (4+ yr) resistance-trained group compared with untrained controls was due to their similarly larger muscle volume (+56%), primarily due to a larger physiological cross-sectional area and modest differences in fascicle length, as well as modest differences in maximum voluntary specific tension and patella tendon moment arm. In addition, the present study refutes the possibility of regional hypertrophy, despite large differences in muscle volume.
Collapse
|
Journal Article |
6 |
49 |
4
|
Miller R, Balshaw TG, Massey GJ, Maeo S, Lanza MB, Johnston M, Allen SJ, Folland JP. The Muscle Morphology of Elite Sprint Running. Med Sci Sports Exerc 2021; 53:804-815. [PMID: 33009196 DOI: 10.1249/mss.0000000000002522] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE This study aimed to investigate the differences in muscle volumes and strength between male elite sprinters, sub-elite sprinters, and untrained controls and to assess the relationships of muscle volumes and strength with sprint performance. METHODS Five elite sprinters (100-m season's best equivalent [SBE100], 10.10 ± 0.07 s), 26 sub-elite sprinters (SBE100, 10.80 ± 0.30 s), and 11 untrained control participants underwent 1) 3-T magnetic resonance imaging scans to determine the volume of 23 individual lower limb muscles/compartments and 5 functional muscle groups and 2) isometric strength assessment of lower body muscle groups. RESULTS Total lower body muscularity was distinct between the groups (controls < sub-elite +20% < elite +48%). The hip extensors exhibited the largest muscle group differences/relationships (elite, +32% absolute and +15% relative [per kg] volume, vs sub-elite explaining 31%-48% of the variability in SBE100), whereas the plantarflexors showed no differences between sprint groups. Individual muscle differences showed pronounced anatomical specificity (elite vs sub-elite absolute volume range, +57% to -9%). Three hip muscles were consistently larger in elite vs sub-elite (tensor fasciae latae, sartorius, and gluteus maximus; absolute, +45%-57%; relative volume, +25%-37%), and gluteus maximus volume alone explained 34%-44% of the variance in SBE100. The isometric strength of several muscle groups was greater in both sprint groups than controls but similar for the sprint groups and not related to SBE100. CONCLUSIONS These findings demonstrate the pronounced inhomogeneity and anatomically specific muscularity required for fast sprinting and provides novel, robust evidence that greater hip extensor and gluteus maximus volumes discriminate between elite and sub-elite sprinters and are strongly associated with sprinting performance.
Collapse
|
Comparative Study |
4 |
43 |
5
|
Lanza MB, Balshaw TG, Massey GJ, Folland JP. Does normalization of voluntary EMG amplitude to M MAX account for the influence of electrode location and adiposity? Scand J Med Sci Sports 2018; 28:2558-2566. [PMID: 30030921 DOI: 10.1111/sms.13270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/17/2018] [Indexed: 11/28/2022]
Abstract
Voluntary surface electromyography (sEMG) amplitude is known to be influenced by both electrode position and subcutaneous adipose tissue thickness, and these factors likely compromise both between- and within-individual comparisons. Normalization of voluntary sEMG amplitude to evoked maximum M-wave parameters (MMAX peak-to-peak [P-P] and Area) may remove the influence of electrode position and subcutaneous tissue thickness. The purpose of this study was to: (a) assess the influence of electrode position on voluntary, evoked (MMAX P-P and Area), and normalized sEMG measurements across the surface of the vastus lateralis (VL; experiment 1: n = 10); and (b) investigate if MMAX normalization removes the confounding influence of subcutaneous tissue thickness [muscle-electrode distance (MED) from ultrasound imaging] on sEMG amplitude (experiment 2; n = 41). Healthy young men performed maximum voluntary contractions (MVCs) and evoked twitch contractions during both experiments. Experiment 1: voluntary sEMG during MVCs was influenced by electrode location (P ≤ 0.046, ES≥1.49 "large"), but when normalized to MMAX P-P showed no differences between VL sites (P = 0.929) which was not the case when normalized to MMAX Area (P < 0.004). Experiment 2: voluntary sEMG amplitude was related to MED, which explained 31%-38% of the variance. Normalization of voluntary sEMG amplitude to MMAX P-P or MMAX Area reduced but did not consistently remove the influence of MED which still explained up to 16% (MMAX P-P) and 23% (MMAX Area) of the variance. In conclusion, MMAX P-P was the better normalization parameter for removing the influence of electrode location and substantially reduced but did not consistently remove the influence of subcutaneous adiposity.
