1
|
Wang JH, Zhan W, Gallagher TL, Gao G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther 2024; 32:4185-4207. [PMID: 39489915 PMCID: PMC11638839 DOI: 10.1016/j.ymthe.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for in vivo gene therapy, particularly in ocular diseases. AAV-based therapies are characterized by low pathogenicity and broad tissue tropism and have demonstrated clinical success, as exemplified by voretigene neparvovec-rzyl (Luxturna) being the first gene therapy to be approved by the U.S. Food and Drug Administration to treat RPE65-associated Leber congenital amaurosis (LCA). However, several challenges remain in the development of AAV-based gene therapies, including immune responses, limited cargo capacity, and the need for enhanced transduction efficiency, especially for intravitreal delivery to photoreceptors and retinal pigment epithelium cells. This review explores the biology of AAVs in the context of gene therapy, innovations in capsid engineering, and clinical advancements in AAV-based ocular gene therapy. We highlight ongoing clinical trials targeting inherited retinal diseases and acquired conditions, discuss immune-related limitations, and examine novel strategies for enhancing AAV vector performance to address current barriers.
Collapse
|
2
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
|
3
|
Blatnik MC, Gallagher TL, Amacher SL. Keeping development on time: Insights into post-transcriptional mechanisms driving oscillatory gene expression during vertebrate segmentation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1751. [PMID: 35851751 PMCID: PMC9840655 DOI: 10.1002/wrna.1751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 01/31/2023]
Abstract
Biological time keeping, or the duration and tempo at which biological processes occur, is a phenomenon that drives dynamic molecular and morphological changes that manifest throughout many facets of life. In some cases, the molecular mechanisms regulating the timing of biological transitions are driven by genetic oscillations, or periodic increases and decreases in expression of genes described collectively as a "molecular clock." In vertebrate animals, molecular clocks play a crucial role in fundamental patterning and cell differentiation processes throughout development. For example, during early vertebrate embryogenesis, the segmentation clock regulates the patterning of the embryonic mesoderm into segmented blocks of tissue called somites, which later give rise to axial skeletal muscle and vertebrae. Segmentation clock oscillations are characterized by rapid cycles of mRNA and protein expression. For segmentation clock oscillations to persist, the transcript and protein molecules of clock genes must be short-lived. Faithful, rhythmic, genetic oscillations are sustained by precise regulation at many levels, including post-transcriptional regulation, and such mechanisms are essential for proper vertebrate development. This article is categorized under: RNA Export and Localization > RNA Localization RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Regulation.
Collapse
|
4
|
Gangras P, Gallagher TL, Parthun MA, Yi Z, Patton RD, Tietz KT, Deans NC, Bundschuh R, Amacher SL, Singh G. Zebrafish rbm8a and magoh mutants reveal EJC developmental functions and new 3'UTR intron-containing NMD targets. PLoS Genet 2020; 16:e1008830. [PMID: 32502192 PMCID: PMC7310861 DOI: 10.1371/journal.pgen.1008830] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 06/23/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Many post-transcriptional mechanisms operate via mRNA 3'UTRs to regulate protein expression, and such controls are crucial for development. We show that homozygous mutations in two zebrafish exon junction complex (EJC) core genes rbm8a and magoh leads to muscle disorganization, neural cell death, and motor neuron outgrowth defects, as well as dysregulation of mRNAs subjected to nonsense-mediated mRNA decay (NMD) due to translation termination ≥ 50 nts upstream of the last exon-exon junction. Intriguingly, we find that EJC-dependent NMD also regulates a subset of transcripts that contain 3'UTR introns (3'UI) < 50 nts downstream of a stop codon. Some transcripts containing such stop codon-proximal 3'UI are also NMD-sensitive in cultured human cells and mouse embryonic stem cells. We identify 167 genes that contain a conserved proximal 3'UI in zebrafish, mouse and humans. foxo3b is one such proximal 3'UI-containing gene that is upregulated in zebrafish EJC mutant embryos, at both mRNA and protein levels, and loss of foxo3b function in EJC mutant embryos significantly rescues motor axon growth defects. These data are consistent with EJC-dependent NMD regulating foxo3b mRNA to control protein expression during zebrafish development. Our work shows that the EJC is critical for normal zebrafish development and suggests that proximal 3'UIs may serve gene regulatory function in vertebrates.
