1
|
Gallo P, Amann-Winkel K, Angell CA, Anisimov MA, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos AZ, Russo J, Sellberg JA, Stanley HE, Tanaka H, Vega C, Xu L, Pettersson LGM. Water: A Tale of Two Liquids. Chem Rev 2016; 116:7463-500. [PMID: 27380438 PMCID: PMC5424717 DOI: 10.1021/acs.chemrev.5b00750] [Citation(s) in RCA: 484] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Water is the most abundant liquid
on earth and also the substance
with the largest number of anomalies in its properties. It is a prerequisite
for life and as such a most important subject of current research
in chemical physics and physical chemistry. In spite of its simplicity
as a liquid, it has an enormously rich phase diagram where different
types of ices, amorphous phases, and anomalies disclose a path that
points to unique thermodynamics of its supercooled liquid state that
still hides many unraveled secrets. In this review we describe the
behavior of water in the regime from ambient conditions to the deeply
supercooled region. The review describes simulations and experiments
on this anomalous liquid. Several scenarios have been proposed to
explain the anomalous properties that become strongly enhanced in
the supercooled region. Among those, the second critical-point scenario
has been investigated extensively, and at present most experimental
evidence point to this scenario. Starting from very low temperatures,
a coexistence line between a high-density amorphous phase and a low-density
amorphous phase would continue in a coexistence line between a high-density
and a low-density liquid phase terminating in a liquid–liquid
critical point, LLCP. On approaching this LLCP from the one-phase
region, a crossover in thermodynamics and dynamics can be found. This
is discussed based on a picture of a temperature-dependent balance
between a high-density liquid and a low-density liquid favored by,
respectively, entropy and enthalpy, leading to a consistent picture
of the thermodynamics of bulk water. Ice nucleation is also discussed,
since this is what severely impedes experimental investigation of
the vicinity of the proposed LLCP. Experimental investigation of stretched
water, i.e., water at negative pressure, gives access to a different
regime of the complex water diagram. Different ways to inhibit crystallization
through confinement and aqueous solutions are discussed through results
from experiments and simulations using the most sophisticated and
advanced techniques. These findings represent tiles of a global picture
that still needs to be completed. Some of the possible experimental
lines of research that are essential to complete this picture are
explored.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
484 |
2
|
Loerting T, Salzmann C, Kohl I, Mayer E, Hallbrucker A. A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar. Phys Chem Chem Phys 2001. [DOI: 10.1039/b108676f] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
24 |
272 |
3
|
Amann-Winkel K, Gainaru C, Handle PH, Seidl M, Nelson H, Böhmer R, Loerting T. Water's second glass transition. Proc Natl Acad Sci U S A 2013; 110:17720-5. [PMID: 24101518 PMCID: PMC3816484 DOI: 10.1073/pnas.1311718110] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The glassy states of water are of common interest as the majority of H2O in space is in the glassy state and especially because a proper description of this phenomenon is considered to be the key to our understanding why liquid water shows exceptional properties, different from all other liquids. The occurrence of water's calorimetric glass transition of low-density amorphous ice at 136 K has been discussed controversially for many years because its calorimetric signature is very feeble. Here, we report that high-density amorphous ice at ambient pressure shows a distinct calorimetric glass transitions at 116 K and present evidence that this second glass transition involves liquid-like translational mobility of water molecules. This "double Tg scenario" is related to the coexistence of two liquid phases. The calorimetric signature of the second glass transition is much less feeble, with a heat capacity increase at Tg,2 about five times as large as at Tg,1. By using broadband-dielectric spectroscopy we resolve loss peaks yielding relaxation times near 100 s at 126 K for low-density amorphous ice and at 110 K for high-density amorphous ice as signatures of these two distinct glass transitions. Temperature-dependent dielectric data and heating-rate-dependent calorimetric data allow us to construct the relaxation map for the two distinct phases of water and to extract fragility indices m = 14 for the low-density and m = 20-25 for the high-density liquid. Thus, low-density liquid is classified as the strongest of all liquids known ("superstrong"), and also high-density liquid is classified as a strong liquid.