Collapse
|
Journal Article |
7 |
27 |
6
|
Balshaw TG, Fry A, Maden-Wilkinson TM, Kong PW, Folland JP. Reliability of quadriceps surface electromyography measurements is improved by two vs. single site recordings. Eur J Appl Physiol 2017; 117:1085-1094. [PMID: 28391392 PMCID: PMC5427161 DOI: 10.1007/s00421-017-3595-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/23/2017] [Indexed: 12/01/2022]
Abstract
Purpose The reliability of surface electromyography (sEMG) is typically modest even with rigorous methods, and therefore further improvements in sEMG reliability are desirable. This study compared the between-session reliability (both within participant absolute reliability and between-participant relative reliability) of sEMG amplitude from single vs. average of two distinct recording sites, for individual muscle (IM) and whole quadriceps (WQ) measures during voluntary and evoked contractions. Methods Healthy males (n = 20) performed unilateral isometric knee extension contractions: voluntary maximum and submaximum (60%), as well as evoked twitch contractions on two separate days. sEMG was recorded from two distinct sites on each superficial quadriceps muscle. Results Averaging two recording sites vs. using single site measures improved reliability for IM and WQ measurements during voluntary (16–26% reduction in within-participant coefficient of variation, CVW) and evoked contractions (40–56% reduction in CVW). Conclusions For sEMG measurements from large muscles, averaging the recording of two distinct sites is recommended as it improves within-participant reliability. This improved sensitivity has application to clinical and research measurement of sEMG amplitude.
Collapse
|
Journal Article |
8 |
24 |
7
|
Balshaw TG, Maden-Wilkinson TM, Massey GJ, Folland JP. The Human Muscle Size and Strength Relationship: Effects of Architecture, Muscle Force, and Measurement Location. Med Sci Sports Exerc 2021; 53:2140-2151. [PMID: 33935234 DOI: 10.1249/mss.0000000000002691] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine the best muscle size index of muscle strength by establishing if incorporating muscle architecture measurements improved the human muscle size-strength relationship. The influence of calculating muscle force, and the location of anatomical cross-sectional area (ACSA) measurements on this relationship were also examined. METHODS Fifty-two recreationally active males completed unilateral isometric knee extension strength assessments and MRI scans of the dominant thigh and knee to determine quadriceps femoris (QF) size variables (ACSA along the length of the femur, maximum ACSA [ACSAMAX] and volume [VOL]) and patellar tendon moment arm. Ultrasound images (2 sites per constituent muscle) were analyzed to quantify muscle architecture (fascicle length, pennation angle), and when combined with VOL (from MRI), facilitated calculation of QF effective PCSA (EFFPCSA) as potentially the best muscle size determinant of strength. Muscle force was calculated by dividing maximum voluntary torque (MVT) by the moment arm and addition of antagonist torque (derived from hamstring EMG). RESULTS The associations of EFFPCSA (r=0.685), ACSAMAX (r=0.697), or VOL (r=0.773) with strength did not differ, although qualitatively VOL explained 59.8% of the variance in strength, ~11-13% greater than EFFPCSA or ACSAMAX. All muscle size variables had weaker associations with muscle force than MVT. The association of strength-ACSA at 65% of femur length (r=0.719) was greater than for ACSA measured between 10-55% and 75-90% (r=-0.042-0.633) of femur length. CONCLUSIONS In conclusion, using contemporary methods to assess muscle architecture and calculate EFFPCSA did not enhance the muscle strength-size association. For understanding/monitoring muscle size, the major determinant of strength, these findings support the assessment of muscle volume, that is independent of architecture measurements, and was most highly correlated to strength.
