1
|
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235:34-47. [DOI: 10.1016/j.jconrel.2016.05.044] [Citation(s) in RCA: 813] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
|
|
9 |
813 |
2
|
Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM. Grapevine under deficit irrigation: hints from physiological and molecular data. ANNALS OF BOTANY 2010; 105:661-76. [PMID: 20299345 PMCID: PMC2859908 DOI: 10.1093/aob/mcq030] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/16/2009] [Accepted: 01/07/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND A large proportion of vineyards are located in regions with seasonal drought (e.g. Mediterranean-type climates) where soil and atmospheric water deficits, together with high temperatures, exert large constraints on yield and quality. The increasing demand for vineyard irrigation requires an improvement in the efficiency of water use. Deficit irrigation has emerged as a potential strategy to allow crops to withstand mild water stress with little or no decreases of yield, and potentially a positive impact on fruit quality. Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize deficit irrigation management and identify the most suitable varieties to those conditions. SCOPE How the whole plant acclimatizes to water scarcity and how short- and long-distance chemical and hydraulic signals intervene are reviewed. Chemical compounds synthesized in drying roots are shown to act as long-distance signals inducing leaf stomatal closure and/or restricting leaf growth. This explains why some plants endure soil drying without significant changes in shoot water status. The control of plant water potential by stomatal aperture via feed-forward mechanisms is associated with 'isohydric' behaviour in contrast to 'anysohydric' behaviour in which lower plant water potentials are attained. This review discusses differences in this respect between grapevines varieties and experimental conditions. Mild water deficits also exert direct and/or indirect (via the light environment around grape clusters) effects on berry development and composition; a higher content of skin-based constituents (e.g. tannins and anthocyanins) has generally being reported. Regulation under water deficit of genes and proteins of the various metabolic pathways responsible for berry composition and therefore wine quality are reviewed.
Collapse
|
Review |
15 |
226 |
3
|
Jones HG, Stoll M, Santos T, de Sousa C, Chaves MM, Grant OM. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:2249-2260. [PMID: 12379792 DOI: 10.1093/jxb/erf083] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper reviews and discusses strategies for the use of thermal imaging for studies of stomatal conductance in the field and compares techniques for image collection and analysis. Measurements were taken under a range of environmental conditions and on sunlit and shaded canopies to illustrate the variability of temperatures and derived stress indices. A simple procedure is presented for correcting for calibration drift within the images from the low-cost thermal imager used (SnapShot 225, Infrared Solutions, Inc.). The use of wet and dry reference surfaces as thresholds to eliminate the inclusion of non-leaf material in the analysis of canopy temperature is discussed. An index that is proportional to stomatal conductance was compared with stomatal measurements with a porometer. The advantages and disadvantages of a possible new approach to the use of thermal imagery for the detection of stomatal closure in grapevine canopies, based on an analysis of the temperature of shaded leaves, rather than sunlit leaves, are discussed. Evidence is presented that the temperature of reference surfaces exposed within the canopy can be affected by the canopy water status.
