1
|
Abstract
BACKGROUND The worldwide epidemic of childhood obesity is progressing at an alarming rate. Risk factors for coronary heart disease (CHD) are already identifiable in overweight children. The severity of the long-term effects of excess childhood weight on CHD, however, remains unknown. METHODS We investigated the association between body-mass index (BMI) in childhood (7 through 13 years of age) and CHD in adulthood (25 years of age or older), with and without adjustment for birth weight. The subjects were a cohort of 276,835 Danish schoolchildren for whom measurements of height and weight were available. CHD events were ascertained by linkage to national registers. Cox regression analyses were performed. RESULTS In 5,063,622 person-years of follow-up, 10,235 men and 4318 women for whom childhood BMI data were available received a diagnosis of CHD or died of CHD as adults. The risk of any CHD event, a nonfatal event, and a fatal event among adults was positively associated with BMI at 7 to 13 years of age for boys and 10 to 13 years of age for girls. The associations were linear for each age, and the risk increased across the entire BMI distribution. Furthermore, the risk increased as the age of the child increased. Adjustment for birth weight strengthened the results. CONCLUSIONS Higher BMI during childhood is associated with an increased risk of CHD in adulthood. The associations are stronger in boys than in girls and increase with the age of the child in both sexes. Our findings suggest that as children are becoming heavier worldwide, greater numbers of them are at risk of having CHD in adulthood.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
1088 |
2
|
Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, Turley P, Chen GB, Emilsson V, Meddens SFW, Oskarsson S, Pickrell JK, Thom K, Timshel P, de Vlaming R, Abdellaoui A, Ahluwalia TS, Bacelis J, Baumbach C, Bjornsdottir G, Brandsma JH, Pina Concas M, Derringer J, Furlotte NA, Galesloot TE, Girotto G, Gupta R, Hall LM, Harris SE, Hofer E, Horikoshi M, Huffman JE, Kaasik K, Kalafati IP, Karlsson R, Kong A, Lahti J, van der Lee SJ, deLeeuw C, Lind PA, Lindgren KO, Liu T, Mangino M, Marten J, Mihailov E, Miller MB, van der Most PJ, Oldmeadow C, Payton A, Pervjakova N, Peyrot WJ, Qian Y, Raitakari O, Rueedi R, Salvi E, Schmidt B, Schraut KE, Shi J, Smith AV, Poot RA, St Pourcain B, Teumer A, Thorleifsson G, Verweij N, Vuckovic D, Wellmann J, Westra HJ, Yang J, Zhao W, Zhu Z, Alizadeh BZ, Amin N, Bakshi A, Baumeister SE, Biino G, Bønnelykke K, Boyle PA, Campbell H, Cappuccio FP, Davies G, De Neve JE, Deloukas P, Demuth I, Ding J, Eibich P, Eisele L, Eklund N, Evans DM, Faul JD, Feitosa MF, Forstner AJ, Gandin I, Gunnarsson B, Halldórsson BV, Harris TB, Heath AC, Hocking LJ, Holliday EG, Homuth G, Horan MA, et alOkbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, Turley P, Chen GB, Emilsson V, Meddens SFW, Oskarsson S, Pickrell JK, Thom K, Timshel P, de Vlaming R, Abdellaoui A, Ahluwalia TS, Bacelis J, Baumbach C, Bjornsdottir G, Brandsma JH, Pina Concas M, Derringer J, Furlotte NA, Galesloot TE, Girotto G, Gupta R, Hall LM, Harris SE, Hofer E, Horikoshi M, Huffman JE, Kaasik K, Kalafati IP, Karlsson R, Kong A, Lahti J, van der Lee SJ, deLeeuw C, Lind PA, Lindgren KO, Liu T, Mangino M, Marten J, Mihailov E, Miller MB, van der Most PJ, Oldmeadow C, Payton A, Pervjakova N, Peyrot WJ, Qian Y, Raitakari O, Rueedi R, Salvi E, Schmidt B, Schraut KE, Shi J, Smith AV, Poot RA, St Pourcain B, Teumer A, Thorleifsson G, Verweij N, Vuckovic D, Wellmann J, Westra HJ, Yang J, Zhao W, Zhu Z, Alizadeh BZ, Amin N, Bakshi A, Baumeister SE, Biino G, Bønnelykke K, Boyle PA, Campbell H, Cappuccio FP, Davies G, De Neve JE, Deloukas P, Demuth I, Ding J, Eibich P, Eisele L, Eklund N, Evans DM, Faul JD, Feitosa MF, Forstner AJ, Gandin I, Gunnarsson B, Halldórsson BV, Harris TB, Heath AC, Hocking LJ, Holliday EG, Homuth G, Horan MA, Hottenga JJ, de Jager PL, Joshi PK, Jugessur A, Kaakinen MA, Kähönen M, Kanoni S, Keltigangas-Järvinen L, Kiemeney LALM, Kolcic I, Koskinen S, Kraja AT, Kroh M, Kutalik Z, Latvala A, Launer LJ, Lebreton MP, Levinson DF, Lichtenstein P, Lichtner P, Liewald DCM, Loukola A, Madden PA, Mägi R, Mäki-Opas T, Marioni RE, Marques-Vidal P, Meddens GA, McMahon G, Meisinger C, Meitinger T, Milaneschi Y, Milani L, Montgomery GW, Myhre R, Nelson CP, Nyholt DR, Ollier WER, Palotie A, Paternoster L, Pedersen NL, Petrovic KE, Porteous DJ, Räikkönen K, Ring SM, Robino A, Rostapshova O, Rudan I, Rustichini A, Salomaa V, Sanders AR, Sarin AP, Schmidt H, Scott RJ, Smith BH, Smith JA, Staessen JA, Steinhagen-Thiessen E, Strauch K, Terracciano A, Tobin MD, Ulivi S, Vaccargiu S, Quaye L, van Rooij FJA, Venturini C, Vinkhuyzen AAE, Völker U, Völzke H, Vonk JM, Vozzi D, Waage J, Ware EB, Willemsen G, Attia JR, Bennett DA, Berger K, Bertram L, Bisgaard H, Boomsma DI, Borecki IB, Bültmann U, Chabris CF, Cucca F, Cusi D, Deary IJ, Dedoussis GV, van Duijn CM, Eriksson JG, Franke B, Franke L, Gasparini P, Gejman PV, Gieger C, Grabe HJ, Gratten J, Groenen PJF, Gudnason V, van der Harst P, Hayward C, Hinds DA, Hoffmann W, Hyppönen E, Iacono WG, Jacobsson B, Järvelin MR, Jöckel KH, Kaprio J, Kardia SLR, Lehtimäki T, Lehrer SF, Magnusson PKE, Martin NG, McGue M, Metspalu A, Pendleton N, Penninx BWJH, Perola M, Pirastu N, Pirastu M, Polasek O, Posthuma D, Power C, Province MA, Samani NJ, Schlessinger D, Schmidt R, Sørensen TIA, Spector TD, Stefansson K, Thorsteinsdottir U, Thurik AR, Timpson NJ, Tiemeier H, Tung JY, Uitterlinden AG, Vitart V, Vollenweider P, Weir DR, Wilson JF, Wright AF, Conley DC, Krueger RF, Davey Smith G, Hofman A, Laibson DI, Medland SE, Meyer MN, Yang J, Johannesson M, Visscher PM, Esko T, Koellinger PD, Cesarini D, Benjamin DJ. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 2016; 533:539-42. [PMID: 27225129 PMCID: PMC4883595 DOI: 10.1038/nature17671] [Show More Authors] [Citation(s) in RCA: 795] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 03/16/2016] [Indexed: 01/15/2023]
Abstract
Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
795 |
3
|
Vestbo J, Sørensen T, Lange P, Brix A, Torre P, Viskum K. Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 1999; 353:1819-23. [PMID: 10359405 DOI: 10.1016/s0140-6736(98)10019-3] [Citation(s) in RCA: 490] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Little is known about the long-term efficacy of inhaled corticosteroids in chronic obstructive pulmonary disease (COPD). We investigated the efficacy of inhaled budesonide on decline in lung function and respiratory symptoms in a 3-year placebo-controlled study of patients with COPD. METHODS We used a parallel-group, randomised, double-blind, placebo-controlled design in a singlecentre study, nested in a continuing epidemiological survey (the Copenhagen City Heart Study). Inclusion criteria were as follows: no asthma; a ratio of forced expiratory volume in 1 s (FEV1) and vital capacity of 0.7 or less; FEV1 which showed no response (<15% change) to 1 mg inhaled terbutaline or prednisolone 37.5 mg orally once daily for 10 days. 290 patients were randomly assigned budesonide, 800 microg plus 400 microg daily for 6 months followed by 400 microg twice daily for 30 months, or placebo for 36 months. The mean age of the participants was 59 years and the mean FEV1 2.37 L or 86% of predicted. The main outcome measure was rate of FEV1 decline. Analyses were by intention to treat. FINDINGS The crude rates of FEV1 decline were slightly smaller than expected (placebo group 41.8 mL per year, budesonide group 45.1 mL per year). The estimated rates of decline from the regression model did not differ significantly (49.1 mL vs 46.0 mL per year; difference 3.1 mL per year [95% CI -12.8 to 19.0]; p=0.7). Before the study, the minimum relevant difference was defined as 20 mL per year; this difference was outside the 95% CI. No effect of inhaled budesonide was seen on respiratory symptoms. 316 exacerbations occurred during the study period, 155 in the budesonide group and 161 in the placebo group. Treatment was well tolerated. INTERPRETATION Inhaled budesonide was of no clinical benefit in COPD patients recruited from the general population by screening. We question the role of long-term inhaled corticosteroids in the treatment of mild to moderate COPD.
Collapse
|
Clinical Trial |
26 |
490 |
4
|
Euling SY, Herman-Giddens ME, Lee PA, Selevan SG, Juul A, Sørensen TIA, Dunkel L, Himes JH, Teilmann G, Swan SH. Examination of US puberty-timing data from 1940 to 1994 for secular trends: panel findings. Pediatrics 2008; 121 Suppl 3:S172-91. [PMID: 18245511 DOI: 10.1542/peds.2007-1813d] [Citation(s) in RCA: 437] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Whether children, especially girls, are entering and progressing through puberty earlier today than in the mid-1900s has been debated. Secular trend analysis, based on available data, is limited by data comparability among studies in different populations, in different periods of time, and using different methods. As a result, conclusions from data comparisons have not been consistent. An expert panel was asked to evaluate the weight of evidence for whether the data, collected from 1940 to 1994, are sufficient to suggest or establish a secular trend in the timing of puberty markers in US boys or girls. A majority of the panelists agreed that data are sufficient to suggest a trend toward an earlier breast development onset and menarche in girls but not for other female pubertal markers. A minority of panelists concluded that the current data on girls' puberty timing for any marker are insufficient. Almost all panelists concluded, on the basis of few studies and reliability issues of some male puberty markers, that current data for boys are insufficient to evaluate secular trends in male pubertal development. The panel agreed that altered puberty timing should be considered an adverse effect, although the magnitude of change considered adverse was not assessed. The panel recommended (1) additional analyses of existing puberty-timing data to examine secular trends and trends in the temporal sequence of pubertal events; (2) the development of biomarkers for pubertal timing and methods to discriminate fat versus breast tissue, and (3) establishment of cohorts to examine pubertal markers longitudinally within the same individuals.