Collapse
|
Journal Article |
4 |
24 |
8
|
Balshaw TG, Hunter AM. Evaluation of electromyography normalisation methods for the back squat. J Electromyogr Kinesiol 2011; 22:308-19. [PMID: 22155060 DOI: 10.1016/j.jelekin.2011.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 11/14/2011] [Accepted: 11/14/2011] [Indexed: 01/06/2023] Open
Abstract
The aim of the study was to evaluate maximal isometric (dynamometer based {MVC-NORM} and isometric squat {MIS-NORM}) and sub-maximal EMG normalisation methods (60%-NORM, 70%-NORM, 80%-NORM) for dynamic back squat exercise (DSQ-EX). The absolute reliability (limits of agreement {LOA}, coefficient of variation {CV%}), relative reliability (intra-class correlation coefficient {ICC}) and sensitivity of each method was assessed. Ten resistance-trained males attended four sessions. Session one assessed maximum back squat strength (three repetition maximum {3RM}). In the remaining three sessions Vastus lateralis (VL) and Bicep femoris (BF) EMG were measured whilst participants completed normalisation tasks and DSQ-EX sets at 65%, 75%, 85% and 95% of 3RM. MIS-NORM produced lower intra-participant CV% compared to MVC-NORM. 80%-NORM produced lower intra-participant CV% than other sub-maximal methods for VL and BF during eccentric and concentric phases. 80%-NORM also produced narrower 95% LOA results than all other normalisation methods. The MIS-NORM method displayed higher ICC values for both muscles during eccentric and concentric phases. The 60%-NORM and 70%-NORM methods were the most sensitive for VL and BF during eccentric and concentric phases. Only normalisation methods for the concentric action of the VL enhanced sensitivity compared to unnormalised EMG. Overall, dynamic normalisation methods demonstrated better absolute reliability and sensitivity for reporting VL and BF EMG within the current study compared to maximal isometric methods.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
23 |
9
|
Balshaw TG, Massey GJ, Maden‐Wilkinson TM, Lanza MB, Folland JP. Neural adaptations after 4 years vs 12 weeks of resistance training vs untrained. Scand J Med Sci Sports 2018; 29:348-359. [DOI: 10.1111/sms.13331] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/25/2018] [Indexed: 11/27/2022]
|
|
7 |
22 |
10
|
Lanza MB, Balshaw TG, Folland JP. Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship? Exp Physiol 2017; 102:962-973. [DOI: 10.1113/ep086343] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/05/2017] [Indexed: 11/08/2022]
|
|
8 |
22 |
11
|
Massey GJ, Balshaw TG, Maden-Wilkinson TM, Tillin NA, Folland JP. Tendinous Tissue Adaptation to Explosive- vs. Sustained-Contraction Strength Training. Front Physiol 2018; 9:1170. [PMID: 30233387 PMCID: PMC6131493 DOI: 10.3389/fphys.2018.01170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 08/03/2018] [Indexed: 01/06/2023] Open
Abstract
The effect of different strength training regimes, and in particular training utilizing brief explosive contractions, on tendinous tissue properties is poorly understood. This study compared the efficacy of 12 weeks of knee extensor explosive-contraction (ECT; n = 14) vs. sustained-contraction (SCT; n = 15) strength training vs. a non-training control (n = 13) to induce changes in patellar tendon and knee extensor tendon-aponeurosis stiffness and size (patellar tendon, vastus-lateralis aponeurosis, quadriceps femoris muscle) in healthy young men. Training involved 40 isometric knee extension contractions (three times/week): gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT), or briefly contracting as fast as possible to ∼80% MVT (ECT). Changes in patellar tendon stiffness and Young's modulus, tendon-aponeurosis complex stiffness, as well as quadriceps femoris muscle volume, vastus-lateralis aponeurosis area and patellar tendon cross-sectional area were quantified with ultrasonography, dynamometry, and magnetic resonance imaging. ECT and SCT similarly increased patellar tendon stiffness (20% vs. 16%, both p < 0.05 vs. control) and Young's modulus (22% vs. 16%, both p < 0.05 vs. control). Tendon-aponeurosis complex high-force stiffness increased only after SCT (21%; p < 0.02), while ECT resulted in greater overall elongation of the tendon-aponeurosis complex. Quadriceps muscle volume only increased after sustained-contraction training (8%; p = 0.001), with unclear effects of strength training on aponeurosis area. The changes in patellar tendon cross-sectional area after strength training were not appreciably different to control. Our results suggest brief high force muscle contractions can induce increased free tendon stiffness, though SCT is needed to increase tendon-aponeurosis complex stiffness and muscle hypertrophy.