Collapse
|
research-article |
12 |
192 |
4
|
Loerting T, Winkel K, Seidl M, Bauer M, Mitterdorfer C, Handle PH, Salzmann CG, Mayer E, Finney JL, Bowron DT. How many amorphous ices are there? Phys Chem Chem Phys 2011; 13:8783-94. [DOI: 10.1039/c0cp02600j] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
|
14 |
148 |
5
|
Amann-Winkel K, Bellissent-Funel MC, Bove LE, Loerting T, Nilsson A, Paciaroni A, Schlesinger D, Skinner L. X-ray and Neutron Scattering of Water. Chem Rev 2016; 116:7570-89. [DOI: 10.1021/acs.chemrev.5b00663] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
9 |
137 |
6
|
Lindauer K, Loerting T, Liedl KR, Kroemer RT. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. PROTEIN ENGINEERING 2001; 14:27-37. [PMID: 11287676 DOI: 10.1093/protein/14.1.27] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The structure of human Janus kinase 2 (JAK2) comprising the two C-terminal domains (JH1 and JH2) was predicted by application of homology modelling techniques. JH1 and JH2 represent the tyrosine kinase and tyrosine kinase-like domains, respectively, and are crucial for function and regulation of the protein. A comparison between the structures of the two domains is made and structural differences are highlighted. Prediction of the relative orientation of JH1 and JH2 was aided by a newly developed method for the detection of correlated amino acid mutations. Analysis of the interactions between the two domains led to a model for the regulatory effect of JH2 on JH1. The predictions are consistent with available experimental data on JAK2 or related proteins and provide an explanation for inhibition of JH1 tyrosine kinase activity by the adjacent JH2 domain.
Collapse
|
Comparative Study |
24 |
129 |
7
|
Winkel K, Elsaesser MS, Mayer E, Loerting T. Water polyamorphism: Reversibility and (dis)continuity. J Chem Phys 2008; 128:044510. [DOI: 10.1063/1.2830029] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
17 |
129 |
8
|
Perakis F, Amann-Winkel K, Lehmkühler F, Sprung M, Mariedahl D, Sellberg JA, Pathak H, Späh A, Cavalca F, Schlesinger D, Ricci A, Jain A, Massani B, Aubree F, Benmore CJ, Loerting T, Grübel G, Pettersson LGM, Nilsson A. Diffusive dynamics during the high-to-low density transition in amorphous ice. Proc Natl Acad Sci U S A 2017; 114:8193-8198. [PMID: 28652327 PMCID: PMC5547632 DOI: 10.1073/pnas.1705303114] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.
Collapse
|
research-article |
8 |
126 |
9
|
Finney JL, Bowron DT, Soper AK, Loerting T, Mayer E, Hallbrucker A. Structure of a new dense amorphous ice. PHYSICAL REVIEW LETTERS 2002; 89:205503. [PMID: 12443486 DOI: 10.1103/physrevlett.89.205503] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Indexed: 05/24/2023]
Abstract
The detailed structure of a new dense amorphous ice, VHDA, is determined by isotope substitution neutron diffraction. Its structure is characterized by a doubled occupancy of the stabilizing interstitial location that was found in high density amorphous ice, HDA. As would be expected for a thermally activated unlocking of the stabilizing "interstitial," the transition from VHDA to LDA (low-density amorphous ice) is very sharp. Although its higher density makes VHDA a better candidate than HDA for a physical manifestation of the second putative liquid phase of water, as for the HDA case, the VHDA to LDA transition also appears to be kinetically controlled.