Collapse
|
Comparative Study |
17 |
437 |
5
|
Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, Willems SM, Wu Y, Zhang X, Horikoshi M, Boutin TS, Mägi R, Waage J, Li-Gao R, Chan KHK, Yao J, Anasanti MD, Chu AY, Claringbould A, Heikkinen J, Hong J, Hottenga JJ, Huo S, Kaakinen MA, Louie T, März W, Moreno-Macias H, Ndungu A, Nelson SC, Nolte IM, North KE, Raulerson CK, Ray D, Rohde R, Rybin D, Schurmann C, Sim X, Southam L, Stewart ID, Wang CA, Wang Y, Wu P, Zhang W, Ahluwalia TS, Appel EVR, Bielak LF, Brody JA, Burtt NP, Cabrera CP, Cade BE, Chai JF, Chai X, Chang LC, Chen CH, Chen BH, Chitrala KN, Chiu YF, de Haan HG, Delgado GE, Demirkan A, Duan Q, Engmann J, Fatumo SA, Gayán J, Giulianini F, Gong JH, Gustafsson S, Hai Y, Hartwig FP, He J, Heianza Y, Huang T, Huerta-Chagoya A, Hwang MY, Jensen RA, Kawaguchi T, Kentistou KA, Kim YJ, Kleber ME, Kooner IK, Lai S, Lange LA, Langefeld CD, Lauzon M, Li M, Ligthart S, Liu J, Loh M, Long J, Lyssenko V, Mangino M, Marzi C, Montasser ME, Nag A, Nakatochi M, Noce D, Noordam R, Pistis G, Preuss M, Raffield L, et alChen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, Willems SM, Wu Y, Zhang X, Horikoshi M, Boutin TS, Mägi R, Waage J, Li-Gao R, Chan KHK, Yao J, Anasanti MD, Chu AY, Claringbould A, Heikkinen J, Hong J, Hottenga JJ, Huo S, Kaakinen MA, Louie T, März W, Moreno-Macias H, Ndungu A, Nelson SC, Nolte IM, North KE, Raulerson CK, Ray D, Rohde R, Rybin D, Schurmann C, Sim X, Southam L, Stewart ID, Wang CA, Wang Y, Wu P, Zhang W, Ahluwalia TS, Appel EVR, Bielak LF, Brody JA, Burtt NP, Cabrera CP, Cade BE, Chai JF, Chai X, Chang LC, Chen CH, Chen BH, Chitrala KN, Chiu YF, de Haan HG, Delgado GE, Demirkan A, Duan Q, Engmann J, Fatumo SA, Gayán J, Giulianini F, Gong JH, Gustafsson S, Hai Y, Hartwig FP, He J, Heianza Y, Huang T, Huerta-Chagoya A, Hwang MY, Jensen RA, Kawaguchi T, Kentistou KA, Kim YJ, Kleber ME, Kooner IK, Lai S, Lange LA, Langefeld CD, Lauzon M, Li M, Ligthart S, Liu J, Loh M, Long J, Lyssenko V, Mangino M, Marzi C, Montasser ME, Nag A, Nakatochi M, Noce D, Noordam R, Pistis G, Preuss M, Raffield L, Rasmussen-Torvik LJ, Rich SS, Robertson NR, Rueedi R, Ryan K, Sanna S, Saxena R, Schraut KE, Sennblad B, Setoh K, Smith AV, Sparsø T, Strawbridge RJ, Takeuchi F, Tan J, Trompet S, van den Akker E, van der Most PJ, Verweij N, Vogel M, Wang H, Wang C, Wang N, Warren HR, Wen W, Wilsgaard T, Wong A, Wood AR, Xie T, Zafarmand MH, Zhao JH, Zhao W, Amin N, Arzumanyan Z, Astrup A, Bakker SJL, Baldassarre D, Beekman M, Bergman RN, Bertoni A, Blüher M, Bonnycastle LL, Bornstein SR, Bowden DW, Cai Q, Campbell A, Campbell H, Chang YC, de Geus EJC, Dehghan A, Du S, Eiriksdottir G, Farmaki AE, Frånberg M, Fuchsberger C, Gao Y, Gjesing AP, Goel A, Han S, Hartman CA, Herder C, Hicks AA, Hsieh CH, Hsueh WA, Ichihara S, Igase M, Ikram MA, Johnson WC, Jørgensen ME, Joshi PK, Kalyani RR, Kandeel FR, Katsuya T, Khor CC, Kiess W, Kolcic I, Kuulasmaa T, Kuusisto J, Läll K, Lam K, Lawlor DA, Lee NR, Lemaitre RN, Li H, Lin SY, Lindström J, Linneberg A, Liu J, Lorenzo C, Matsubara T, Matsuda F, Mingrone G, Mooijaart S, Moon S, Nabika T, Nadkarni GN, Nadler JL, Nelis M, Neville MJ, Norris JM, Ohyagi Y, Peters A, Peyser PA, Polasek O, Qi Q, Raven D, Reilly DF, Reiner A, Rivideneira F, Roll K, Rudan I, Sabanayagam C, Sandow K, Sattar N, Schürmann A, Shi J, Stringham HM, Taylor KD, Teslovich TM, Thuesen B, Timmers PRHJ, Tremoli E, Tsai MY, Uitterlinden A, van Dam RM, van Heemst D, van Hylckama Vlieg A, van Vliet-Ostaptchouk JV, Vangipurapu J, Vestergaard H, Wang T, Willems van Dijk K, Zemunik T, Abecasis GR, Adair LS, Aguilar-Salinas CA, Alarcón-Riquelme ME, An P, Aviles-Santa L, Becker DM, Beilin LJ, Bergmann S, Bisgaard H, Black C, Boehnke M, Boerwinkle E, Böhm BO, Bønnelykke K, Boomsma DI, Bottinger EP, Buchanan TA, Canouil M, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Cheng CY, Collins FS, Correa A, Cucca F, de Silva HJ, Dedoussis G, Elmståhl S, Evans MK, Ferrannini E, Ferrucci L, Florez JC, Franks PW, Frayling TM, Froguel P, Gigante B, Goodarzi MO, Gordon-Larsen P, Grallert H, Grarup N, Grimsgaard S, Groop L, Gudnason V, Guo X, Hamsten A, Hansen T, Hayward C, Heckbert SR, Horta BL, Huang W, Ingelsson E, James PS, Jarvelin MR, Jonas JB, Jukema JW, Kaleebu P, Kaplan R, Kardia SLR, Kato N, Keinanen-Kiukaanniemi SM, Kim BJ, Kivimaki M, Koistinen HA, Kooner JS, Körner A, Kovacs P, Kuh D, Kumari M, Kutalik Z, Laakso M, Lakka TA, Launer LJ, Leander K, Li H, Lin X, Lind L, Lindgren C, Liu S, Loos RJF, Magnusson PKE, Mahajan A, Metspalu A, Mook-Kanamori DO, Mori TA, Munroe PB, Njølstad I, O'Connell JR, Oldehinkel AJ, Ong KK, Padmanabhan S, Palmer CNA, Palmer ND, Pedersen O, Pennell CE, Porteous DJ, Pramstaller PP, Province MA, Psaty BM, Qi L, Raffel LJ, Rauramaa R, Redline S, Ridker PM, Rosendaal FR, Saaristo TE, Sandhu M, Saramies J, Schneiderman N, Schwarz P, Scott LJ, Selvin E, Sever P, Shu XO, Slagboom PE, Small KS, Smith BH, Snieder H, Sofer T, Sørensen TIA, Spector TD, Stanton A, Steves CJ, Stumvoll M, Sun L, Tabara Y, Tai ES, Timpson NJ, Tönjes A, Tuomilehto J, Tusie T, Uusitupa M, van der Harst P, van Duijn C, Vitart V, Vollenweider P, Vrijkotte TGM, Wagenknecht LE, Walker M, Wang YX, Wareham NJ, Watanabe RM, Watkins H, Wei WB, Wickremasinghe AR, Willemsen G, Wilson JF, Wong TY, Wu JY, Xiang AH, Yanek LR, Yengo L, Yokota M, Zeggini E, Zheng W, Zonderman AB, Rotter JI, Gloyn AL, McCarthy MI, Dupuis J, Meigs JB, Scott RA, Prokopenko I, Leong A, Liu CT, Parker SCJ, Mohlke KL, Langenberg C, Wheeler E, Morris AP, Barroso I. The trans-ancestral genomic architecture of glycemic traits. Nat Genet 2021; 53:840-860. [PMID: 34059833 PMCID: PMC7610958 DOI: 10.1038/s41588-021-00852-9] [Show More Authors] [Citation(s) in RCA: 432] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
432 |
6
|
NCD Risk Factor Collaboration (NCD-RisC), Bixby H, Bentham J, Zhou B, Di Cesare M, Paciorek CJ, Bennett JE, Taddei C, Stevens GA, Rodriguez-Martinez A, Carrillo-Larco RM, Khang YH, Sorić M, Gregg EW, Miranda JJ, Bhutta ZA, Savin S, Sophiea MK, Iurilli MLC, Solomon BD, Cowan MJ, Riley LM, Danaei G, Bovet P, Chirita-Emandi A, Hambleton IR, Hayes AJ, Ikeda N, Kengne AP, Laxmaiah A, Li Y, McGarvey ST, Mostafa A, Neovius M, Starc G, Zainuddin AA, Abarca-Gómez L, Abdeen ZA, Abdrakhmanova S, Abdul Ghaffar S, Abdul Hamid Z, Abubakar Garba J, Abu-Rmeileh NM, Acosta-Cazares B, Adams RJ, Aekplakorn W, Afsana K, Agdeppa IA, Aguilar-Salinas CA, Agyemang C, Ahmad MH, Ahmad NA, Ahmadi N, Ahmadvand A, Ahrens W, Ajlouni K, AlBuhairan F, AlDhukair S, Al-Hazzaa HM, Ali MM, Ali O, Alkerwi A, Al-Othman AR, Al-Raddadi R, Alvarez-Pedrerol M, Aly E, Amarapurkar DN, Amouyel P, Amuzu A, Andersen LB, Anderssen SA, Ängquist LH, Anjana RM, Ansari-Moghaddam A, Aounallah-Skhiri H, Araújo J, Ariansen I, Aris T, Arku RE, Arlappa N, Aryal KK, Aspelund T, Assah FK, Assunção MCF, Aung MS, Auvinen J, Avdicová M, Azevedo A, Azizi F, Azmin M, Babu BV, Baharudin A, Bahijri S, Baker JL, Balakrishna N, Bamoshmoosh M, Banach M, Bandosz P, Banegas JR, Barbagallo CM, et alNCD Risk Factor Collaboration (NCD-RisC), Bixby H, Bentham J, Zhou B, Di Cesare M, Paciorek CJ, Bennett JE, Taddei C, Stevens GA, Rodriguez-Martinez A, Carrillo-Larco RM, Khang YH, Sorić M, Gregg EW, Miranda JJ, Bhutta ZA, Savin S, Sophiea MK, Iurilli MLC, Solomon BD, Cowan MJ, Riley LM, Danaei G, Bovet P, Chirita-Emandi A, Hambleton IR, Hayes AJ, Ikeda N, Kengne AP, Laxmaiah A, Li Y, McGarvey ST, Mostafa A, Neovius M, Starc G, Zainuddin AA, Abarca-Gómez L, Abdeen ZA, Abdrakhmanova S, Abdul Ghaffar S, Abdul Hamid Z, Abubakar Garba J, Abu-Rmeileh NM, Acosta-Cazares B, Adams RJ, Aekplakorn W, Afsana K, Agdeppa IA, Aguilar-Salinas CA, Agyemang C, Ahmad MH, Ahmad NA, Ahmadi N, Ahmadvand A, Ahrens W, Ajlouni K, AlBuhairan F, AlDhukair S, Al-Hazzaa HM, Ali MM, Ali O, Alkerwi A, Al-Othman AR, Al-Raddadi R, Alvarez-Pedrerol M, Aly E, Amarapurkar DN, Amouyel P, Amuzu A, Andersen LB, Anderssen SA, Ängquist LH, Anjana RM, Ansari-Moghaddam A, Aounallah-Skhiri H, Araújo J, Ariansen I, Aris T, Arku RE, Arlappa N, Aryal KK, Aspelund T, Assah FK, Assunção MCF, Aung MS, Auvinen J, Avdicová M, Azevedo A, Azizi F, Azmin M, Babu BV, Baharudin A, Bahijri S, Baker JL, Balakrishna N, Bamoshmoosh M, Banach M, Bandosz P, Banegas JR, Barbagallo CM, Barceló A, Barkat A, Barros AJD, Barros MVG, Bata I, Batieha AM, Batista RL, Battakova Z, Batyrbek A, Baur LA, Beaglehole R, Bel-Serrat S, Ben Romdhane H, Benedics J, Benet M, Berkinbayev S, Bernabe-Ortiz A, Bernotiene G, Bettiol H, Bhagyalaxmi A, Bharadwaj S, Bhargava SK, Bi H, Bi Y, Biehl A, Bika Lele EC, Bikbov M, Bista B, Bjelica DJ, Bjerregaard P, Bjertness E, Bjertness MB, Björkelund C, Blokstra A, Bo S, Bobak M, Boddy LM, Boehm BO, Boeing H, Boggia JG, Boissonnet CP, Bonaccio M, Bongard V, Bopp M, Borchini R, Borghs H, Braeckevelt L, Braeckman L, Bragt MCE, Brajkovich I, Branca F, Breckenkamp J, Breda J, Brenner H, Brewster LM, Brian GR, Brinduse L, Bruno G, Bueno-de-Mesquita HB, Bugge A, Buoncristiano M, Burazeri G, Burns C, Cabrera de León A, Cacciottolo J, Cai H, Cama T, Cameron C, Camolas J, Can G, Can G, Cândido APC, Cañete F, Capanzana MV, Capuano E, Capuano V, Cardoso VC, Carlsson AC, Carmuega E, Carvalho MJ, Casanueva FF, Casas JP, Caserta CA, Celikcan E, Censi L, Cesar JA, Chamukuttan S, Chan AW, Chan Q, Chaturvedi HK, Chaturvedi N, Che Abdul Rahim N, Chen CJ, Chen F, Chen H, Chen S, Chen Z, Cheng CY, Cheng YJ, Chetrit A, Chikova-Iscener E, Chiolero A, Chiou ST, Chirlaque MD, Cho B, Cho Y, Christensen K, Christofaro DG, Chudek J, Cifkova R, Cilia M, Cinteza E, Claessens F, Clarke J, Clays E, Concin H, Confortin