Collapse
|
Journal Article |
7 |
19 |
12
|
Souza de Oliveira D, Casolo A, Balshaw TG, Maeo S, Lanza MB, Martin NRW, Maffulli N, Kinfe TM, Eskofier B, Folland JP, Farina D, Del Vecchio A. Neural decoding from surface high-density EMG signals: influence of anatomy and synchronization on the number of identified motor units. J Neural Eng 2022; 19. [PMID: 35853438 DOI: 10.1088/1741-2552/ac823d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE High-density surface electromyography (HD-sEMG) allows the reliable identification of individual motor unit (MU) action potentials. Despite the accuracy in decomposition, there is a large variability in the number of identified MUs across individuals and exerted forces. Here we present a systematic investigation of the anatomical and neural factors that determine this variability. APPROACH We investigated factors of influence on HD-sEMG decomposition, such as synchronization of MU discharges, distribution of MU territories, muscle-electrode distance (MED - subcutaneous adipose tissue thickness), maximum anatomical cross-sectional area (ACSAmax), and fiber CSA. For this purpose, we recorded HD-sEMG signals, ultrasound and, magnetic resonance images, and took a muscle biopsy from the biceps brachii muscle from 30 male participants drawn from two groups to ensure variability within the factors - untrained-controls (UT=14) and strength-trained individuals (ST=16). Participants performed isometric ramp contractions with elbow flexors (at 15, 35, 50 and 70% maximum voluntary torque - MVT). We assessed the correlation between the number of accurately detected MUs by HD-sEMG decomposition and each measured parameter, for each target force level. Multiple regression analysis was then applied. MAIN RESULTS ST subjects showed lower MED (UT=5.1±1.4 mm; ST=3.8±0.8 mm) and a greater number of identified motor units (UT:21.3±10.2 vs ST:29.2±11.8 MUs/subject across all force levels). The entire cohort showed a negative correlation between MED and the number of identified MUs at low forces (r= -0.6, p=0.002 at 15%MVT). Moreover, the number of identified MUs was positively correlated to the distribution of MU territories (r=0.56, p=0.01) and ACSAmax(r=0.48, p=0.03) at 15%MVT. By accounting for all anatomical parameters, we were able to partly predict the number of decomposed MUs at low but not at high forces. SIGNIFICANCE Our results confirmed the influence of subcutaneous tissue on the quality of HD-sEMG signals and demonstrated that MU spatial distribution and ACSAmaxare also relevant parameters of influence for current decomposition algorithms.
Collapse
|
|
3 |
15 |
13
|
Balshaw TG, Funnell MP, McDermott E, Maden-Wilkinson TM, Abela S, Quteishat B, Edsey M, James LJ, Folland JP. The effect of specific bioactive collagen peptides on function and muscle remodeling during human resistance training. Acta Physiol (Oxf) 2023; 237:e13903. [PMID: 36433662 PMCID: PMC10078466 DOI: 10.1111/apha.13903] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
AIM Bioactive collagen peptides (CP) have been suggested to augment the functional, structural (size and architecture), and contractile adaptations of skeletal muscle to resistance training (RT), but with limited evidence. This study aimed to determine if CP vs. placebo (PLA) supplementation enhanced the functional and underpinning structural, and contractile adaptations after 15 weeks of lower body RT. METHODS Young healthy males were randomized to consume either 15 g of CP (n = 19) or PLA (n = 20) once every day during a standardized program of progressive knee extensor, knee flexor, and hip extensor RT 3 times/wk. Measurements pre- and post-RT included: knee extensor and flexor isometric strength; quadriceps, hamstrings, and gluteus maximus volume with MRI; evoked twitch contractions, 1RM lifting strength, and architecture (with ultrasound) of the quadriceps. RESULTS Percentage changes in maximum strength (isometric or 1RM) did not differ between-groups (0.684 ≤ p ≤ 0.929). Increases in muscle volume were greater (quadriceps 15.2% vs. 10.3%; vastus medialis (VM) 15.6% vs. 9.7%; total muscle volume 15.7% vs. 11.4%; [all] p ≤ 0.032) or tended to be greater (hamstring 16.5% vs. 12.8%; gluteus maximus 16.6% vs. 12.9%; 0.089 ≤ p ≤ 0.091) for CP vs. PLA. There were also greater increases in twitch peak torque (22.3% vs. 12.3%; p = 0.038) and angle of pennation of the VM (16.8% vs. 5.8%, p = 0.046), but not other muscles, for CP vs. PLA. CONCLUSIONS CP supplementation produced a cluster of consistent effects indicating greater skeletal muscle remodeling with RT compared to PLA. Notably, CP supplementation amplified the quadriceps and total muscle volume increases induced by RT.