Collapse
|
|
23 |
124 |
10
|
Loerting T, Tautermann C, Kroemer RT, Kohl I, Hallbrucker A, Mayer E, Liedl KR. On the Surprising Kinetic Stability of Carbonic Acid (H(2)CO(3)) The work was supported in part by grants of the Austrian Academy of Sciences (T.L.) and the Austrian Science Fund (P13930-PHY). Angew Chem Int Ed Engl 2000; 39:891-894. [PMID: 10760883 DOI: 10.1002/(sici)1521-3773(20000303)39:5<891::aid-anie891>3.0.co;2-e] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
25 |
122 |
11
|
Bowron DT, Finney JL, Hallbrucker A, Kohl I, Loerting T, Mayer E, Soper AK. The local and intermediate range structures of the five amorphous ices at 80K and ambient pressure: A Faber-Ziman and Bhatia-Thornton analysis. J Chem Phys 2006; 125:194502. [PMID: 17129118 DOI: 10.1063/1.2378921] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using isotope substitution neutron scattering data, we present a detailed structural analysis of the short and intermediate range structures of the five known forms of amorphous ice. Two of the lower density forms--amorphous solid water and hyperquenched glassy water--have a structure very similar to each other and to low density amorphous ice, a structure which closely resembles a disordered, tetrahedrally coordinated, fully hydrogen bonded network. High density and very high density amorphous ices retain this tetrahedral organization at short range, but show significant differences beyond about 3.1 A from a typical water oxygen. The first diffraction peak in all structures is seen to be solely a function of the intermolecular organization. The short range connectivity in the two higher density forms is more homogeneous, while the hydrogen site disorder in these forms is greater. The low Q behavior of the structure factors indicates no significant density or concentration fluctuations over the length scale probed. We conclude that these three latter forms of ice are structurally distinct. Finally, the x-ray structure factors for all five amorphous systems are calculated for comparison with other studies.
Collapse
|
|
19 |
108 |
12
|
Winkel K, Mayer E, Loerting T. Equilibrated High-Density Amorphous Ice and Its First-Order Transition to the Low-Density Form. J Phys Chem B 2011; 115:14141-8. [DOI: 10.1021/jp203985w] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
14 |
105 |
13
|
McNeill VF, Loerting T, Geiger FM, Trout BL, Molina MJ. Hydrogen chloride-induced surface disordering on ice. Proc Natl Acad Sci U S A 2006; 103:9422-7. [PMID: 16769884 PMCID: PMC1480423 DOI: 10.1073/pnas.0603494103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Characterizing the interaction of hydrogen chloride (HCl) with polar stratospheric cloud ice particles is essential for understanding the processes responsible for ozone depletion. We studied the interaction of gas-phase HCl with ice between 243 and 186 K by using (i) ellipsometry to monitor the ice surface and (ii) coated-wall flow tube experiments, both with chemical ionization mass spectrometry detection of the gas phase. We show that trace amounts of HCl induce formation of a disordered region, or quasi-liquid layer, at the ice surface at stratospheric temperatures. We also show that surface disordering enhances the chlorine activation reaction of HCl with chlorine nitrate (ClONO(2)) and also enhances acetic acid (CH(3)COOH) adsorption. These results impact our understanding of the chemistry and physics of ice particles in the atmosphere.
Collapse
|
research-article |
19 |
79 |
14
|
Laksmono H, McQueen T, Sellberg JA, Loh ND, Huang C, Schlesinger D, Sierra RG, Hampton CY, Nordlund D, Beye M, Martin A, Barty A, Seibert MM, Messerschmidt M, Williams G, Boutet S, Amann-Winkel K, Loerting T, Pettersson LM, Bogan MJ, Nilsson A. Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land". J Phys Chem Lett 2015; 6:2826-2832. [PMID: 26207172 PMCID: PMC4507474 DOI: 10.1021/acs.jpclett.5b01164] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/02/2015] [Indexed: 05/30/2023]
Abstract
We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit TH by cooling micrometer-sized droplets (microdroplets) evaporatively at 103-104 K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water's diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 106-107 K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed "fragile-to-strong" transition anomaly in water.