SC, Cooper C, Coppinger TC, Costanzo S, Cottel D, Cowell C, Craig CL, Crampin AC, Crujeiras AB, Cruz JJ, Cucu A, Cui L, Dallongeville J, Damasceno A, Damsgaard CT, Dankner R, Dantoft TM, D’Arrigo G, Dasgupta P, Dastgiri S, Dauchet L, Davletov K, De Backer G, De Bacquer D, De Curtis A, de Gaetano G, De Henauw S, de Oliveira PD, De Ridder K, de Rooij SR, De Smedt D, Deepa M, Deev AD, Dehghan A, Delisle H, Delpeuch F, Dennison E, Deschamps V, Dhana K, Dhimal M, Di Castelnuovo AF, Dias-da-Costa JS, Diaz A, Dika Z, Djalalinia S, Do HTP, Dobson AJ, Donati MB, Donfrancesco C, Donoso SP, Döring A, Dorobantu M, Dorosty AR, d’Orsi E, Doua K, Drygas W, Duan JL, Duante CA, Duda RB, Duleva V, Dulskiene V, Dumith SC, Dzerve V, Dziankowska-Zaborszczyk E, Eddie R, Egbagbe EE, Eggertsen R, Eiben G, Ekelund U, El Ati J, Eldemire-Shearer D, Eliasen M, Elliott P, Engle-Stone R, Erasmus RT, Erem C, Eriksen L, Eriksson JG, Escobedo-de la Peña J, Evans A, Faeh D, Fall CH, Farrugia Sant’Angelo V, Farzadfar F, Fattahi MR, Felix-Redondo FJ, Ferguson TS, Fernandes RA, Fernández-Bergés D, Ferrante D, Ferrari M, Ferreccio C, Ferrer E, Ferrieres J, Fijalkowska A, Fink G, Fischer K, Flores EM, Föger B, Foo LH, Forslund AS, Forsner M, Fouad HM, Francis DK, Franco MC, Franco OH, Frontera G, Fuchs FD, Fuchs SC, Fujita Y, Furusawa T, Gaciong Z, Gafencu M, Galeone D, Galvano F, Gao J, Garcia-de-la-Hera M, Gareta D, Garnett SP, Gaspoz JM, Gasull M, Gates L, Gazzinelli A, Geiger H, Geleijnse JM, Ghanbari A, Ghasemi E, Ghasemian A, Gheorghe-Fronea OF, Giampaoli S, Gianfagna F, Gill TK, Giovannelli J, Gironella G, Giwercman A, Godos J, Gogen S, Goldsmith RA, Goltzman D, Gonçalves H, Gonzalez AR, Gonzalez-Chica DA, Gonzalez-Gross M, González-Leon M, González-Rivas JP, González-Villalpando ME, Gottrand F, Graça AP, Graff-Iversen S, Grafnetter D, Grajda A, Grammatikopoulou MG, Gregor RD, Grodzicki T, Grøntved A, Grosso G, Gruden G, Gu D, Gualdi-Russo E, Gudmundsson EF, Gudnason V, Guerrero R, Guessous I, Guimaraes AL, Gulliford MC, Gunnlaugsdottir J, Gunter M, Guo X, Guo Y, Gupta PC, Gupta R, Gureje O, Gurzkowska B, Gutierrez L, Gutzwiller F, Hadaegh F, Hadjigeorgiou CA, Haghshenas R, Halkjær J, Hardy R, Hari Kumar R, Hassapidou M, Hata J, Haugsgjerd T, He J, He Y, Heidinger-Felso R, Heinen M, Hejgaard T, Hendriks ME, Henriques A, Hernandez Cadena L, Herrala S, Herrera VM, Herter-Aeberli I, Heshmat R, Hill AG, Ho SY, Ho SC, Hobbs M, Hofman A, Hopman WM, Horimoto ARVR, Hormiga CM, Horta BL, Houti L, Howitt C, Htay TT, Htet AS, Htike MMT, Hu Y, Huerta JM, Huhtaniemi IT, Huidumac Petrescu C, Huisman M, Husseini A, Huu CN, Huybrechts I, Hwalla N, Hyska J, Iacoviello L, Ibarluzea JM, Ibrahim MM, Ibrahim Wong N, Ikram MA, Irazola VE, Ishida T, Islam M, Ismail AS, Ivkovic V, Iwasaki M, Jääskeläinen T, Jackson RT, Jacobs JM, Jaddou H, Jafar T, James K, Jamil KM, Jamrozik K, Janszky I, Janus E, Jarani J, Jarvelin MR, Jasienska G, Jelakovic A, Jelakovic B, Jennings G, Jeong SL, Jiang CQ, Jimenez RO, Joffres M, Johansson M, Jokelainen JJ, Jonas JB, Jørgensen T, Joshi P, Jovic DP, Józwiak J, Juolevi A, Jurak G, Juresa V, Kaaks R, Kafatos A, Kajantie EO, Kalter-Leibovici O, Kamaruddin NA, Kameli Y, Kapantais E, Karki KB, Kasaeian A, Katibeh M, Katz J, Katzmarzyk PT, Kauhanen J, Kaur P, Kavousi M, Kazakbaeva G, Keil U, Keinan-Boker L, Keinänen-Kiukaanniemi S, Kelishadi R, Kelleher C, Kemper HCG, Kerimkulova A, Kersting M, Key T, Khader YS, Khalili D, Khateeb M, Khaw KT, Kheiri B, Khosravi A, Khouw IMSL, Kiechl S, Kiechl-Kohlendorfer U, Killewo J, Kim J, Kim YY, Klimont J, Klumbiene J, Knoflach M, Koirala B, Kolle E, Kolsteren P, König J, Korpelainen R, Korrovits P, Korzycka M, Koskinen S, Kouda K, Kovacs VA, Kowlessur S, Koziel S, Kratzer W, Kriemler S, Kristensen PL, Krokstad S, Kromhout D, Kruger HS, Kubinova R, Kuciene R, Kuh D, Kujala UM, Kujundzic E, Kulaga Z, Kumar RK, Kunešová M, Kurjata P, Kusuma YS, Kuulasmaa K, Kyobutungi C, La Q, Laamiri FZ, Laatikainen T, Lachat C, Laid Y, Lam TH, Lang Morovic M, Lanska V, Lappas G, Larijani B, Latt TS, Laugsand LE, Lauria L, Lazo-Porras M, Le Nguyen Bao K, Le Port A, Le TD, Lee J, Lee J, Lee PH, Lehtimäki T, Lemogoum D, Levitt NS, Lilly CL, Lim WY, Lima-Costa MF, Lin HH, Lin X, Lind L, Linneberg A, Lissner L, Litwin M, Liu J, Loit HM, Lopes L, Lopez T, López-García E, Lorbeer R, Lotufo PA, Lozano JE, Luksiene D, Lundqvist A, Lundqvist R, Lunet N, Lytsy P, Ma G, Ma J, Machado-Coelho GLL, Machado-Rodrigues AM, Machi S, Maggi S, Magliano DJ, Magriplis E, Maire B, Majer M, Makdisse M, Malekzadeh F, Malekzadeh R, Malhotra R, Malyutina S, Maniego LV, Manios Y, Mann JI, Manzato E, Margozzini P, Markaki A, Markey O, Markidou Ioannidou E, Marques LP, Marques-Vidal P, Marrugat J, Martin R, Martin-Prevel Y, Martorell R, Martos E, Marventano S, Masoodi SR, Mathiesen EB, Mathur P, Matijasevich A, Matsha TE, Mazur A, Mbanya JCN, McFarlane SR, McKee M, McLachlan S, McLean RM, McLean SB, McNulty BA, Md Yusof S, Mediene-Benchekor S, Medzioniene J, Mehdipour P, Meirhaeghe A, Meisfjord J, Meisinger C, Menezes AMB, Menon GR, Mensink GBM, Mereke A, Meshram II, Metspalu A, Meyer HE, Mi J, Michaelsen KF, Michels N, Mikkel K, Miller JC, Minderico CS, Miquel JF, Mirkopoulou D, Mirrakhimov E, Misigoj-Durakovic M, Mistretta A, Mocanu V, Modesti PA, Moghaddam SS, Mohajer B, Mohamed MK, Mohammad K, Mohammadifard N, Mohan V, Mohanna S, Mohd Yusoff MF, Mohebi F, Moitry M, Molbo D, Møllehave LT, Møller NC, Molnár D, Momenan A, Mondo CK, Monterrubio EA, Monyeki KDK, Moon JS, Moreira LB, Morejon A, Moreno LA, Morgan K, Morin S, Mortensen EL, Moschonis G, Mossakowska M, Mota J, Mota-Pinto A, Motlagh ME, Motta J, Msyamboza KP, Mu TT, Muc M, Mugoša B, Muiesan ML, Mukhtorova P, Müller-Nurasyid M, Murphy N, Mursu J, Murtagh EM, Milanovic SM, Musil V, Nabipour I, Naderimagham S, Nagel G, Naidu BM, Nakamura H, Námešná J, Nang EEK, Nangia VB, Nankap M, Narake S, Nardone P, Nauck M, Navarrete-Muñoz EM, Neal WA, Nelis K, Nelis L, Nenko I, Nervi F, Nguyen CT, Nguyen ND, Nguyen QN, Nieto-Martínez RE, Ning G, Ninomiya T, Nishtar S, Noale M, Noboa OA, Norat T, Norie S, Noto D, Nsour MA, Nurk E, Nyirenda M, Obreja G, Ochoa-Avilés AM, Oda E, Oh K, Ohara K, Ohtsuka R, Olafsson Ö, Olinto MTA, Oliveira IO, Oltarzewski M, Omar MA, Onat A, O’Neill TW, Ong SK, Ono LM, Ordunez P, O’Reilly D, Ornelas R, Ortiz AP, Ortiz PJ, Osler M, Osmond C, Ostojic SM, Ostovar A, Otero JA, Overvad K, Owusu-Dabo E, Paccaud FM, Padez C, Pagkalos I, Pahomova E, Pająk A, Palli D, Palloni A, Palmieri L, Pan WH, Panda-Jonas S, Pandey A, Panza F, Papandreou D, Park SW, Parnell WR, Parsaeian M, Pascanu IM, Patel ND, Pecin I, Pednekar MS, Peer N, Peixoto SV, Peltonen M, Pereira AC, Pérez CM, Perez-Farinos N, Peters A, Petersmann A, Petkeviciene J, Petrauskiene A, Peykari N, Pham ST, Pierannunzio D, Pigeot I, Pikhart H, Pilav A, Pilotto L, Pistelli F, Pitakaka F, Piwonska A, Plans-Rubió P, Poh BK, Pohlabeln H, Pop RM, Popovic SR, Porta M, Portegies MLP, Posch G, Poulimeneas D, Pouraram H, Pourshams A, Poustchi H, Pradeepa R, Price AJ, Price JF, Puder JJ, Pudule I, Puhakka SE, Puiu M, Punab M, Qasrawi RF, Qorbani M, Quoc Bao T, Radhika MS, Radic I, Radisauskas R, Rahman M, Rahman M, Raitakari O, Raj M, Rajkumar H, Rakhmatulloev S, Ramachandra Rao S, Ramachandran A, Ramke J, Ramos E, Ramos R, Rampal L, Rampal S, Rao KM, Rascon-Pacheco RA, Rasmussen M, Redon J, Reganit PFM, Regecová V, Revilla L, Ribas-Barba L, Ribeiro R, Riboli E, Rigo F, Rinaldo N, Rinke de Wit TF, Rito A, Ritti-Dias RM, Rivera JA, Robitaille C, Rodrigues D, Rodríguez-Artalejo F, Rodriguez-Perez MC, Rodríguez-Villamizar LA, Rojas-Martinez R, Rojroongwasinkul N, Romaguera D, Rosengren A, Rouse I, Roy JGR, Rubinstein A, Rühli FJ, Ruidavets JB, Ruiz Moreno E, Ruiz-Betancourt BS, Russo P, Rust P, Rutkowski M, Sabanayagam C, Sachdev HS, Safiri S, Saidi O, Salanave B, Salazar-Martinez E, Salmerón D, Salomaa V, Salonen JT, Salvetti M, Sánchez-Abanto J, Sandjaja, Sans S, Santa-Marina L, Santos DA, Santos IS, Santos O, Santos R, Sanz SS, Saramies JL, Sardinha LB, Sarrafzadegan N, Saum KU, Savva S, Savy M, Scazufca M, Schaffrath Rosario A, Schargrodsky H, Schienkiewitz A, Schindler K, Schipf S, Schmidt CO, Schmidt IM, Schöttker B, Schultsz C, Schutte AE, Sebert S, Sein AA, Selamat R, Sember V, Sen A, Senbanjo IO, Sepanlou SG, Sequera V, Serra-Majem L, Servais J, Shalnova SA, Sharma SK, Shaw JE, Shengelia L, Shibuya K, Shimizu-Furusawa H, Shin DW, Shin Y, Siani A, Siantar R, Sibai AM, Silva AM, Silva DAS, Simon M, Simons J, Simons LA, Si-Ramlee K, Sjöberg A, Sjöström M, Slowikowska-Hilczer J, Slusarczyk P, Smeeth L, Snijder MB, So HK, Sobngwi E, Söderberg S, Soekatri MYE, Soemantri A, Solfrizzi V, Sonestedt E, Song Y, Sørensen TIA, Sossa Jérome C, Soumaré A, Spinelli A, Spiroski I, Staessen JA, Stamm H, Stathopoulou MG, Staub K, Stavreski B, Steene-Johannessen J, Stehle P, Stein AD, Stergiou GS, Stessman J, Stöckl D, Stocks T, Stokwiszewski J, Stratton G, Stronks K, Strufaldi MW, Sturua L, Suárez-Medina R, Sun CA, Sundström J, Sung YT, Sunyer J, Suriyawongpaisal P, Swinburn BA, Sy RG, Sylva RC, Szponar L, Tai ES, Tammesoo ML, Tamosiunas A, Tan EJ, Tang X, Tanser F, Tao Y, Tarawneh MR, Tarp J, Tarqui-Mamani CB, Taxová Braunerová R, Taylor A, Tchibindat F, Tebar WR, Tell G, Tello T, Theobald H, Theodoridis X, Thijs L, Thuesen BH, Tichá L, Timmermans EJ, Tjonneland A, Tolonen HK, Tolstrup JS, Topbas M, Topór-Madry R, Tormo MJ, Tornaritis MJ, Torrent M, Toselli S, Traissac P, Trichopoulos D, Trichopoulou A, Trinh OTH, Trivedi A, Tsao YH, Tshepo L, Tsigga M, Tsugane S, Tulloch-Reid MK, Tullu F, Tuomainen TP, Tuomilehto J, Turley ML, Tynelius P, Tzotzas T, Tzourio C, Ueda P, Ugel EE, Ukoli FAM, Ulmer H, Unal B, Uusitalo HMT, Vaitkeviciute J, Valdivia G, Vale S, Valvi D, van der Schouw YT, Van Herck K, Van Minh H, van Rossem L, Van Schoor NM, van Valkengoed IGM, Vanderschueren D, Vanuzzo D, Varela-Moreiras G, Varona-Pérez P, Vatten L, Vega T, Veidebaum T, Velasquez-Melendez G, Velika B, Veronesi G, Verschuren WMM, Victora CG, Viegi G, Viet L, Vineis P, Vioque J, Virtanen JK, Visser M, Visvikis-Siest S, Viswanathan B, Vlasoff T, Vollenweider P, Völzke H, Voutilainen A, Voutilainen S, Vrijheid M, Vrijkotte TGM, Wade AN, Wagner A, Waldhör T, Walton J, Wan Bebakar WM, Wan Mohamud WN, Wanderley RS, Wang MD, Wang Q, Wang X, Wang YX, Wang YW, Wannamethee SG, Wareham N, Weber A, Weerasekera D, Weghuber D, Wei W, Whincup PH, Widhalm K, Widyahening IS, Wiecek A, Wijga AH, Wilks RJ, Willeit J, Willeit P, Wilsgaard T, Wojtyniak B, Wong JE, Wong TY, Wong-McClure RA, Woo J, Woodward M, Wu FC, Wu J, Wu S, Xu H, Xu L, Yamborisut U, Yan W, Yang L, Yang X, Yang Y, Yardim N, Yaseri M, Ye X, Yiallouros PK, Yngve A, Yoosefi M, Yoshihara A, You QS, You SL, Younger-Coleman NO, Yusoff AF, Zaccagni L, Zafiropulos V, Zamani F, Zambon S, Zampelas A, Zamrazilová H, Zapata ME, Zaw KK, Zdrojewski T, Zeljkovic Vrkic T, Zeng Y, Zhao D, Zhao W, Zheng W, Zheng Y, Zholdin B, Zhou M, Zhu D, Zhussupov B, Zimmermann E, Zuñiga Cisneros J, Ezzati M. Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 2019; 569:260-264. [PMID: 31068725 PMCID: PMC6784868 DOI: 10.1038/s41586-019-1171-x] [Show More Authors] [Citation(s) in RCA: 425] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/30/2019] [Indexed: 02/08/2023]
Abstract
Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities1,2. This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity3-6. Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.
Collapse
|
research-article |
6 |
425 |
7
|
Rokholm B, Baker JL, Sørensen TIA. The levelling off of the obesity epidemic since the year 1999--a review of evidence and perspectives. Obes Rev 2010; 11:835-46. [PMID: 20973911 DOI: 10.1111/j.1467-789x.2010.00810.x] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The purpose was to investigate a possible levelling off in the obesity epidemic, by systematically reviewing literature and web-based sources. Eligible studies and data sources were required to have at least two measures of obesity prevalence since 1999. A literature and Internet search resulted in 52 studies from 25 different countries. The findings supported an overall levelling off of the epidemic in children and adolescents from Australia, Europe, Japan and the USA. In adults, stability was found in the USA, while increases were still observed in some European and Asian countries. Some evidence for heterogeneity in the obesity trends across socioeconomic status (SES) groups was found. The levelling off was less evident in the lower-SES groups. No obvious differences between genders were identified. We discussed potential explanations for a levelling off and the utility of investigating obesity trends to identify the driving forces behind the epidemic. It is important to emphasize that the levelling off is not tantamount to calling off the epidemic. Additionally, it is worthwhile to keep in mind that previous stable phases have been followed by further increases in the prevalence of obesity. Therefore, research into the causes, prevention and treatment of obesity should remain a priority.
Collapse
|
Review |
15 |
409 |
8
|
Dhurandhar NV, Schoeller D, Brown AW, Heymsfield SB, Thomas D, Sørensen TIA, Speakman JR, Jeansonne M, Allison DB. Energy balance measurement: when something is not better than nothing. Int J Obes (Lond) 2015; 39:1109-13. [PMID: 25394308 PMCID: PMC4430460 DOI: 10.1038/ijo.2014.199] [Citation(s) in RCA: 400] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 12/24/2022]
Abstract
Energy intake (EI) and physical activity energy expenditure (PAEE) are key modifiable determinants of energy balance, traditionally assessed by self-report despite its repeated demonstration of considerable inaccuracies. We argue here that it is time to move from the common view that self-reports of EI and PAEE are imperfect, but nevertheless deserving of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI and PAEE. While new strategies for objectively determining energy balance are in their infancy, it is unacceptable to use decidedly inaccurate instruments, which may misguide health-care policies, future research and clinical judgment. The scientific and medical communities should discontinue reliance on self-reported EI and PAEE. Researchers and sponsors should develop objective measures of energy balance.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
400 |
9
|
Jess T, Gamborg M, Matzen P, Munkholm P, Sørensen TIA. Increased risk of intestinal cancer in Crohn's disease: a meta-analysis of population-based cohort studies. Am J Gastroenterol 2005; 100:2724-9. [PMID: 16393226 DOI: 10.1111/j.1572-0241.2005.00287.x] [Citation(s) in RCA: 399] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The risk of intestinal malignancy in Crohn's disease (CD) remains uncertain since risk estimates vary worldwide. The global CD population is growing and there is a demand for better knowledge of prognosis of this disease. Hence, the aim of the present study was to conduct a meta-analysis of population-based data on intestinal cancer risk in CD. METHODS The MEDLINE search engine and abstracts from international conferences were searched for the relevant literature by use of explicit search criteria. All papers fulfilling the strict inclusion criteria were scrutinized for data on population size, time of follow-up, and observed to expected cancer rates. STATA meta-analysis software was used to perform overall pooled risk estimates (standardized incidence ratio (SIR), observed/expected) and meta-regression analyses of the influence of specific variables on SIR. RESULTS Six papers fulfilled the inclusion criteria and reported SIRs of colorectal cancer (CRC) in CD varying from 0.9 to 2.2. The pooled SIR for CRC was significantly increased (SIR, 1.9; 95% CI 1.4-2.5), as was the risk for colon cancer separately (SIR, 2.5; 95% CI 1.7-3.5). Regarding small bowel cancer, five studies reported SIRs ranging from 3.4 to 66.7, and the overall pooled estimate was 27.1 (95% CI 14.9-49.2). CONCLUSIONS The present meta-analysis of intestinal cancer risk in CD, based on population-based studies only, revealed an overall increased risk of both CRC and small bowel cancer among patients with CD. However, some of the available data were several decades old, and future studies taking new treatment strategies into account are required.
Collapse
|
Comparative Study |
20 |
399 |
10
|
Kilpeläinen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, Ahmad T, Mora S, Kaakinen M, Sandholt CH, Holzapfel C, Autenrieth CS, Hyppönen E, Cauchi S, He M, Kutalik Z, Kumari M, Stančáková A, Meidtner K, Balkau B, Tan JT, Mangino M, Timpson NJ, Song Y, Zillikens MC, Jablonski KA, Garcia ME, Johansson S, Bragg-Gresham JL, Wu Y, van Vliet-Ostaptchouk JV, Onland-Moret NC, Zimmermann E, Rivera NV, Tanaka T, Stringham HM, Silbernagel G, Kanoni S, Feitosa MF, Snitker S, Ruiz JR, Metter J, Larrad MTM, Atalay M, Hakanen M, Amin N, Cavalcanti-Proença C, Grøntved A, Hallmans G, Jansson JO, Kuusisto J, Kähönen M, Lutsey PL, Nolan JJ, Palla L, Pedersen O, Pérusse L, Renström F, Scott RA, Shungin D, Sovio U, Tammelin TH, Rönnemaa T, Lakka TA, Uusitupa M, Rios MS, Ferrucci L, Bouchard C, Meirhaeghe A, Fu M, Walker M, Borecki IB, Dedoussis GV, Fritsche A, Ohlsson C, Boehnke M, Bandinelli S, van Duijn CM, Ebrahim S, Lawlor DA, Gudnason V, Harris TB, Sørensen TIA, Mohlke KL, Hofman A, Uitterlinden AG, Tuomilehto J, Lehtimäki T, Raitakari O, Isomaa B, Njølstad PR, Florez JC, Liu S, Ness A, Spector TD, Tai ES, Froguel P, Boeing H, Laakso M, Marmot M, et alKilpeläinen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, Ahmad T, Mora S, Kaakinen M, Sandholt CH, Holzapfel C, Autenrieth CS, Hyppönen E, Cauchi S, He M, Kutalik Z, Kumari M, Stančáková A, Meidtner K, Balkau B, Tan JT, Mangino M, Timpson NJ, Song Y, Zillikens MC, Jablonski KA, Garcia ME, Johansson S, Bragg-Gresham JL, Wu Y, van Vliet-Ostaptchouk JV, Onland-Moret NC, Zimmermann E, Rivera NV, Tanaka T, Stringham HM, Silbernagel G, Kanoni S, Feitosa MF, Snitker S, Ruiz JR, Metter J, Larrad MTM, Atalay M, Hakanen M, Amin N, Cavalcanti-Proença C, Grøntved A, Hallmans G, Jansson JO, Kuusisto J, Kähönen M, Lutsey PL, Nolan JJ, Palla L, Pedersen O, Pérusse L, Renström F, Scott RA, Shungin D, Sovio U, Tammelin TH, Rönnemaa T, Lakka TA, Uusitupa M, Rios MS, Ferrucci L, Bouchard C, Meirhaeghe A, Fu M, Walker M, Borecki IB, Dedoussis GV, Fritsche A, Ohlsson C, Boehnke M, Bandinelli S, van Duijn CM, Ebrahim S, Lawlor DA, Gudnason V, Harris TB, Sørensen TIA, Mohlke KL, Hofman A, Uitterlinden AG, Tuomilehto J, Lehtimäki T, Raitakari O, Isomaa B, Njølstad PR, Florez JC, Liu S, Ness A, Spector TD, Tai ES, Froguel P, Boeing H, Laakso M, Marmot M, Bergmann S, Power C, Khaw KT, Chasman D, Ridker P, Hansen T, Monda KL, Illig T, Järvelin MR, Wareham NJ, Hu FB, Groop LC, Orho-Melander M, Ekelund U, Franks PW, Loos RJF. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med 2011; 8:e1001116. [PMID: 22069379 PMCID: PMC3206047 DOI: 10.1371/journal.pmed.1001116] [Show More Authors] [Citation(s) in RCA: 387] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). METHODS AND FINDINGS All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction) = 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.