Collapse
|
Randomized Controlled Trial |
2 |
14 |
14
|
Škarabot J, Balshaw TG, Maeo S, Massey GJ, Lanza MB, Maden-Wilkinson TM, Folland JP. Neural adaptations to long-term resistance training: evidence for the confounding effect of muscle size on the interpretation of surface electromyography. J Appl Physiol (1985) 2021; 131:702-715. [PMID: 34166110 DOI: 10.1152/japplphysiol.00094.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study compared elbow flexor (EF; experiment 1) and knee extensor (KE; experiment 2) maximal compound action potential (Mmax) amplitude between long-term resistance trained (LTRT; n = 15 and n = 14, 6 ± 3 and 4 ± 1 yr of training) and untrained (UT; n = 14 and n = 49) men, and examined the effect of normalizing electromyography (EMG) during maximal voluntary torque (MVT) production to Mmax amplitude on differences between LTRT and UT. EMG was recorded from multiple sites and muscles of EF and KE, Mmax was evoked with percutaneous nerve stimulation, and muscle size was assessed with ultrasonography (thickness, EF) and magnetic resonance imaging (cross-sectional area, KE). Muscle-electrode distance (MED) was measured to account for the effect of adipose tissue on EMG and Mmax. LTRT displayed greater MVT (+66%-71%, P < 0.001), muscle size (+54%-56%, P < 0.001), and Mmax amplitudes (+29%-60%, P ≤ 0.010) even when corrected for MED (P ≤ 0.045). Mmax was associated with the size of both muscle groups (r ≥ 0.466, P ≤ 0.011). Compared with UT, LTRT had higher absolute voluntary EMG amplitude for the KE (P < 0.001), but not the EF (P = 0.195), and these differences/similarities were maintained after correction for MED; however, Mmax normalization resulted in no differences between LTRT and UT for any muscle and/or muscle group (P ≥ 0.652). The positive association between Mmax and muscle size, and no differences when accounting for peripheral electrophysiological properties (EMG/Mmax), indicates the greater absolute voluntary EMG amplitude of LTRT might be confounded by muscle morphology, rather than providing a discrete measure of central neural activity. This study therefore suggests limited agonist neural adaptation after LTRT.NEW & NOTEWORTHY In a large sample of long-term resistance-trained individuals, we showed greater maximal M-wave amplitude of the elbow flexors and knee extensors compared with untrained individuals, which appears to be at least partially mediated by differences in muscle size. The lack of group differences in voluntary EMG amplitude when normalized to maximal M-wave suggests that differences in muscle morphology might impair interpretation of voluntary EMG as an index of central neural activity.
Collapse
|
Journal Article |
4 |
14 |
15
|
Lanza MB, Balshaw TG, Folland JP. Is the joint-angle specificity of isometric resistance training real? And if so, does it have a neural basis? Eur J Appl Physiol 2019; 119:2465-2476. [DOI: 10.1007/s00421-019-04229-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
|
|
6 |
11 |
16
|
Casolo A, Del Vecchio A, Balshaw TG, Maeo S, Lanza MB, Felici F, Folland JP, Farina D. Behavior of motor units during submaximal isometric contractions in chronically strength-trained individuals. J Appl Physiol (1985) 2021; 131:1584-1598. [PMID: 34617822 DOI: 10.1152/japplphysiol.00192.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural and morphological adaptations combine to underpin the enhanced muscle strength following prolonged exposure to strength training, although their relative importance remains unclear. We investigated the contribution of motor unit (MU) behavior and muscle size to submaximal force production in chronically strength-trained athletes (ST) versus untrained controls (UT). Sixteen ST (age: 22.9 ± 3.5 yr; training experience: 5.9 ± 3.5 yr) and 14 UT (age: 20.4 ± 2.3 yr) performed maximal voluntary isometric force (MViF) and ramp contractions (at 15%, 35%, 50%, and 70% MViF) with elbow flexors, whilst high-density surface electromyography (HDsEMG) was recorded from the biceps brachii (BB). Recruitment thresholds (RTs) and discharge rates (DRs) of MUs identified from the submaximal contractions were assessed. The neural drive-to-muscle gain was estimated from the relation between changes in force (ΔFORCE, i.e. muscle output) relative to changes in MU DR (ΔDR, i.e. neural input). BB maximum anatomical cross-sectional area (ACSAMAX) was also assessed by MRI. MViF (+64.8% vs. UT, P < 0.001) and BB ACSAMAX (+71.9%, P < 0.001) were higher in ST. Absolute MU RT was higher in ST (+62.6%, P < 0.001), but occurred at similar normalized forces. MU DR did not differ between groups at the same normalized forces. The absolute slope of the ΔFORCE - ΔDR relationship was higher in ST (+66.9%, P = 0.002), whereas it did not differ for normalized values. We observed similar MU behavior between ST athletes and UT controls. The greater absolute force-generating capacity of ST for the same neural input demonstrates that morphological, rather than neural, factors are the predominant mechanism for their enhanced force generation during submaximal efforts.NEW & NOTEWORTHY In this study, we observed that recruitment strategies and discharge characteristics of large populations of motor units identified from biceps brachii of strength-trained athletes were similar to those observed in untrained individuals during submaximal force tasks. We also found that for the same neural input, strength-trained athletes are able to produce greater absolute muscle forces (i.e., neural drive-to-muscle gain). This demonstrates that morphological factors are the predominant mechanism for the enhanced force generation during submaximal efforts.