Collapse
|
|
23 |
142 |
4
|
Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease. J Control Release 2016; 235:291-305. [PMID: 27269730 DOI: 10.1016/j.jconrel.2016.06.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/29/2016] [Accepted: 06/02/2016] [Indexed: 01/17/2023]
Abstract
Modulation of the subventricular zone (SVZ) neurogenic niche can enhance brain repair in several disorders including Parkinson's disease (PD). Herein, we used biocompatible and traceable polymeric nanoparticles (NPs) containing perfluoro-1,5-crown ether (PFCE) and coated with protamine sulfate to complex microRNA-124 (miR-124), a neuronal fate determinant. The ability of NPs to efficiently deliver miR-124 and prompt SVZ neurogenesis and brain repair in PD was evaluated. In vitro, miR-124 NPs were efficiently internalized by neural stem/progenitors cells and neuroblasts and promoted their neuronal commitment and maturation. The expression of Sox9 and Jagged1, two miR-124 targets and stemness-related genes, were also decreased upon miR-124 NP treatment. In vivo, the intracerebral administration of miR-124 NPs increased the number of migrating neuroblasts that reached the granule cell layer of the olfactory bulb, both in healthy and in a 6-hydroxydopamine (6-OHDA) mouse model for PD. MiR-124 NPs were also able to induce migration of neurons into the lesioned striatum of 6-OHDA-treated mice. Most importantly, miR-124 NPs proved to ameliorate motor symptoms of 6-OHDA mice, monitored by the apomorphine-induced rotation test. Altogether, we provide clear evidences to support the use of miR-124 NPs as a new therapeutic approach to boost endogenous brain repair mechanisms in a setting of neurodegeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
114 |
5
|
Ferreira R, Santos T, Gonçalves J, Baltazar G, Ferreira L, Agasse F, Bernardino L. Histamine modulates microglia function. J Neuroinflammation 2012; 9:90. [PMID: 22569158 PMCID: PMC3583187 DOI: 10.1186/1742-2094-9-90] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/08/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Histamine is commonly acknowledged as an inflammatory mediator in peripheral tissues, leaving its role in brain immune responses scarcely studied. Therefore, our aim was to uncover the cellular and molecular mechanisms elicited by this molecule and its receptors in microglia-induced inflammation by evaluating cell migration and inflammatory mediator release. METHODS Firstly, we detected the expression of all known histamine receptor subtypes (H1R, H2R, H3R and H4R), using a murine microglial cell line and primary microglia cell cultures from rat cortex, by real-time PCR analysis, immunocytochemistry and Western blotting. Then, we evaluated the role of histamine in microglial cell motility by performing scratch wound assays. Results were further confirmed using murine cortex explants. Finally, interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels were evaluated by ELISA measurements to determine the role of histamine on the release of these inflammatory mediators. RESULTS After 12 h of treatment, 100 μM histamine and 10 μg/ml histamine-loaded poly (lactic-co-glycolic acid) microparticles significantly stimulated microglia motility via H4R activation. In addition, migration involves α5β1 integrins, and p38 and Akt signaling pathways. Migration of microglial cells was also enhanced in the presence of lipopolysaccharide (LPS, 100 ng/ml), used as a positive control. Importantly, histamine inhibited LPS-stimulated migration via H4R activation. Histamine or H4R agonist also inhibited LPS-induced IL-1β release in both N9 microglia cell line and hippocampal organotypic slice cultures. CONCLUSIONS To our knowledge, we are the first to show a dual role of histamine in the modulation of microglial inflammatory responses. Altogether, our data suggest that histamine per se triggers microglia motility, whereas histamine impedes LPS-induced microglia migration and IL-1β release. This last datum assigns a new putative anti-inflammatory role for histamine, acting via H4R to restrain exacerbated microglial responses under inflammatory challenge, which could have strong repercussions in the treatment of CNS disorders accompanied by microglia-derived inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
98 |
6
|
|
|
41 |
97 |
7
|
Esbelin J, Santos T, Hébraud M. Desiccation: An environmental and food industry stress that bacteria commonly face. Food Microbiol 2018; 69:82-88. [DOI: 10.1016/j.fm.2017.07.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/09/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
|
|
7 |
96 |
8
|
Ferreira R, Xapelli S, Santos T, Silva AP, Cristóvão A, Cortes L, Malva JO. Neuropeptide Y modulation of interleukin-1{beta} (IL-1{beta})-induced nitric oxide production in microglia. J Biol Chem 2010; 285:41921-34. [PMID: 20959451 PMCID: PMC3009919 DOI: 10.1074/jbc.m110.164020] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/14/2010] [Indexed: 01/19/2023] Open
Abstract
Given the modulatory role of neuropeptide Y (NPY) in the immune system, we investigated the effect of NPY on the production of NO and IL-1β in microglia. Upon LPS stimulation, NPY treatment inhibited NO production as well as the expression of inducible nitric-oxide synthase (iNOS). Pharmacological studies with a selective Y(1) receptor agonist and selective antagonists for Y(1), Y(2), and Y(5) receptors demonstrated that inhibition of NO production and iNOS expression was mediated exclusively through Y(1) receptor activation. Microglial cells stimulated with LPS and ATP responded with a massive release of IL-1β, as measured by ELISA. NPY inhibited this effect, suggesting that it can strongly impair the release of IL-1β. Furthermore, we observed that IL-1β stimulation induced NO production and that the use of a selective IL-1 receptor antagonist prevented NO production upon LPS stimulation. Moreover, NPY acting through Y(1) receptor inhibited LPS-stimulated release of IL-1β, inhibiting NO synthesis. IL-1β activation of NF-κB was inhibited by NPY treatment, as observed by confocal microscopy and Western blotting analysis of nuclear translocation of NF-κB p65 subunit, leading to the decrease of NO synthesis. Our results showed that upon LPS challenge, microglial cells release IL-1β, promoting the production of NO through a NF-κB-dependent pathway. Also, NPY was able to strongly inhibit NO synthesis through Y(1) receptor activation, which prevents IL-1β release and thus inhibits nuclear translocation of NF-κB. The role of NPY in key inflammatory events may contribute to unravel novel gateways to modulate inflammation associated with brain pathology.