Collapse
|
5
|
Tietz KT, Gallagher TL, Mannings MC, Morrow ZT, Derr NL, Amacher SL. Pumilio response and AU-rich elements drive rapid decay of Pnrc2-regulated cyclic gene transcripts. Dev Biol 2020; 462:129-140. [PMID: 32246943 DOI: 10.1016/j.ydbio.2020.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate segmentation is regulated by the segmentation clock, a biological oscillator that controls periodic formation of somites, or embryonic segments, which give rise to many mesodermal tissue types. This molecular oscillator generates cyclic gene expression with the same periodicity as somite formation in the presomitic mesoderm (PSM), an area of mesenchymal cells that give rise to mature somites. Molecular components of the clock include the Hes/her family of genes that encode transcriptional repressors, but additional genes cycle. Cyclic gene transcripts are cleared rapidly, and clearance depends upon the pnrc2 (proline-rich nuclear receptor co-activator 2) gene that encodes an mRNA decay adaptor. Previously, we showed that the her1 3'UTR confers instability to otherwise stable transcripts in a Pnrc2-dependent manner, however, the molecular mechanism(s) by which cyclic gene transcripts are cleared remained largely unknown. To identify features of the her1 3'UTR that are critical for Pnrc2-mediated decay, we developed an array of transgenic inducible reporter lines carrying different regions of the 3'UTR. We find that the terminal 179 nucleotides (nts) of the her1 3'UTR are necessary and sufficient to confer rapid instability. Additionally, we show that the 3'UTR of another cyclic gene, deltaC (dlc), also confers Pnrc2-dependent instability. Motif analysis reveals that both her1 and dlc 3'UTRs contain terminally-located Pumilio response elements (PREs) and AU-rich elements (AREs), and we show that the PRE and ARE in the last 179 nts of the her1 3'UTR drive rapid turnover of reporter mRNA. Finally, we show that mutation of Pnrc2 residues and domains that are known to facilitate interaction of human PNRC2 with decay factors DCP1A and UPF1 reduce the ability of Pnrc2 to restore normal cyclic gene expression in pnrc2 mutant embryos. Our findings suggest that Pnrc2 interacts with decay machinery components and cooperates with Pumilio (Pum) proteins and ARE-binding proteins to promote rapid turnover of cyclic gene transcripts during somitogenesis.
Collapse
|
6
|
Berberoglu MA, Gallagher TL, Morrow ZT, Talbot JC, Hromowyk KJ, Tenente IM, Langenau DM, Amacher SL. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish. Dev Biol 2017; 424:162-180. [PMID: 28279710 DOI: 10.1016/j.ydbio.2017.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 12/24/2022]
Abstract
Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4-5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite-like cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse.
Collapse
|
7
|
Martin BL, Gallagher TL, Rastogi N, Davis JP, Beattie CE, Amacher SL, Janssen PML. In vivo assessment of contractile strength distinguishes differential gene function in skeletal muscle of zebrafish larvae. J Appl Physiol (1985) 2015; 119:799-806. [PMID: 26251513 DOI: 10.1152/japplphysiol.00447.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/31/2015] [Indexed: 01/19/2023] Open
Abstract
The accessible genetics and extensive skeletal musculature of the zebrafish make it a versatile and increasingly used model for studying muscle contraction. We here describe the development of an in vivo assay for measuring the contractile force of intact zebrafish at the larval stage. In addition, as proof of applicability, we have used this assay to quantify contractile strength of zebrafish larvae in a morphant model of deranged rbfox function. Average maximum tetanic (180 Hz) whole body forces produced by wild-type larvae at 2, 3, 4, and 5 days postfertilization amounted to 3.0, 7.2, 9.1, and 10.8 mN, respectively. To compare at potentially different stages of muscle development, we developed an immunohistological assay for empirically determining the cross-sectional area of larval trunk skeletal muscle to quantify muscle-specific force per cross-sectional area. At 4-5 days postfertilization, specific force amounts to ∼ 300 mN/mm(2), which is similar to fully developed adult mammalian skeletal muscle. We used these assays to measure contractile strength in zebrafish singly or doubly deficient for two rbfox paralogs, rbfox1l and rbfox2, which encode RNA-binding factors shown previously to modulate muscle function and muscle-specific splicing. We found rbfox2 morphants produce maximal tetanic forces similar to wild-type larvae, whereas rbfox1l morphants demonstrate significantly impaired function. rbfox1l/rbfox2 morphants are paralyzed, and their lack of contractile force production in our assay suggests that paralysis is a muscle-autonomous defect. These quantitative functional results allow measurement of muscle-specific phenotypes independent of neural input.