Collapse
|
|
4 |
10 |
17
|
Balshaw TG, Massey GJ, Maden-Wilkinson TM, Folland JP. Muscle size and strength: debunking the “completely separate phenomena” suggestion. Eur J Appl Physiol 2017; 117:1275-1276. [DOI: 10.1007/s00421-017-3616-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/01/2022]
|
|
8 |
10 |
18
|
Škarabot J, Ammann C, Balshaw TG, Divjak M, Urh F, Murks N, Foffani G, Holobar A. Decoding firings of a large population of human motor units from high-density surface electromyogram in response to transcranial magnetic stimulation. J Physiol 2023; 601:1719-1744. [PMID: 36946417 PMCID: PMC10952962 DOI: 10.1113/jp284043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
We describe a novel application of methodology for high-density surface electromyography (HDsEMG) decomposition to identify motor unit (MU) firings in response to transcranial magnetic stimulation (TMS). The method is based on the MU filter estimation from HDsEMG decomposition with convolution kernel compensation during voluntary isometric contractions and its application to contractions elicited by TMS. First, we simulated synthetic HDsEMG signals during voluntary contractions followed by simulated motor evoked potentials (MEPs) recruiting an increasing proportion of the motor pool. The estimation of MU filters from voluntary contractions and their application to elicited contractions resulted in high (>90%) precision and sensitivity of MU firings during MEPs. Subsequently, we conducted three experiments in humans. From HDsEMG recordings in first dorsal interosseous and tibialis anterior muscles, we demonstrated an increase in the number of identified MUs during MEPs evoked with increasing stimulation intensity, low variability in the MU firing latency and a proportion of MEP energy accounted for by decomposition similar to voluntary contractions. A negative relationship between the MU recruitment threshold and the number of identified MU firings was exhibited during the MEP recruitment curve, suggesting orderly MU recruitment. During isometric dorsiflexion we also showed a negative association between voluntary MU firing rate and the number of firings of the identified MUs during MEPs, suggesting a decrease in the probability of MU firing during MEPs with increased background MU firing rate. We demonstrate accurate identification of a large population of MU firings in a broad recruitment range in response to TMS via non-invasive HDsEMG recordings. KEY POINTS: Transcranial magnetic stimulation (TMS) of the scalp produces multiple descending volleys, exciting motor pools in a diffuse manner. The characteristics of a motor pool response to TMS have been previously investigated with intramuscular electromyography (EMG), but this is limited in its capacity to detect many motor units (MUs) that constitute a motor evoked potential (MEP) in response to TMS. By simulating synthetic signals with known MU firing patterns, and recording high-density EMG signals from two human muscles, we show the feasibility of identifying firings of many MUs that comprise a MEP. We demonstrate the identification of firings of a large population of MUs in the broad recruitment range, up to maximal MEP amplitude, with fewer required stimuli compared to intramuscular EMG recordings. The methodology demonstrates an emerging possibility to study responses to TMS on a level of individual MUs in a non-invasive manner.
Collapse
|
research-article |
2 |
7 |
19
|
Massey GJ, Balshaw TG, Maden-Wilkinson TM, Tillin NA, Folland JP. The influence of patellar tendon and muscle-tendon unit stiffness on quadriceps explosive strength in man. Exp Physiol 2017; 102:448-461. [DOI: 10.1113/ep086190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 01/14/2023]
|
|
8 |
5 |
20
|
Mc Dermott EJ, Balshaw TG, Brooke-Wavell K, Maden-Wilkinson TM, Folland JP. Fast and ballistic contractions involve greater neuromuscular power production in older adults during resistance exercise. Eur J Appl Physiol 2022; 122:1639-1655. [PMID: 35429294 PMCID: PMC9197913 DOI: 10.1007/s00421-022-04947-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/01/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Purpose
Neuromuscular power is critical for healthy ageing. Conventional older adult resistance training (RT) guidelines typically recommend lifting slowly (2-s; CONV), whereas fast/explosive contractions performed either non-ballistically (FAST-NB) or ballistically (FAST-B, attempting to throw the load) may involve greater acute power production, and could ultimately provide a greater chronic power adaptation stimulus. To compare the neuromechanics (power, force, velocity, and muscle activation) of different types of concentric isoinertial RT contractions in older adults.