Collapse
|
rapid-communication |
10 |
78 |
15
|
Loerting T, Liedl KR. Toward elimination of discrepancies between theory and experiment: the rate constant of the atmospheric conversion of SO3 to H2SO4. Proc Natl Acad Sci U S A 2000; 97:8874-8. [PMID: 10922048 PMCID: PMC16788 DOI: 10.1073/pnas.97.16.8874] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hydration rate constant of sulfur trioxide to sulfuric acid is shown to depend sensitively on water vapor pressure. In the 1:1 SO3-H2O complex, the rate is predicted to be slower by about 25 orders of magnitude compared with laboratory results [Lovejoy, E. R., Hanson, D. R. & Huey, L. G. (1996) J. Phys. Chem. 100, 19911-19916; Jayne, J. T., Poschl, U., Chen, Y.-m., Dai, D., Molina, L. T., Worsnop, D. R., Kolb, C. E. & Molina, M. J. (1997) J. Phys. Chem. A 101, 10000-10011]. This discrepancy is removed mostly by allowing a second and third water molecule to participate. An asynchronous water-mediated double proton transfer concerted with the nucleophilic attack and a double proton transfer accompanied by a transient H3O+ rotation are predicted to be the fastest reaction mechanisms. Comparison of the predicted negative apparent "activation" energies with the experimental finding indicates that in our atmosphere, different reaction paths involving two and three water molecules are taken in the process of forming sulfate aerosols and consequently acid rain.
Collapse
|
research-article |
25 |
76 |
16
|
Tautermann CS, Voegele AF, Loerting T, Liedl KR. The optimal tunneling path for the proton transfer in malonaldehyde. J Chem Phys 2002. [DOI: 10.1063/1.1488924] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
23 |
70 |
17
|
Tautermann CS, Voegele AF, Loerting T, Kohl I, Hallbrucker A, Mayer E, Liedl KR. Towards the experimental decomposition rate of carbonic acid (H2CO3) in aqueous solution. Chemistry 2002; 8:66-73. [PMID: 11822465 DOI: 10.1002/1521-3765(20020104)8:1<66::aid-chem66>3.0.co;2-f] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dry carbonic acid has recently been shown to be kinetically stable even at room temperature. Addition of water molecules reduces this stability significantly, and the decomposition (H2CO3 + nH2O --> (n+1)H2O + CO2) is extremely accelerated for n = 1, 2, 3. By including two water molecules, a reaction rate that is a factor of 3000 below the experimental one (10 s(-1)) at room temperature was found. In order to further remove the gap between experiment and theory, we increased the number of water molecules involved to 3 and took into consideration different mechanisms for thorough elucidation of the reaction. A mechanism whereby the reaction proceedes via a six-membered transition state turns out to be the most efficient one over the whole examined temperature range. The determined reaction rates approach experimental values in aqueous solution reasonably well; most especially, a significant increase in the rates in comparison to the decomposition reaction with fewer water molecules is found. Further agreement with experiment is found in the kinetic isotope effects (KIE) for the deuterated species. For water-free carbonic acid, the KIE (i.e., kH2CO3/kD2CO3) for the decomposition reaction is predicted to be 220 at 300 K, whereas it amounts to 2.2-3.0 for the investigated mechanisms including three water molecules. This result is therefore reasonably close to the experimental value of 2 (at 300 K). These KIEs are in much better accordance with the experiment than the KIE for decomposition with fewer water entities.
Collapse
|
|
23 |
70 |
18
|
Kohl I, Bachmann L, Hallbrucker A, Mayer E, Loerting T. Liquid-like relaxation in hyperquenched water at ≤140 K. Phys Chem Chem Phys 2005; 7:3210-20. [PMID: 16240034 DOI: 10.1039/b507651j] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micrometre-sized water droplets were hyperquenched on a solid substrate held at selected temperatures between 150 and 77 K. These samples were characterized by differential scanning calorimetry (DSC) and X-ray diffraction. 140 K is the upper temperature limit to obtain mainly amorphous samples on deposition within 16-37 min. DSC scans of glassy water prepared at 140 K exhibit on heating an endothermic step assignable to glass --> liquid transition, with an onset temperature (T(g)) of 136 +/- 2 K on heating at 30 K min(-1). For T(g) of approximately 136 K, water relaxes during deposition at 140 K for 16 min, moving towards metastable equilibrium. The apparent increase in heat capacity (deltaC(p)) depends, for a given rate of heating, on the rate of prior cooling, and a so-called overshoot develops. 