Collapse
|
Meta-Analysis |
14 |
387 |
11
|
Voerman E, Santos S, Inskip H, Amiano P, Barros H, Charles MA, Chatzi L, Chrousos GP, Corpeleijn E, Crozier S, Doyon M, Eggesbø M, Fantini MP, Farchi S, Forastiere F, Georgiu V, Gori D, Hanke W, Hertz-Picciotto I, Heude B, Hivert MF, Hryhorczuk D, Iñiguez C, Karvonen AM, Küpers LK, Lagström H, Lawlor DA, Lehmann I, Magnus P, Majewska R, Mäkelä J, Manios Y, Mommers M, Morgen CS, Moschonis G, Nohr EA, Nybo Andersen AM, Oken E, Pac A, Papadopoulou E, Pekkanen J, Pizzi C, Polanska K, Porta D, Richiardi L, Rifas-Shiman SL, Roeleveld N, Ronfani L, Santos AC, Standl M, Stigum H, Stoltenberg C, Thiering E, Thijs C, Torrent M, Trnovec T, van Gelder MMHJ, van Rossem L, von Berg A, Vrijheid M, Wijga A, Zvinchuk O, Sørensen TIA, Godfrey K, Jaddoe VWV, Gaillard R. Association of Gestational Weight Gain With Adverse Maternal and Infant Outcomes. JAMA 2019; 321:1702-1715. [PMID: 31063572 PMCID: PMC6506886 DOI: 10.1001/jama.2019.3820] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022]
Abstract
Importance Both low and high gestational weight gain have been associated with adverse maternal and infant outcomes, but optimal gestational weight gain remains uncertain and not well defined for all prepregnancy weight ranges. Objectives To examine the association of ranges of gestational weight gain with risk of adverse maternal and infant outcomes and estimate optimal gestational weight gain ranges across prepregnancy body mass index categories. Design, Setting, and Participants Individual participant-level meta-analysis using data from 196 670 participants within 25 cohort studies from Europe and North America (main study sample). Optimal gestational weight gain ranges were estimated for each prepregnancy body mass index (BMI) category by selecting the range of gestational weight gain that was associated with lower risk for any adverse outcome. Individual participant-level data from 3505 participants within 4 separate hospital-based cohorts were used as a validation sample. Data were collected between 1989 and 2015. The final date of follow-up was December 2015. Exposures Gestational weight gain. Main Outcomes and Measures The main outcome termed any adverse outcome was defined as the presence of 1 or more of the following outcomes: preeclampsia, gestational hypertension, gestational diabetes, cesarean delivery, preterm birth, and small or large size for gestational age at birth. Results Of the 196 670 women (median age, 30.0 years [quartile 1 and 3, 27.0 and 33.0 years] and 40 937 were white) included in the main sample, 7809 (4.0%) were categorized at baseline as underweight (BMI <18.5); 133 788 (68.0%), normal weight (BMI, 18.5-24.9); 38 828 (19.7%), overweight (BMI, 25.0-29.9); 11 992 (6.1%), obesity grade 1 (BMI, 30.0-34.9); 3284 (1.7%), obesity grade 2 (BMI, 35.0-39.9); and 969 (0.5%), obesity grade 3 (BMI, ≥40.0). Overall, any adverse outcome occurred in 37.2% (n = 73 161) of women, ranging from 34.7% (2706 of 7809) among women categorized as underweight to 61.1% (592 of 969) among women categorized as obesity grade 3. Optimal gestational weight gain ranges were 14.0 kg to less than 16.0 kg for women categorized as underweight; 10.0 kg to less than 18.0 kg for normal weight; 2.0 kg to less than 16.0 kg for overweight; 2.0 kg to less than 6.0 kg for obesity grade 1; weight loss or gain of 0 kg to less than 4.0 kg for obesity grade 2; and weight gain of 0 kg to less than 6.0 kg for obesity grade 3. These gestational weight gain ranges were associated with low to moderate discrimination between those with and those without adverse outcomes (range for area under the receiver operating characteristic curve, 0.55-0.76). Results for discriminative performance in the validation sample were similar to the corresponding results in the main study sample (range for area under the receiver operating characteristic curve, 0.51-0.79). Conclusions and Relevance In this meta-analysis of pooled individual participant data from 25 cohort studies, the risk for adverse maternal and infant outcomes varied by gestational weight gain and across the range of prepregnancy weights. The estimates of optimal gestational weight gain may inform prenatal counseling; however, the optimal gestational weight gain ranges had limited predictive value for the outcomes assessed.
Collapse
|
Meta-Analysis |
6 |
384 |
12
|
Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin C, Bacelis J, Peng S, Hao K, Feenstra B, Wood AR, Mahajan A, Tyrrell J, Robertson NR, Rayner NW, Qiao Z, Moen GH, Vaudel M, Marsit CJ, Chen J, Nodzenski M, Schnurr TM, Zafarmand MH, Bradfield JP, Grarup N, Kooijman MN, Li-Gao R, Geller F, Ahluwalia TS, Paternoster L, Rueedi R, Huikari V, Hottenga JJ, Lyytikäinen LP, Cavadino A, Metrustry S, Cousminer DL, Wu Y, Thiering E, Wang CA, Have CT, Vilor-Tejedor N, Joshi PK, Painter JN, Ntalla I, Myhre R, Pitkänen N, van Leeuwen EM, Joro R, Lagou V, Richmond RC, Espinosa A, Barton SJ, Inskip HM, Holloway JW, Santa-Marina L, Estivill X, Ang W, Marsh JA, Reichetzeder C, Marullo L, Hocher B, Lunetta KL, Murabito JM, Relton CL, Kogevinas M, Chatzi L, Allard C, Bouchard L, Hivert MF, Zhang G, Muglia LJ, Heikkinen J, Morgen CS, van Kampen AHC, van Schaik BDC, Mentch FD, Langenberg C, Luan J, Scott RA, Zhao JH, Hemani G, Ring SM, Bennett AJ, Gaulton KJ, Fernandez-Tajes J, van Zuydam NR, Medina-Gomez C, de Haan HG, Rosendaal FR, Kutalik Z, Marques-Vidal P, Das S, Willemsen G, Mbarek H, Müller-Nurasyid M, Standl M, Appel EVR, Fonvig CE, Trier C, et alWarrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin C, Bacelis J, Peng S, Hao K, Feenstra B, Wood AR, Mahajan A, Tyrrell J, Robertson NR, Rayner NW, Qiao Z, Moen GH, Vaudel M, Marsit CJ, Chen J, Nodzenski M, Schnurr TM, Zafarmand MH, Bradfield JP, Grarup N, Kooijman MN, Li-Gao R, Geller F, Ahluwalia TS, Paternoster L, Rueedi R, Huikari V, Hottenga JJ, Lyytikäinen LP, Cavadino A, Metrustry S, Cousminer DL, Wu Y, Thiering E, Wang CA, Have CT, Vilor-Tejedor N, Joshi PK, Painter JN, Ntalla I, Myhre R, Pitkänen N, van Leeuwen EM, Joro R, Lagou V, Richmond RC, Espinosa A, Barton SJ, Inskip HM, Holloway JW, Santa-Marina L, Estivill X, Ang W, Marsh JA, Reichetzeder C, Marullo L, Hocher B, Lunetta KL, Murabito JM, Relton CL, Kogevinas M, Chatzi L, Allard C, Bouchard L, Hivert MF, Zhang G, Muglia LJ, Heikkinen J, Morgen CS, van Kampen AHC, van Schaik BDC, Mentch FD, Langenberg C, Luan J, Scott RA, Zhao JH, Hemani G, Ring SM, Bennett AJ, Gaulton KJ, Fernandez-Tajes J, van Zuydam NR, Medina-Gomez C, de Haan HG, Rosendaal FR, Kutalik Z, Marques-Vidal P, Das S, Willemsen G, Mbarek H, Müller-Nurasyid M, Standl M, Appel EVR, Fonvig CE, Trier C, van Beijsterveldt CEM, Murcia M, Bustamante M, Bonas-Guarch S, Hougaard DM, Mercader JM, Linneberg A, Schraut KE, Lind PA, Medland SE, Shields BM, Knight BA, Chai JF, Panoutsopoulou K, Bartels M, Sánchez F, Stokholm J, Torrents D, Vinding RK, Willems SM, Atalay M, Chawes BL, Kovacs P, Prokopenko I, Tuke MA, Yaghootkar H, Ruth KS, Jones SE, Loh PR, Murray A, Weedon MN, Tönjes A, Stumvoll M, Michaelsen KF, Eloranta AM, Lakka TA, van Duijn CM, Kiess W, Körner A, Niinikoski H, Pahkala K, Raitakari OT, Jacobsson B, Zeggini E, Dedoussis GV, Teo YY, Saw SM, Montgomery GW, Campbell H, Wilson JF, Vrijkotte TGM, Vrijheid M, de Geus EJCN, Hayes MG, Kadarmideen HN, Holm JC, Beilin LJ, Pennell CE, Heinrich J, Adair LS, Borja JB, Mohlke KL, Eriksson JG, Widén EE, Hattersley AT, Spector TD, Kähönen M, Viikari JS, Lehtimäki T, Boomsma DI, Sebert S, Vollenweider P, Sørensen TIA, Bisgaard H, Bønnelykke K, Murray JC, Melbye M, Nohr EA, Mook-Kanamori DO, Rivadeneira F, Hofman A, Felix JF, Jaddoe VWV, Hansen T, Pisinger C, Vaag AA, Pedersen O, Uitterlinden AG, Järvelin MR, Power C, Hyppönen E, Scholtens DM, Lowe WL, Davey Smith G, Timpson NJ, Morris AP, Wareham NJ, Hakonarson H, Grant SFA, Frayling TM, Lawlor DA, Njølstad PR, Johansson S, Ong KK, McCarthy MI, Perry JRB, Evans DM, Freathy RM. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet 2019; 51:804-814. [PMID: 31043758 PMCID: PMC6522365 DOI: 10.1038/s41588-019-0403-1] [Show More Authors] [Citation(s) in RCA: 369] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.
Collapse
|
Meta-Analysis |
6 |
369 |
13
|
Risnes KR, Vatten LJ, Baker JL, Jameson K, Sovio U, Kajantie E, Osler M, Morley R, Jokela M, Painter RC, Sundh V, Jacobsen GW, Eriksson JG, Sørensen TIA, Bracken MB. Birthweight and mortality in adulthood: a systematic review and meta-analysis. Int J Epidemiol 2011; 40:647-61. [PMID: 21324938 DOI: 10.1093/ije/dyq267] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Small birth size may be associated with increased risk of cardiovascular diseases (CVD), whereas large birth size may predict increased risk of obesity and some cancers. The net effect of birth size on long-term mortality has only been assessed in individual studies, with conflicting results. METHODS The Meta-analyses of Observational Studies in Epidemiology (MOOSE) guidelines for conducting and reporting meta-analysis of observational studies were followed. We retrieved 22 studies that assessed the association between birthweight and adult mortality from all causes, CVD or cancer. The studies were systematically reviewed and those reporting hazard ratios (HRs) and 95% confidence intervals (95% CIs) per kilogram (kg) increase in birthweight were included in generic inverse variance meta-analyses. RESULTS For all-cause mortality, 36,834 deaths were included and the results showed a 6% lower risk (adjusted HR = 0.94, 95% CI: 0.92-0.97) per kg higher birthweight for men and women combined. For cardiovascular mortality, the corresponding inverse association was stronger (HR = 0.88, 95% CI: 0.85-0.91). For cancer mortality, HR per kg higher birthweight was 1.13 (95% CI: 1.07-1.19) for men and 1.04 (95% CI: 0.98-1.10) for women (P(interaction) = 0.03). Residual confounding could not be eliminated, but is unlikely to account for the main findings. CONCLUSION These results show an inverse but moderate association of birthweight with adult mortality from all-causes and a stronger inverse association with cardiovascular mortality. For men, higher birthweight was strongly associated with increased risk of cancer deaths. The findings suggest that birthweight can be a useful indicator of processes that influence long-term health.
Collapse
|
Systematic Review |
14 |
368 |
14
|
Dam-Larsen S, Franzmann M, Andersen IB, Christoffersen P, Jensen LB, Sørensen TIA, Becker U, Bendtsen F. Long term prognosis of fatty liver: risk of chronic liver disease and death. Gut 2004; 53:750-5. [PMID: 15082596 PMCID: PMC1774026 DOI: 10.1136/gut.2003.019984] [Citation(s) in RCA: 363] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Fatty liver is a common histological finding in human liver biopsy specimens. It affects 10-24% of the general population and is believed to be a marker of risk of later chronic liver disease. The present study examined the risk of development of cirrhotic liver disease and the risk of death in a cohort diagnosed with pure fatty liver without inflammation. METHODS A total of 215 patients who had a liver biopsy performed during the period 1976-1987 were included in the study. The population consisted of 109 non-alcoholic and 106 alcoholic fatty liver patients. Median follow up time was 16.7 (0.2-21.9) years in the non-alcoholic and 9.2 (0.6-23.1) years in the alcoholic group. Systematic data collection was carried out by review of all medical records. All members of the study cohort were linked through their unique personal identification number to the National Registry of Patients and the nationwide Registry of Causes of Death, and all admissions, discharge diagnoses, and causes of death were obtained. RESULTS In the non-alcoholic fatty liver group, one patient developed cirrhosis during the follow up period compared with 22 patients in the alcoholic group. Survival estimates were significantly (p<0.01) different between the two groups, for men as well as for women, with a higher death rate in the alcoholic fatty liver group. Survival estimates in the non-alcoholic fatty liver group were not different from the Danish population. CONCLUSIONS This study revealed that patients with type 1 non-alcoholic fatty liver disease have a benign clinical course without excess mortality.