Methods
Twelve active older adult males completed three sessions, each randomly assigned to one type of concentric contraction (CONV or FAST-NB or FAST-B). Each session involved lifting a range of loads (20–80%1RM) using an instrumented isoinertial leg press dynamometer that measured power, force, and velocity. Muscle activation was assessed with surface electromyography (sEMG).
Results
Peak and mean power were markedly different, according to the concentric contraction explosive intent FAST-B > FAST-NB > CONV, with FAST-B producing substantially more power (+ 49 to 1172%, P ≤ 0.023), force (+ 10 to 136%, P < 0.05) and velocity (+ 55 to 483%, P ≤ 0.025) than CONV and FAST-NB contractions. Knee and hip extensor sEMG were typically higher during FAST-B than CON (all P < 0.02) and FAST-NB (≤ 50%1RM, P ≤ 0.001).
Conclusions
FAST-B contractions produced markedly greater power, force, velocity and muscle activation across a range of loads than both CONV or FAST-NB and could provide a more potent RT stimulus for the chronic development of older adult power.
Collapse
|
|
3 |
5 |
21
|
Maeo S, Balshaw TG, Lanza MB, Hannah R, Folland JP. Corticospinal excitability and motor representation after long-term resistance training. Eur J Neurosci 2021; 53:3416-3432. [PMID: 33763908 DOI: 10.1111/ejn.15197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023]
Abstract
It is poorly understood how the central nervous system adapts to resistance training, especially after years of exposure. We compared corticospinal excitability and motor representation assessed with transcranial magnetic stimulation (TMS) between long-term resistance trained (LRT, ≥3 years) versus untrained (UNT) males (n = 15/group). Motor-evoked potentials (MEPs) were obtained from the biceps brachii during isometric elbow flexion. Stimulus-response curves were created at the hotspot during 10% maximum voluntary torque (MVT) contractions. Maximum peak-to-peak MEP amplitude (MEPmax) was acquired with 100% stimulator output intensity, whilst 25%-100% MVT was produced. Maps were created during 10% MVT contractions, with an individualised TMS intensity eliciting 20% MEPmax at the hotspot. LRT had a 48% lower stimulus-response curve slope than UNT (p < .05). LRT also had a 66% larger absolute map size, although TMS intensity used for mapping was greater in LRT versus UNT (48% vs. 26% above active motor threshold) to achieve a target 20% MEPmax at the hotspot, due to the lower slope of LRT. Map size was strongly correlated with the TMS intensity used for mapping (r = 0.776, p < .001). Once map size was normalised to TMS intensity, there was no difference between the groups (p = .683). We conclude that LRT had a lower stimulus-response curve slope/excitability, suggesting higher neural efficiency. TMS map size was overwhelmingly determined by TMS intensity, even when the MEP response at the hotspot was matched among individuals, likely due to larger current spread with higher intensities. Motor representation appears similar between LRT and UNT given no difference in the normalised map size.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
5 |
22
|
Casolo A, Maeo S, Balshaw TG, Lanza MB, Martin NRW, Nuccio S, Moro T, Paoli A, Felici F, Maffulli N, Eskofier B, Kinfe TM, Folland JP, Farina D, Vecchio AD. Non-invasive estimation of muscle fibre size from high-density electromyography. J Physiol 2023; 601:1831-1850. [PMID: 36929484 DOI: 10.1113/jp284170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Because of the biophysical relation between muscle fibre diameter and the propagation velocity of action potentials along the muscle fibres, motor unit conduction velocity could be a non-invasive index of muscle fibre size in humans. However, the relation between motor unit conduction velocity and fibre size has been only assessed indirectly in animal models and in human patients with invasive intramuscular EMG recordings, or it has been mathematically derived from computer simulations. By combining advanced non-invasive techniques to record motor unit activity in vivo, i.e. high-density surface EMG, with the gold standard technique for muscle tissue sampling, i.e. muscle biopsy, here we investigated the relation between the conduction velocity of populations of motor units identified from the biceps brachii muscle, and muscle fibre diameter. We demonstrate the possibility of predicting muscle fibre diameter (R2 = 0.66) and cross-sectional area (R2 = 0.65) from conduction velocity estimates with low systematic bias (∼2% and ∼4% respectively) and a relatively low margin of individual error (∼8% and ∼16%, respectively). The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling. The non-invasive nature of high-density surface EMG for the assessment of muscle fibre size may be useful in studies monitoring child development, ageing, space and exercise physiology, although the applicability and validity of the proposed methodology need to be more directly assessed in these specific populations by future studies. KEY POINTS: Because of the biophysical relation between muscle fibre size and the propagation velocity of action potentials along the sarcolemma, motor unit conduction velocity could represent a potential non-invasive candidate for estimating muscle fibre size in vivo. This relation has been previously assessed in animal models and humans with invasive techniques, or it has been mathematically derived from simulations. By combining high-density surface EMG with muscle biopsy, here we explored the relation between the conduction velocity of populations of motor units and muscle fibre size in healthy individuals. Our results confirmed that motor unit conduction velocity can be considered as a novel biomarker of fibre size, which can be adopted to predict muscle fibre diameter and cross-sectional area with low systematic bias and margin of individual error. The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling.