Collapse
|
8
|
Kelley DR, Arreola A, Gallagher TL, Gasser CS. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development 2012; 139:1105-9. [PMID: 22296848 DOI: 10.1242/dev.067918] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
KANADI (KAN) transcription factors promote abaxial cell fate throughout plant development and are required for organ formation during embryo, leaf, carpel and ovule development. ABERRANT TESTA SHAPE (ATS, or KAN4) is necessary during ovule development to maintain the boundary between the two ovule integuments and to promote inner integument growth. Yeast two-hybrid assays identified ETTIN (ETT, or AUXIN RESPONSE FACTOR 3) as a transcription factor that could physically interact with ATS. ATS and ETT were shown to physically interact in vivo in transiently transformed tobacco epidermal cells using bimolecular fluorescence complementation. ATS and ETT were found to share an overlapping expression pattern during Arabidopsis ovule development and loss of either gene resulted in congenital fusion of the integuments and altered seed morphology. We hypothesize that in wild-type ovules a physical interaction between ATS and ETT allows these proteins to act in concert to define the boundary between integument primordia. We further show protein-protein interaction in yeast between ETT and KAN1, a paralog of ATS. Thus, a direct physical association between ETT and KAN proteins underpins their previously described common role in polarity establishment and organogenesis. We propose that ETT-KAN protein complex(es) constitute part of an auxin-dependent regulatory module that plays a conserved role in a variety of developmental contexts.
Collapse
|
9
|
Gallagher TL, Arribere J, Adkar S, Marr H, Dill K, Garnett A, Amacher S, Conboy J. Fox1 and Fox4 regulate muscle-specific splicing in zebrafish and are required for cardiac and skeletal muscle functions. Dev Biol 2010. [DOI: 10.1016/j.ydbio.2010.05.432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Gallagher TL, Gasser CS. Independence and interaction of regions of the INNER NO OUTER protein in growth control during ovule development. PLANT PHYSIOLOGY 2008; 147:306-15. [PMID: 18326791 PMCID: PMC2330322 DOI: 10.1104/pp.107.114603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The outer integument of the Arabidopsis (Arabidopsis thaliana) ovule develops asymmetrically, with growth and cell division occurring primarily along the region of the ovule facing the base of the gynoecium (gynobasal). This process is altered in the mutants inner no outer (ino) and superman (sup), which lead to absent or symmetrical growth of the outer integument, respectively. INO encodes a member of the YABBY family of putative transcription factors, and its expression is restricted to the gynobasal side of developing ovules via negative regulation by the transcription factor SUP. Other YABBY proteins (e.g. CRABS CLAW [CRC] and YABBY3 [YAB3]) can substitute for INO in promotion of integument growth, but do not respond to SUP regulation. In contrast, YAB5 fails to promote integument growth. To separately investigate the growth-promotive effects of INO and its inhibition by SUP, domain swaps between INO and YAB3, YAB5, or CRC were assembled. The ability of chimeric YABBY proteins to respond to SUP restriction showed a quantitative response proportional to the amount of INO protein and was more dependent on C-terminal regions of INO. A different response was seen when examining growth promotion where the number and identity of regions of INO in chimeric YABBY proteins were not the primary influence on promotion of outer integument growth. Instead, promotion of growth required a coordination of features along the entire length of the INO protein, suggesting that intramolecular interactions between regions of INO may coordinately facilitate the intermolecular interactions necessary to promote formation of the outer integument.
Collapse
|
11
|
Meister RJ, Williams LA, Monfared MM, Gallagher TL, Kraft EA, Nelson CG, Gasser CS. Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:426-38. [PMID: 14731261 DOI: 10.1046/j.1365-313x.2003.01971.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
INNER NO OUTER (INO) expression is limited to the abaxial cell layer of the incipient and developing outer integument in Arabidopsis ovules. Using deletion analysis of the previously defined INO promoter (P-INO), at least three distinct regions that contribute to the endogenous INO expression pattern were identified. One such positive element, designated POS9, which comprises at least three distinct subelements, was found to include sufficient information to duplicate the INO expression pattern when four or more copies were used in conjunction with a heterologous minimal promoter. While known regulators of INO, including INO, SUPERMAN, BELL1, and AINTEGUMENTA, did not detectably interact with POS9 in yeast one-hybrid assays, two groups of proteins that interact specifically with POS9 were identified in one-hybrid library screens. Members of one group include C2H2 zinc finger motifs. Members of the second group contain a novel, conserved DNA-binding region and were designated the BASIC PENTACYSTEINE (BPC) proteins on the basis of conserved features of this region. The BPC proteins are nuclear localized and specifically bind in vitro to GA dinucleotide repeats located within POS9. The widespread expression patterns of the BPCs and the large number of GA repeat potential target sequences in the Arabidopsis genome indicate that BPC proteins may affect expression of genes involved in a variety of plant processes.
Collapse
|
12
|
Gallagher TL. Re: 'Physical Restraint of the Hospitalized Elderly: Perceptions of Patients and Nurses'. Nurs Res 1989; 38:76. [PMID: 2928150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Clifton JS, Gallagher TL. Comparison of computer generated depth doses. REVISTA PAULISTA DE MEDICINA 1969; 75:210. [PMID: 5374087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|