Collapse
|
research-article |
21 |
363 |
15
|
Ramlau-Hansen CH, Thulstrup AM, Nohr EA, Bonde JP, Sørensen TIA, Olsen J. Subfecundity in overweight and obese couples. Hum Reprod 2007; 22:1634-7. [PMID: 17344224 DOI: 10.1093/humrep/dem035] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Recent studies indicate that not only women's but also men's obesity has adverse effects on fecundity and since fecundity is a couple concept, we examined fecundity in relation to overweight and obesity of the couple. We also examined the association between weight changes and fecundity over time. METHODS Between 1996 and 2002, 64 167 pregnant women enrolled in the Danish National Birth Cohort were interviewed during and 18 months after pregnancy. Information on body mass index (BMI) and waiting time to pregnancy (TTP) was available for 47 835 couples. RESULTS Among men and women with a BMI of 18.5 kg/m(2) or more, we found a dose-response relationship between increasing BMI group and subfecundity (a TTP of more than 12 months): Odds ratio (OR) = 1.32 (95% CI: 1.26-1.37) for women and OR = 1.19 (95% CI: 1.14-1.24) for men. Among 2374 women with an initial BMI of 18.5 kg/m(2) or more, who participated more than once in the Danish National Birth Cohort, each kilogram increment in weight between the two pregnancies was associated with a 2.84 (95% CI: 1.33-4.35) days longer TTP. CONCLUSIONS Couples have a high risk of being subfecund if they are both obese.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
302 |
16
|
Bradfield JP, Taal HR, Timpson NJ, Scherag A, Lecoeur C, Warrington NM, Hypponen E, Holst C, Valcarcel B, Thiering E, Salem RM, Schumacher FR, Cousminer DL, Sleiman PMA, Zhao J, Berkowitz RI, Vimaleswaran KS, Jarick I, Pennell CE, Evans DM, St Pourcain B, Berry DJ, Mook-Kanamori DO, Hofman A, Rivadeneira F, Uitterlinden AG, van Duijn CM, van der Valk RJP, de Jongste JC, Postma DS, Boomsma DI, Gauderman WJ, Hassanein MT, Lindgren CM, Mägi R, Boreham CAG, Neville CE, Moreno LA, Elliott P, Pouta A, Hartikainen AL, Li M, Raitakari O, Lehtimäki T, Eriksson JG, Palotie A, Dallongeville J, Das S, Deloukas P, McMahon G, Ring SM, Kemp JP, Buxton JL, Blakemore AIF, Bustamante M, Guxens M, Hirschhorn JN, Gillman MW, Kreiner-Møller E, Bisgaard H, Gilliland FD, Heinrich J, Wheeler E, Barroso I, O'Rahilly S, Meirhaeghe A, Sørensen TIA, Power C, Palmer LJ, Hinney A, Widen E, Farooqi IS, McCarthy MI, Froguel P, Meyre D, Hebebrand J, Jarvelin MR, Jaddoe VWV, Smith GD, Hakonarson H, Grant SFA. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet 2012; 44:526-31. [PMID: 22484627 PMCID: PMC3370100 DOI: 10.1038/ng.2247] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/14/2012] [Indexed: 12/19/2022]
Abstract
Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made in establishing genetic influences on common early-onset obesity. We performed a North American, Australian and European collaborative meta-analysis of 14 studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight newly discovered signals yielding association with P < 5 × 10(-6) in nine independent data sets (2,818 cases and 4,083 controls), we observed two loci that yielded genome-wide significant combined P values near OLFM4 at 13q14 (rs9568856; P = 1.82 × 10(-9); odds ratio (OR) = 1.22) and within HOXB5 at 17q21 (rs9299; P = 3.54 × 10(-9); OR = 1.14). Both loci continued to show association when two extreme childhood obesity cohorts were included (2,214 cases and 2,674 controls). These two loci also yielded directionally consistent associations in a previous meta-analysis of adult BMI(1).
Collapse
|
Comparative Study |
13 |
301 |
17
|
Abstract
BACKGROUND Adult height and body-mass index influence the risk of breast cancer in women. Whether these associations reflect growth patterns of the fetus or growth during childhood and adolescence is unknown. METHODS We investigated the association between growth during childhood and the risk of breast cancer in a cohort of 117,415 Danish women. Birth weight, age at menarche, and annual measurements of height and weight were obtained from school health records. We used the data to model individual growth curves. Information on vital status, age at first childbirth, parity, and diagnosis of breast cancer was obtained through linkages to national registries. RESULTS During 3,333,359 person-years of follow-up, 3340 cases of breast cancer were diagnosed. High birth weight, high stature at 14 years of age, low body-mass index (BMI) at 14 years of age, and peak growth at an early age were independent risk factors for breast cancer. Height at 8 years of age and the increase in height during puberty (8 to 14 years of age) were also associated with breast cancer. The attributable risks of birth weight, height at 14 years of age, BMI at 14 years of age, and age at peak growth were 7 percent, 15 percent, 15 percent, and 9 percent, respectively. No effect of adjusting for age at menarche, age at first childbirth, and parity was observed. CONCLUSIONS Birth weight and growth during childhood and adolescence influence the risk of breast cancer.
Collapse
|
|
21 |
284 |
18
|
Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S, Czajkowski J, Esko T, Fall T, Kilpeläinen TO, Lu Y, Mägi R, Mihailov E, Pers TH, Rüeger S, Teumer A, Ehret GB, Ferreira T, Heard-Costa NL, Karjalainen J, Lagou V, Mahajan A, Neinast MD, Prokopenko I, Simino J, Teslovich TM, Jansen R, Westra HJ, White CC, Absher D, Ahluwalia TS, Ahmad S, Albrecht E, Alves AC, Bragg-Gresham JL, de Craen AJM, Bis JC, Bonnefond A, Boucher G, Cadby G, Cheng YC, Chiang CWK, Delgado G, Demirkan A, Dueker N, Eklund N, Eiriksdottir G, Eriksson J, Feenstra B, Fischer K, Frau F, Galesloot TE, Geller F, Goel A, Gorski M, Grammer TB, Gustafsson S, Haitjema S, Hottenga JJ, Huffman JE, Jackson AU, Jacobs KB, Johansson Å, Kaakinen M, Kleber ME, Lahti J, Leach IM, Lehne B, Liu Y, Lo KS, Lorentzon M, Luan J, Madden PAF, Mangino M, McKnight B, Medina-Gomez C, Monda KL, Montasser ME, Müller G, Müller-Nurasyid M, Nolte IM, Panoutsopoulou K, Pascoe L, Paternoster L, Rayner NW, Renström F, Rizzi F, Rose LM, Ryan KA, Salo P, Sanna S, Scharnagl H, Shi J, Smith AV, Southam L, Stančáková A, Steinthorsdottir V, Strawbridge RJ, Sung YJ, Tachmazidou I, et alWinkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S, Czajkowski J, Esko T, Fall T, Kilpeläinen TO, Lu Y, Mägi R, Mihailov E, Pers TH, Rüeger S, Teumer A, Ehret GB, Ferreira T, Heard-Costa NL, Karjalainen J, Lagou V, Mahajan A, Neinast MD, Prokopenko I, Simino J, Teslovich TM, Jansen R, Westra HJ, White CC, Absher D, Ahluwalia TS, Ahmad S, Albrecht E, Alves AC, Bragg-Gresham JL, de Craen AJM, Bis JC, Bonnefond A, Boucher G, Cadby G, Cheng YC, Chiang CWK, Delgado G, Demirkan A, Dueker N, Eklund N, Eiriksdottir G, Eriksson J, Feenstra B, Fischer K, Frau F, Galesloot TE, Geller F, Goel A, Gorski M, Grammer TB, Gustafsson S, Haitjema S, Hottenga JJ, Huffman JE, Jackson AU, Jacobs KB, Johansson Å, Kaakinen M, Kleber ME, Lahti J, Leach IM, Lehne B, Liu Y, Lo KS, Lorentzon M, Luan J, Madden PAF, Mangino M, McKnight B, Medina-Gomez C, Monda KL, Montasser ME, Müller G, Müller-Nurasyid M, Nolte IM, Panoutsopoulou K, Pascoe L, Paternoster L, Rayner NW, Renström F, Rizzi F, Rose LM, Ryan KA, Salo P, Sanna S, Scharnagl H, Shi J, Smith AV, Southam L, Stančáková A, Steinthorsdottir V, Strawbridge RJ, Sung YJ, Tachmazidou I, Tanaka T, Thorleifsson G, Trompet S, Pervjakova N, Tyrer JP, Vandenput L, van der Laan SW, van der Velde N, van Setten J, van Vliet-Ostaptchouk JV, Verweij N, Vlachopoulou E, Waite LL, Wang SR, Wang Z, Wild SH, Willenborg C, Wilson JF, Wong A, Yang J, Yengo L, Yerges-Armstrong LM, Yu L, Zhang W, Zhao JH, Andersson EA, Bakker SJL, Baldassarre D, Banasik K, Barcella M, Barlassina C, Bellis C, Benaglio P, Blangero J, Blüher M, Bonnet F, Bonnycastle LL, Boyd HA, Bruinenberg M, Buchman AS, Campbell H, Chen YDI, Chines PS, Claudi-Boehm S, Cole J, Collins FS, de Geus EJC, de Groot LCPGM, Dimitriou M, Duan J, Enroth S, Eury E, Farmaki AE, Forouhi NG, Friedrich N, Gejman PV, Gigante B, Glorioso N, Go AS, Gottesman O, Gräßler J, Grallert H, Grarup N, Gu YM, Broer L, Ham AC, Hansen T, Harris TB, Hartman CA, Hassinen M, Hastie N, Hattersley AT, Heath AC, Henders AK, Hernandez D, Hillege H, Holmen O, Hovingh KG, Hui J, Husemoen LL, Hutri-Kähönen N, Hysi PG, Illig T, De Jager PL, Jalilzadeh S, Jørgensen T, Jukema JW, Juonala M, Kanoni S, Karaleftheri M, Khaw KT, Kinnunen L, Kittner SJ, Koenig W, Kolcic I, Kovacs P, Krarup NT, Kratzer W, Krüger J, Kuh D, Kumari M, Kyriakou T, Langenberg C, Lannfelt L, Lanzani C, Lotay V, Launer LJ, Leander K, Lindström J, Linneberg A, Liu YP, Lobbens S, Luben R, Lyssenko V, Männistö S, Magnusson PK, McArdle WL, Menni C, Merger S, Milani L, Montgomery GW, Morris AP, Narisu N, Nelis M, Ong KK, Palotie A, Pérusse L, Pichler I, Pilia MG, Pouta A, Rheinberger M, Ribel-Madsen R, Richards M, Rice KM, Rice TK, Rivolta C, Salomaa V, Sanders AR, Sarzynski MA, Scholtens S, Scott RA, Scott WR, Sebert S, Sengupta S, Sennblad B, Seufferlein T, Silveira A, Slagboom PE, Smit JH, Sparsø TH, Stirrups K, Stolk RP, Stringham HM, Swertz MA, Swift AJ, Syvänen AC, Tan ST, Thorand B, Tönjes A, Tremblay A, Tsafantakis E, van der Most PJ, Völker U, Vohl MC, Vonk JM, Waldenberger M, Walker RW, Wennauer R, Widén E, Willemsen G, Wilsgaard T, Wright AF, Zillikens MC, van Dijk SC, van Schoor NM, Asselbergs FW, de Bakker PIW, Beckmann JS, Beilby J, Bennett DA, Bergman RN, Bergmann S, Böger CA, Boehm BO, Boerwinkle E, Boomsma DI, Bornstein SR, Bottinger EP, Bouchard C, Chambers JC, Chanock SJ, Chasman DI, Cucca F, Cusi D, Dedoussis G, Erdmann J, Eriksson JG, Evans DA, de Faire U, Farrall M, Ferrucci L, Ford I, Franke L, Franks PW, Froguel P, Gansevoort RT, Gieger C, Grönberg H, Gudnason V, Gyllensten U, Hall P, Hamsten A, van der Harst P, Hayward C, Heliövaara M, Hengstenberg C, Hicks AA, Hingorani A, Hofman A, Hu F, Huikuri HV, Hveem K, James AL, Jordan JM, Jula A, Kähönen M, Kajantie E, Kathiresan S, Kiemeney LALM, Kivimaki M, Knekt PB, Koistinen HA, Kooner JS, Koskinen S, Kuusisto J, Maerz W, Martin NG, Laakso M, Lakka TA, Lehtimäki T, Lettre G, Levinson DF, Lind L, Lokki ML, Mäntyselkä P, Melbye M, Metspalu A, Mitchell BD, Moll FL, Murray JC, Musk AW, Nieminen MS, Njølstad I, Ohlsson C, Oldehinkel AJ, Oostra BA, Palmer LJ, Pankow JS, Pasterkamp G, Pedersen NL, Pedersen O, Penninx BW, Perola M, Peters A, Polašek O, Pramstaller PP, Psaty BM, Qi L, Quertermous T, Raitakari OT, Rankinen T, Rauramaa R, Ridker PM, Rioux JD, Rivadeneira F, Rotter JI, Rudan I, den Ruijter HM, Saltevo J, Sattar N, Schunkert H, Schwarz PEH, Shuldiner AR, Sinisalo J, Snieder H, Sørensen TIA, Spector TD, Staessen JA, Stefania B, Thorsteinsdottir U, Stumvoll M, Tardif JC, Tremoli E, Tuomilehto J, Uitterlinden AG, Uusitupa M, Verbeek ALM, Vermeulen SH, Viikari JS, Vitart V, Völzke H, Vollenweider P, Waeber G, Walker M, Wallaschofski H, Wareham NJ, Watkins H, Zeggini E, CHARGE Consortium, DIAGRAM Consortium, GLGC Consortium, Global-BPGen Consortium, ICBP Consortium, MAGIC Consortium, Chakravarti A, Clegg DJ, Cupples LA, Gordon-Larsen P, Jaquish CE, Rao DC, Abecasis GR, Assimes TL, Barroso I, Berndt SI, Boehnke M, Deloukas P, Fox CS, Groop LC, Hunter DJ, Ingelsson E, Kaplan RC, McCarthy MI, Mohlke KL, O'Connell JR, Schlessinger D, Strachan DP, Stefansson K, van Duijn CM, Hirschhorn JN, Lindgren CM, Heid IM, North KE, Borecki IB, Kutalik Z, Loos RJF. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genet 2015; 11:e1005378. [PMID: 26426971 PMCID: PMC4591371 DOI: 10.1371/journal.pgen.1005378] [Show More Authors] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/22/2015] [Indexed: 01/11/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.