140 K deposits cooled at a rate of 5, 2 or 0.2 K min(-1) show on subsequent reheating at a rate of 30 K min(-1) deltaC(p) values of 0.7, 1.1 and 1.7 J K(-1) mol(-1). This is consistent with liquid-like relaxation at 140 K, and it indicates that different limiting structures are obtained. When these 140 K deposits are in addition annealed at 130 K for 90 min, after slow-cooling at 5, 2 or 0.2 K min(-1), their deltaC(p) values on subsequent reheating are similar to those of hyperquenched glassy water (HGW) deposits made at 77 K and annealed at 130 K. Thus, the previous deltaC(p) value of 1.6 J K(-1) mol(-1) obtained with glassy water samples annealed at 130 K (A. Hallbrucker, E. Mayer and G. P. Johari, Philos. Mag. B, 1989, 60, 179) must be an upper-bound limit because it contains a contribution from an overshoot. The T(g) value of 140 K deposits, which had relaxed during deposition towards metastable equilibrium, is within experimental error the same as that of 140 K deposits annealed in addition at 130 K. This contradicts Yue and Angell's (Y. Yue and C. Angell, Nature, 2004, 427, 717) claim for assigning the endothermic step to a sub-T(g) peak or a "shadow" T(g). Our new data further support the proposed fragile-to-strong transition on cooling liquid water from ambient temperature into the deeply supercooled and glassy state. We also describe in detail experimental aspects to obtain HGW specimens, show the ultrastructure of the deposits using electron microscopy, and discuss the mechanism of our hyperquenching method.
Collapse
|
|
20 |
69 |
19
|
Loerting T, Schustereder W, Winkel K, Salzmann CG, Kohl I, Mayer E. Amorphous ice: stepwise formation of very-high-density amorphous ice from low-density amorphous ice at 125 K. PHYSICAL REVIEW LETTERS 2006; 96:025702. [PMID: 16486598 DOI: 10.1103/physrevlett.96.025702] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Indexed: 05/06/2023]
Abstract
On compressing low-density amorphous ice (LDA) at 125 K up to 1.6 GPa, two distinct density steps accompanied by heat evolution are observable in pressure-density curves. Samples recovered to 77 K and 1 bar after the first and second steps show the x-ray diffraction pattern of high-density amorphous ice (HDA) and very HDA (VHDA), respectively. The compression of the once formed HDA takes place linearly in density up to 0.95 GPa, where nonlinear densification and HDA --> VHDA conversion is initiated. This implies a stepwise formation process LDA--> HDA --> VHDA at 125 K, which is to the best of our knowledge the first observation of a stepwise amorphous-amorphous-amorphous transformation sequence. We infer that the relation of HDA and VHDA is very similar to the relation between LDA and HDA except for a higher activation barrier between the former. We discuss the two options of thermodynamic versus kinetic origin of the phenomenon.
Collapse
|
|
19 |
67 |
20
|
Loerting T, Liedl KR. Water-Mediated Proton Transfer: A Mechanistic Investigation on the Example of the Hydration of Sulfur Oxides. J Phys Chem A 2001. [DOI: 10.1021/jp0038862] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
24 |
66 |
21
|
Elsaesser MS, Winkel K, Mayer E, Loerting T. Reversibility and isotope effect of the calorimetric glass → liquid transition of low-density amorphous ice. Phys Chem Chem Phys 2010; 12:708-12. [DOI: 10.1039/b917662d] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
15 |
66 |
22
|
Sabolović J, Tautermann CS, Loerting T, Liedl KR. Modeling anhydrous and aqua copper(II) amino acid complexes: a new molecular mechanics force field parametrization based on quantum chemical studies and experimental crystal data. Inorg Chem 2003; 42:2268-79. [PMID: 12665360 DOI: 10.1021/ic025967d] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper presents the vacuum structures of aquacopper(II) bis(amino acid) complexes with glycine, sarcosine, N,N-dimethylglycine, and N-tert-butyl-N-methylglycine estimated using the B3LYP method. The differences between the B3LYP vacuum structures and experimental crystal structures suggested considerable influence of crystal lattice packing effects on the changes in the complexes' geometries. A previously developed molecular mechanics force field for modeling anhydrous copper(II) amino