Collapse
|
|
2 |
3 |
23
|
Behan FP, Moody R, Patel TS, Lattimore E, Maden-Wilkinson TM, Balshaw TG. Biceps femoris long head muscle fascicle length does not differ between sexes. J Sports Sci 2019; 37:2452-2458. [PMID: 31303128 DOI: 10.1080/02640414.2019.1641016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hamstring strain injury (HSI) rates are higher for males vs. females. This cross-sectional study investigated if inherent differences in biceps femoris long head (BFLH) fascicle length (Lf) exist between recreationally active males and females (i.e., individuals without specific training practice history). Twenty-four young healthy participants (12 males; 12 females) had their BFLH muscle architecture (Lf, pennation angle [θp], and muscle thickness [MT]) measured using B-mode ultrasonography. Eccentric and isometric knee flexion strength were also assessed. BFLH Lf did not differ between sexes when expressed in absolute terms (males, 81.5 ± 14.7 mm; females, 73.6 ± 15.9 mm, P = 0.220, effect size (ES) = 0.52) or relative to femur length (0.140 ≤ P ≤ 0.220, ES = 0.63). Similarly, BFLH θp did not differ between sexes (P = 0.650) but BFLH MT was 18.9% larger for males vs. females (P = 0.024, ES = 0.99). Isometric and eccentric knee flexion strength was greater for males vs. females in absolute terms ([both] P < 0.001, 2.00 ≤ ES ≤ 2.27) and relative to body mass ([both] P < 0.001, 1.93 ≤ ES ≤ 2.13). In conclusion, factors other than BFLH Lf seem likely to be implicated in higher male vs. female HSI rates.
Collapse
|
Journal Article |
6 |
3 |
24
|
Boyd DA, Donald N, Balshaw TG. Comparison of acute countermovement jump responses after functional isometric and dynamic half squats. J Strength Cond Res 2014; 28:3363-74. [PMID: 24918298 DOI: 10.1519/jsc.0000000000000559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to compare acute countermovement jump (CMJ) responses after functional isometric (FI) and dynamic half (DH) squats. Ten strength-trained males (relative full back squat 1 repetition maximum [1RM]: 1.9 ± 0.2) participated in a randomized crossover design study. On 2 separate days, participants performed baseline CMJs followed by either FI or DH squats loaded with 150% of full back squat 1RM. Further CMJs were performed between 2 and 11 minutes after FI or DH squats. Kinematic and kinetic CMJ variables were measured. There were no differences observed between conditions when peak CMJ variables after FI or DH squats were compared with baseline values (p > 0.05). Countermovement jump time effects (p ≤ 0.05) were observed after squats. Increases in peak force (p ≤ 0.05; FI: 3.9%, range: -0.9 to 9.1%; DH: 4.2%, range: 0.0-11.5%) and decreases in peak power (p ≤ 0.05; FI: -0.4%, range: -5.1 to 4.0%; DH: -1.1%, range: -6.6 to 2.9%) occurred for combined condition data. Positive correlations between lower-body strength and the extent or timing of acute CMJ responses were not detected (p > 0.05). Because of the apparent lack of additive acute CMJ responses, the use of conventional DH squat protocols should be considered rather than FI squats in precompetition and training situations. Furthermore, the establishment of individual FI and DH squat protocols also seems to be necessary, rather than relying on relative lower-body strength to predict the nature of acute CMJ responses.
Collapse
|
Comparative Study |
11 |
2 |
25
|
Folland JP, Balshaw TG. Muscle Growth Does Contribute to the Increases in Strength that Occur after Resistance Training. Med Sci Sports Exerc 2021; 53:2006-2010. [PMID: 34398063 DOI: 10.1249/mss.0000000000002732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
4 |
2 |