Collapse
|
Meta-Analysis |
10 |
281 |
19
|
Vimaleswaran KS, Cavadino A, Berry DJ, Jorde R, Dieffenbach AK, Lu C, Alves AC, Heerspink HJL, Tikkanen E, Eriksson J, Wong A, Mangino M, Jablonski KA, Nolte IM, Houston DK, Ahluwalia TS, van der Most PJ, Pasko D, Zgaga L, Thiering E, Vitart V, Fraser RM, Huffman JE, de Boer RA, Schöttker B, Saum KU, McCarthy MI, Dupuis J, Herzig KH, Sebert S, Pouta A, Laitinen J, Kleber ME, Navis G, Lorentzon M, Jameson K, Arden N, Cooper JA, Acharya J, Hardy R, Raitakari O, Ripatti S, Billings LK, Lahti J, Osmond C, Penninx BW, Rejnmark L, Lohman KK, Paternoster L, Stolk RP, Hernandez DG, Byberg L, Hagström E, Melhus H, Ingelsson E, Mellström D, Ljunggren O, Tzoulaki I, McLachlan S, Theodoratou E, Tiesler CMT, Jula A, Navarro P, Wright AF, Polasek O, Wilson JF, Rudan I, Salomaa V, Heinrich J, Campbell H, Price JF, Karlsson M, Lind L, Michaëlsson K, Bandinelli S, Frayling TM, Hartman CA, Sørensen TIA, Kritchevsky SB, Langdahl BL, Eriksson JG, Florez JC, Spector TD, Lehtimäki T, Kuh D, Humphries SE, Cooper C, Ohlsson C, März W, de Borst MH, Kumari M, Kivimaki M, Wang TJ, Power C, Brenner H, et alVimaleswaran KS, Cavadino A, Berry DJ, Jorde R, Dieffenbach AK, Lu C, Alves AC, Heerspink HJL, Tikkanen E, Eriksson J, Wong A, Mangino M, Jablonski KA, Nolte IM, Houston DK, Ahluwalia TS, van der Most PJ, Pasko D, Zgaga L, Thiering E, Vitart V, Fraser RM, Huffman JE, de Boer RA, Schöttker B, Saum KU, McCarthy MI, Dupuis J, Herzig KH, Sebert S, Pouta A, Laitinen J, Kleber ME, Navis G, Lorentzon M, Jameson K, Arden N, Cooper JA, Acharya J, Hardy R, Raitakari O, Ripatti S, Billings LK, Lahti J, Osmond C, Penninx BW, Rejnmark L, Lohman KK, Paternoster L, Stolk RP, Hernandez DG, Byberg L, Hagström E, Melhus H, Ingelsson E, Mellström D, Ljunggren O, Tzoulaki I, McLachlan S, Theodoratou E, Tiesler CMT, Jula A, Navarro P, Wright AF, Polasek O, Wilson JF, Rudan I, Salomaa V, Heinrich J, Campbell H, Price JF, Karlsson M, Lind L, Michaëlsson K, Bandinelli S, Frayling TM, Hartman CA, Sørensen TIA, Kritchevsky SB, Langdahl BL, Eriksson JG, Florez JC, Spector TD, Lehtimäki T, Kuh D, Humphries SE, Cooper C, Ohlsson C, März W, de Borst MH, Kumari M, Kivimaki M, Wang TJ, Power C, Brenner H, Grimnes G, van der Harst P, Snieder H, Hingorani AD, Pilz S, Whittaker JC, Järvelin MR, Hyppönen E. Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes Endocrinol 2014; 2:719-29. [PMID: 24974252 PMCID: PMC4582411 DOI: 10.1016/s2213-8587(14)70113-5] [Show More Authors] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. METHODS In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. FINDINGS In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, -0·12 mm Hg, 95% CI -0·20 to -0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97-0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, -0·02 mm Hg, -0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of -0·10 mm Hg in systolic blood pressure (-0·21 to -0·0001; p=0·0498) and a change of -0·08 mm Hg in diastolic blood pressure (-0·15 to -0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96-0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of -0·29 mm Hg in diastolic blood pressure (-0·52 to -0·07; p=0·01), a change of -0·37 mm Hg in systolic blood pressure (-0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87-0·97; p=0·002). INTERPRETATION Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study. FUNDING British Heart Foundation, UK Medical Research Council, and Academy of Finland.
Collapse
|
Meta-Analysis |
11 |
269 |
20
|
Min JL, Hemani G, Hannon E, Dekkers KF, Castillo-Fernandez J, Luijk R, Carnero-Montoro E, Lawson DJ, Burrows K, Suderman M, Bretherick AD, Richardson TG, Klughammer J, Iotchkova V, Sharp G, Al Khleifat A, Shatunov A, Iacoangeli A, McArdle WL, Ho KM, Kumar A, Söderhäll C, Soriano-Tárraga C, Giralt-Steinhauer E, Kazmi N, Mason D, McRae AF, Corcoran DL, Sugden K, Kasela S, Cardona A, Day FR, Cugliari G, Viberti C, Guarrera S, Lerro M, Gupta R, Bollepalli S, Mandaviya P, Zeng Y, Clarke TK, Walker RM, Schmoll V, Czamara D, Ruiz-Arenas C, Rezwan FI, Marioni RE, Lin T, Awaloff Y, Germain M, Aïssi D, Zwamborn R, van Eijk K, Dekker A, van Dongen J, Hottenga JJ, Willemsen G, Xu CJ, Barturen G, Català-Moll F, Kerick M, Wang C, Melton P, Elliott HR, Shin J, Bernard M, Yet I, Smart M, Gorrie-Stone T, Shaw C, Al Chalabi A, Ring SM, Pershagen G, Melén E, Jiménez-Conde J, Roquer J, Lawlor DA, Wright J, Martin NG, Montgomery GW, Moffitt TE, Poulton R, Esko T, Milani L, Metspalu A, Perry JRB, Ong KK, Wareham NJ, Matullo G, Sacerdote C, Panico S, Caspi A, Arseneault L, Gagnon F, Ollikainen M, Kaprio J, Felix JF, Rivadeneira F, Tiemeier H, et alMin JL, Hemani G, Hannon E, Dekkers KF, Castillo-Fernandez J, Luijk R, Carnero-Montoro E, Lawson DJ, Burrows K, Suderman M, Bretherick AD, Richardson TG, Klughammer J, Iotchkova V, Sharp G, Al Khleifat A, Shatunov A, Iacoangeli A, McArdle WL, Ho KM, Kumar A, Söderhäll C, Soriano-Tárraga C, Giralt-Steinhauer E, Kazmi N, Mason D, McRae AF, Corcoran DL, Sugden K, Kasela S, Cardona A, Day FR, Cugliari G, Viberti C, Guarrera S, Lerro M, Gupta R, Bollepalli S, Mandaviya P, Zeng Y, Clarke TK, Walker RM, Schmoll V, Czamara D, Ruiz-Arenas C, Rezwan FI, Marioni RE, Lin T, Awaloff Y, Germain M, Aïssi D, Zwamborn R, van Eijk K, Dekker A, van Dongen J, Hottenga JJ, Willemsen G, Xu CJ, Barturen G, Català-Moll F, Kerick M, Wang C, Melton P, Elliott HR, Shin J, Bernard M, Yet I, Smart M, Gorrie-Stone T, Shaw C, Al Chalabi A, Ring SM, Pershagen G, Melén E, Jiménez-Conde J, Roquer J, Lawlor DA, Wright J, Martin NG, Montgomery GW, Moffitt TE, Poulton R, Esko T, Milani L, Metspalu A, Perry JRB, Ong KK, Wareham NJ, Matullo G, Sacerdote C, Panico S, Caspi A, Arseneault L, Gagnon F, Ollikainen M, Kaprio J, Felix JF, Rivadeneira F, Tiemeier H, van IJzendoorn MH, Uitterlinden AG, Jaddoe VWV, Haley C, McIntosh AM, Evans KL, Murray A, Räikkönen K, Lahti J, Nohr EA, Sørensen TIA, Hansen T, Morgen CS, Binder EB, Lucae S, Gonzalez JR, Bustamante M, Sunyer J, Holloway JW, Karmaus W, Zhang H, Deary IJ, Wray NR, Starr JM, Beekman M, van Heemst D, Slagboom PE, Morange PE, Trégouët DA, Veldink JH, Davies GE, de Geus EJC, Boomsma DI, Vonk JM, Brunekreef B, Koppelman GH, Alarcón-Riquelme ME, Huang RC, Pennell CE, van Meurs J, Ikram MA, Hughes AD, Tillin T, Chaturvedi N, Pausova Z, Paus T, Spector TD, Kumari M, Schalkwyk LC, Visscher PM, Davey Smith G, Bock C, Gaunt TR, Bell JT, Heijmans BT, Mill J, Relton CL. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet 2021; 53:1311-1321. [PMID: 34493871 PMCID: PMC7612069 DOI: 10.1038/s41588-021-00923-x] [Show More Authors] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-phenotype map than previously anticipated.