acidates was reoptimized to simulate these changes and predict the properties of both trans and cis anhydrous and aqua copper(II) amino acid complexes. The modeling included experimental molecular and crystal structures of 13 anhydrous and 10 aqua copper(II) amino acidates with the same atom types (Cu(II), C, H, N, and O) but various copper(II) coordination polyhedron geometries, crystal symmetries, and intermolecular interactions. The empirical parameters of the selected potential energy functions were optimized on the B3LYP vacuum copper(II) coordination geometries of three anhydrous copper(II) amino acidates and on experimental crystalline internal coordinates and unit cell dimensions of six anhydrous and six aqua copper(II) amino acid complexes. The respective equilibrium structures were calculated in vacuo and in simulated crystalline environment. The efficacy of the final force field, FFW, was examined. The total root-mean-square deviations between the experimental and theoretical crystal values were 0.018 A in the bond lengths, 2.2 degrees in the valence angles, 5.5 degrees in the torsion angles, and 0.395 A in the unit cell lengths. FFW reproduced the unit cell volumes in the range from -8.1 to 9.6%. The means of Cu to axial water oxygen distances were 2.4 +/- 0.1 A (experiment) and 2.6 +/- 0.1 A (FFW). This paper describes the ability of the molecular mechanics model and FFW force field to simulate the flexibility of the metal coordination polyhedron. The new force field proved effective in predicting the most stable molecular conformation of copper(II) amino acidato systems in vacuo.
Collapse
|
|
22 |
65 |
23
|
Loerting T, Liedl KR. Toward Elimination of Discrepancies between Theory and Experiment: Double Proton Transfer in Dimers of Carboxylic Acids. J Am Chem Soc 1998. [DOI: 10.1021/ja9817390] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
|
27 |
62 |
24
|
Kohl I, Bachmann L, Mayer E, Hallbrucker A, Loerting T. Glass transition in hyperquenched water? Nature 2005; 435:E1; discussion E1-2. [PMID: 15917753 DOI: 10.1038/nature03707] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been unclear whether amorphous glassy water heated to around 140-150 K remains glassy until it crystallizes or whether instead it turns into a supercooled and very viscous liquid. Yue and Angell compare the behaviour of glassy water under these conditions to that of hyperquenched inorganic glasses, and claim that water stays glassy as it heats up to its crystallization point; they also find a 'hidden' glass-to-liquid transition at about 169 K. Here we use differential scanning calorimetry (DSC) heating to show that hyperquenched water deposited at 140 K behaves as an ultraviscous liquid, the limiting structure of which depends on the cooling rate--as predicted by theoretical analysis of the liquid-to-glass transition. Our findings are consistent with a glass-to-liquid transition-onset temperature (T(g)) in the region of 136 K (refs 3,4), and they indicate that measurements of the liquid's properties may clarify the anomalous properties of supercooled water.
Collapse
|
|
20 |
60 |
25
|
Giovambattista N, Loerting T, Lukanov BR, Starr FW. Interplay of the glass transition and the liquid-liquid phase transition in water. Sci Rep 2012; 2:390. [PMID: 22550566 PMCID: PMC3340608 DOI: 10.1038/srep00390] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/18/2012] [Indexed: 12/28/2022] Open
Abstract
Water has multiple glassy states, often called amorphous ices. Low-density (LDA) and high-density (HDA) amorphous ice are separated by a dramatic, first-order like phase transition. It has been argued that the LDA-HDA transformation connects to a first-order liquid-liquid phase transition (LLPT) above the glass transition temperature T(g). Direct experimental evidence of the LLPT is challenging to obtain, since the LLPT occurs at conditions where water rapidly crystallizes. In this work, we explore the implications of a LLPT on the pressure dependence of T(g)(P) for LDA and HDA by performing computer simulations of two water models - one with a LLPT, and one without. In the absence of a LLPT, T(g)(P) for all glasses nearly coincide. When there is a LLPT, different glasses exhibit dramatically different T(g)(P) which are directly linked with the LLPT. Available experimental data for T(g)(P) are only consistent with the scenario including a LLPT.
Collapse
|
Journal Article |
13 |
59 |