Collapse
|
research-article |
4 |
267 |
21
|
Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, Kelly TN, Saleheen D, Lehne B, Leach IM, Drong AW, Abbott J, Wahl S, Tan ST, Scott WR, Campanella G, Chadeau-Hyam M, Afzal U, Ahluwalia TS, Bonder MJ, Chen P, Dehghan A, Edwards TL, Esko T, Go MJ, Harris SE, Hartiala J, Kasela S, Kasturiratne A, Khor CC, Kleber ME, Li H, Yu Mok Z, Nakatochi M, Sapari NS, Saxena R, Stewart AFR, Stolk L, Tabara Y, Teh AL, Wu Y, Wu JY, Zhang Y, Aits I, Da Silva Couto Alves A, Das S, Dorajoo R, Hopewell JC, Kim YK, Koivula RW, Luan J, Lyytikäinen LP, Nguyen QN, Pereira MA, Postmus I, Raitakari OT, Bryan MS, Scott RA, Sorice R, Tragante V, Traglia M, White J, Yamamoto K, Zhang Y, Adair LS, Ahmed A, Akiyama K, Asif R, Aung T, Barroso I, Bjonnes A, Braun TR, Cai H, Chang LC, Chen CH, Cheng CY, Chong YS, Collins R, Courtney R, Davies G, Delgado G, Do LD, Doevendans PA, Gansevoort RT, Gao YT, Grammer TB, Grarup N, Grewal J, Gu D, Wander GS, Hartikainen AL, Hazen SL, He J, Heng CK, Hixson JE, Hofman A, Hsu C, Huang W, Husemoen LLN, Hwang JY, et alKato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, Kelly TN, Saleheen D, Lehne B, Leach IM, Drong AW, Abbott J, Wahl S, Tan ST, Scott WR, Campanella G, Chadeau-Hyam M, Afzal U, Ahluwalia TS, Bonder MJ, Chen P, Dehghan A, Edwards TL, Esko T, Go MJ, Harris SE, Hartiala J, Kasela S, Kasturiratne A, Khor CC, Kleber ME, Li H, Yu Mok Z, Nakatochi M, Sapari NS, Saxena R, Stewart AFR, Stolk L, Tabara Y, Teh AL, Wu Y, Wu JY, Zhang Y, Aits I, Da Silva Couto Alves A, Das S, Dorajoo R, Hopewell JC, Kim YK, Koivula RW, Luan J, Lyytikäinen LP, Nguyen QN, Pereira MA, Postmus I, Raitakari OT, Bryan MS, Scott RA, Sorice R, Tragante V, Traglia M, White J, Yamamoto K, Zhang Y, Adair LS, Ahmed A, Akiyama K, Asif R, Aung T, Barroso I, Bjonnes A, Braun TR, Cai H, Chang LC, Chen CH, Cheng CY, Chong YS, Collins R, Courtney R, Davies G, Delgado G, Do LD, Doevendans PA, Gansevoort RT, Gao YT, Grammer TB, Grarup N, Grewal J, Gu D, Wander GS, Hartikainen AL, Hazen SL, He J, Heng CK, Hixson JE, Hofman A, Hsu C, Huang W, Husemoen LLN, Hwang JY, Ichihara S, Igase M, Isono M, Justesen JM, Katsuya T, Kibriya MG, Kim YJ, Kishimoto M, Koh WP, Kohara K, Kumari M, Kwek K, Lee NR, Lee J, Liao J, Lieb W, Liewald DCM, Matsubara T, Matsushita Y, Meitinger T, Mihailov E, Milani L, Mills R, Mononen N, Müller-Nurasyid M, Nabika T, Nakashima E, Ng HK, Nikus K, Nutile T, Ohkubo T, Ohnaka K, Parish S, Paternoster L, Peng H, Peters A, Pham ST, Pinidiyapathirage MJ, Rahman M, Rakugi H, Rolandsson O, Ann Rozario M, Ruggiero D, Sala CF, Sarju R, Shimokawa K, Snieder H, Sparsø T, Spiering W, Starr JM, Stott DJ, Stram DO, Sugiyama T, Szymczak S, Tang WHW, Tong L, Trompet S, Turjanmaa V, Ueshima H, Uitterlinden AG, Umemura S, Vaarasmaki M, van Dam RM, van Gilst WH, van Veldhuisen DJ, Viikari JS, Waldenberger M, Wang Y, Wang A, Wilson R, Wong TY, Xiang YB, Yamaguchi S, Ye X, Young RD, Young TL, Yuan JM, Zhou X, Asselbergs FW, Ciullo M, Clarke R, Deloukas P, Franke A, Franks PW, Franks S, Friedlander Y, Gross MD, Guo Z, Hansen T, Jarvelin MR, Jørgensen T, Jukema JW, kähönen M, Kajio H, Kivimaki M, Lee JY, Lehtimäki T, Linneberg A, Miki T, Pedersen O, Samani NJ, Sørensen TIA, Takayanagi R, Toniolo D, BIOS-consortium, CARDIo GRAMplusCD, LifeLines Cohort Study, The InterAct Consortium, Ahsan H, Allayee H, Chen YT, Danesh J, Deary IJ, Franco OH, Franke L, Heijman BT, Holbrook JD, Isaacs A, Kim BJ, Lin X, Liu J, März W, Metspalu A, Mohlke KL, Sanghera DK, Shu XO, van Meurs JBJ, Vithana E, Wickremasinghe AR, Wijmenga C, Wolffenbuttel BHW, Yokota M, Zheng W, Zhu D, Vineis P, Kyrtopoulos SA, Kleinjans JCS, McCarthy MI, Soong R, Gieger C, Scott J, Teo YY, He J, Elliott P, Tai ES, van der Harst P, Kooner JS, Chambers JC. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet 2015; 47:1282-1293. [PMID: 26390057 PMCID: PMC4719169 DOI: 10.1038/ng.3405] [Show More Authors] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/21/2015] [Indexed: 12/17/2022]
Abstract
We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10(-11) to 5.0 × 10(-21)). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10(-6)). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
256 |
22
|
Bjerregaard LG, Jensen BW, Ängquist L, Osler M, Sørensen TIA, Baker JL. Change in Overweight from Childhood to Early Adulthood and Risk of Type 2 Diabetes. N Engl J Med 2018; 378:1302-1312. [PMID: 29617589 DOI: 10.1056/nejmoa1713231] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Childhood overweight is associated with an increased risk of type 2 diabetes in adulthood. We investigated whether remission of overweight before early adulthood reduces this risk. METHODS We conducted a study involving 62,565 Danish men whose weights and heights had been measured at 7 and 13 years of age and in early adulthood (17 to 26 years of age). Overweight was defined in accordance with Centers for Disease Control and Prevention criteria. Data on type 2 diabetes status (at age ≥30 years, 6710 persons) were obtained from a national health registry. RESULTS Overweight at 7 years of age (3373 of 62,565 men; 5.4%), 13 years of age (3418 of 62,565; 5.5%), or early adulthood (5108 of 62,565; 8.2%) was positively associated with the risk of type 2 diabetes; associations were stronger at older ages at overweight and at younger ages at diagnosis of type 2 diabetes. Men who had had remission of overweight before the age of 13 years had a risk of having type 2 diabetes diagnosed at 30 to 60 years of age that was similar to that among men who had never been overweight (hazard ratio, 0.96; 95% confidence interval [CI], 0.75 to 1.21). As compared with men who had never been overweight, men who had been overweight at 7 and 13 years of age but not during early adulthood had a higher risk of type 2 diabetes (hazard ratio, 1.47; 95% CI, 1.10 to 1.98), but their risk was lower than that among men with persistent overweight (hazard ratio [persistently overweight vs. never overweight], 4.14; 95% CI, 3.57 to 4.79). An increase in body-mass index between 7 years of age and early adulthood was associated with an increased risk of type 2 diabetes, even among men whose weight had been normal at 7 years of age. CONCLUSIONS Childhood overweight at 7 years of age was associated with increased risks of adult type 2 diabetes only if it continued until puberty or later ages. (Funded by the European Union.).
Collapse
|
|
7 |
256 |
23
|
Reis CA, Sørensen T, Mandel U, David L, Mirgorodskaya E, Roepstorff P, Kihlberg J, Hansen JE, Clausen H. Development and characterization of an antibody directed to an alpha-N-acetyl-D-galactosamine glycosylated MUC2 peptide. Glycoconj J 1998; 15:51-62. [PMID: 9530956 DOI: 10.1023/a:1006939432665] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In an attempt to raise anti-Tn antibodies, an alpha-N-acetyl-D-galactosamine glycosylated peptide based on the tandem repeat of the intestinal mucin MUC2 was used as an immunogen. The MUC2 peptide (PTTTPISTTTMVTPTPTPTC) was glycosylated in vitro using concentrated alpha-N-acetylgalactosaminyltransferases activity from porcine submaxillary glands which resulted in the incorporation of 8-9 mol of Ga/NAc. Rabbits and mice developed specific anti-MUC2-GalNAc glycopeptide antibodies and no detectable anti-Tn antibodies. Anti-glycopeptide antibodies did not show reactivity with the unglycosylated MUC2 peptide or with other GalNAc glycosylated peptides. A mouse monoclonal antibody (PMH1) representative of the observed immune response was generated and its immunohistological reactivity analysed in normal tissues. PMH1 reacted similarly to other anti-MUC2 peptide antibodies. However, in some cells the staining was not restricted to the supranuclear area but extended to the entire cytoplasm. In addition, PMH1 reacted with purified colonic mucin by Western blot analysis suggesting that PMH1 reacted with some glycoforms of MUC2. The present work presents a useful approach for development of anti-mucin antibodies directed to different glycoforms of individual mucins.
Collapse
|
|
27 |
244 |
24
|
Baker JL, Michaelsen KF, Rasmussen KM, Sørensen TIA. Maternal prepregnant body mass index, duration of breastfeeding, and timing of complementary food introduction are associated with infant weight gain. Am J Clin Nutr 2004; 80:1579-88. [PMID: 15585772 DOI: 10.1093/ajcn/80.6.1579] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Women who are overweight or obese before pregnancy breastfeed for shorter durations than do normal-weight women. These shorter durations may place infants of overweight and obese women at risk of not receiving the benefits of breastfeeding, which may include a reduced risk of overweight later in life. OBJECTIVE We examined how maternal prepregnant body mass index (BMI; in kg/m2) and infant feeding pattern are associated with infant weight gain. DESIGN In this prospective, observational study, we used multiple regression analyses adjusted for potential confounding factors to examine these associations among 3768 mother-infant dyads from the Danish National Birth Cohort. RESULTS In multiple regression analyses, increasing maternal prepregnant BMI, decreasing durations of breastfeeding, and earlier complementary food introduction were associated with increased infant weight gain. An interaction was identified for short durations of breastfeeding (<20 wk). Earlier complementary food introduction (<16 wk) was associated with greater infant weight gain; however, the timing of complementary food introduction did not increase infant weight gain at longer durations of breastfeeding (> or =20 wk). In this sample, prepregnant obesity (BMI > or = 30.0), short durations of breastfeeding, and earlier introduction of complementary food were associated with 0.7 kg of additional weight gain during infancy. CONCLUSIONS Infant weight gain is associated with maternal prepregnant BMI and with an interaction between the duration of breastfeeding and the timing of complementary food introduction. Future investigations of the effects of breastfeeding on infant weight gain should account for all of these factors.
Collapse
|
|
21 |
242 |
25
|
Felix JF, Bradfield JP, Monnereau C, van der Valk RJP, Stergiakouli E, Chesi A, Gaillard R, Feenstra B, Thiering E, Kreiner-Møller E, Mahajan A, Pitkänen N, Joro R, Cavadino A, Huikari V, Franks S, Groen-Blokhuis MM, Cousminer DL, Marsh JA, Lehtimäki T, Curtin JA, Vioque J, Ahluwalia TS, Myhre R, Price TS, Vilor-Tejedor N, Yengo L, Grarup N, Ntalla I, Ang W, Atalay M, Bisgaard H, Blakemore AI, Bonnefond A, Carstensen L, Eriksson J, Flexeder C, Franke L, Geller F, Geserick M, Hartikainen AL, Haworth CMA, Hirschhorn JN, Hofman A, Holm JC, Horikoshi M, Hottenga JJ, Huang J, Kadarmideen HN, Kähönen M, Kiess W, Lakka HM, Lakka TA, Lewin AM, Liang L, Lyytikäinen LP, Ma B, Magnus P, McCormack SE, McMahon G, Mentch FD, Middeldorp CM, Murray CS, Pahkala K, Pers TH, Pfäffle R, Postma DS, Power C, Simpson A, Sengpiel V, Tiesler CMT, Torrent M, Uitterlinden AG, van Meurs JB, Vinding R, Waage J, Wardle J, Zeggini E, Zemel BS, Dedoussis GV, Pedersen O, Froguel P, Sunyer J, Plomin R, Jacobsson B, Hansen T, Gonzalez JR, Custovic A, Raitakari OT, Pennell CE, Widén E, Boomsma DI, Koppelman GH, Sebert S, Järvelin MR, Hyppönen E, McCarthy MI, Lindi V, et alFelix JF, Bradfield JP, Monnereau C, van der Valk RJP, Stergiakouli E, Chesi A, Gaillard R, Feenstra B, Thiering E, Kreiner-Møller E, Mahajan A, Pitkänen N, Joro R, Cavadino A, Huikari V, Franks S, Groen-Blokhuis MM, Cousminer DL, Marsh JA, Lehtimäki T, Curtin JA, Vioque J, Ahluwalia TS, Myhre R, Price TS, Vilor-Tejedor N, Yengo L, Grarup N, Ntalla I, Ang W, Atalay M, Bisgaard H, Blakemore AI, Bonnefond A, Carstensen L, Eriksson J, Flexeder C, Franke L, Geller F, Geserick M, Hartikainen AL, Haworth CMA, Hirschhorn JN, Hofman A, Holm JC, Horikoshi M, Hottenga JJ, Huang J, Kadarmideen HN, Kähönen M, Kiess W, Lakka HM, Lakka TA, Lewin AM, Liang L, Lyytikäinen LP, Ma B, Magnus P, McCormack SE, McMahon G, Mentch FD, Middeldorp CM, Murray CS, Pahkala K, Pers TH, Pfäffle R, Postma DS, Power C, Simpson A, Sengpiel V, Tiesler CMT, Torrent M, Uitterlinden AG, van Meurs JB, Vinding R, Waage J, Wardle J, Zeggini E, Zemel BS, Dedoussis GV, Pedersen O, Froguel P, Sunyer J, Plomin R, Jacobsson B, Hansen T, Gonzalez JR, Custovic A, Raitakari OT, Pennell CE, Widén E, Boomsma DI, Koppelman GH, Sebert S, Järvelin MR, Hyppönen E, McCarthy MI, Lindi V, Harri N, Körner A, Bønnelykke K, Heinrich J, Melbye M, Rivadeneira F, Hakonarson H, Ring SM, Smith GD, Sørensen TIA, Timpson NJ, Grant SFA, Jaddoe VWV. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum Mol Genet 2016; 25:389-403. [PMID: 26604143 PMCID: PMC4854022 DOI: 10.1093/hmg/ddv472] [Show More Authors] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/15/2015] [Indexed: 12/24/2022] Open
Abstract
A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.
Collapse
|
Meta-Analysis |
9 |
238 |