Collapse
|
research-article |
15 |
95 |
9
|
Santos T, Zasloff M. Comparative analysis of human chromosomal segments bearing nonallelic dispersed tRNAimet genes. Cell 1981; 23:699-709. [PMID: 6261953 DOI: 10.1016/0092-8674(81)90433-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
About 12 tRNAimet genes have been found at scattered locations in the human genome. Four fragments of human fetal liver DNA ranging in size from 11 to 18 kb, each containing a single tRNAimet gene, were cloned from a recombinant phage library. On the basis of restriction site mapping, electron microscopic analysis of heteroduplex structures and the maps of sequences transcribed in vivo in human fibroblasts, obtained by a novel contract-hybridization method, the fragments were shown to represent two different loci with homologies limited to several dispersed repetitive sequences within each of the chromosomal neighborhoods. Detailed structural analysis of the tRNA regions revealed several blocks of homology at the proximal flanking sequences of the two nonallelic genes, one of which differed from the common vertebrate tRNAimet sequence by a base substitution at position 56 with a T in place of G. Two oligonucleotides identical or very similar to tRNAimet structural sequences were present at the 5' border of both genes. A review of published sequence data showed other unequivocal examples of tRNA-coding sequences present at the 5' flanking region of the associated tRNA gene, which in several cases contained the site of transcription initiation.
Collapse
|
Comparative Study |
44 |
88 |
10
|
Rocha SM, Saraiva T, Cristóvão AC, Ferreira R, Santos T, Esteves M, Saraiva C, Je G, Cortes L, Valero J, Alves G, Klibanov A, Kim YS, Bernardino L. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J Neuroinflammation 2016; 13:137. [PMID: 27260166 PMCID: PMC4893260 DOI: 10.1186/s12974-016-0600-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Background Histamine is an amine widely known as a peripheral inflammatory mediator and as a neurotransmitter in the central nervous system. Recently, it has been suggested that histamine acts as an innate modulator of microglial activity. Herein, we aimed to disclose the role of histamine in microglial phagocytic activity and reactive oxygen species (ROS) production and to explore the consequences of histamine-induced neuroinflammation in dopaminergic (DA) neuronal survival. Methods The effect of histamine on phagocytosis was assessed both in vitro by using a murine N9 microglial cell line and primary microglial cell cultures and in vivo. Cells were exposed to IgG-opsonized latex beads or phosphatidylserine (PS) liposomes to evaluate Fcγ or PS receptor-mediated microglial phagocytosis, respectively. ROS production and protein levels of NADPH oxidases and Rac1 were assessed as a measure of oxidative stress. DA neuronal survival was evaluated in vivo by counting the number of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) of mice. Results We found that histamine triggers microglial phagocytosis via histamine receptor 1 (H1R) activation and ROS production via H1R and H4R activation. By using apocynin, a broad NADPH oxidase (Nox) inhibitor, and Nox1 knockout mice, we found that the Nox1 signaling pathway is involved in both phagocytosis and ROS production induced by histamine in vitro. Interestingly, both apocynin and annexin V (used as inhibitor of PS-induced phagocytosis) fully abolished the DA neurotoxicity induced by the injection of histamine in the SN of adult mice in vivo. Blockade of H1R protected against histamine-induced Nox1 expression and death of DA neurons in vivo. Conclusions Overall, our results highlight the relevance of histamine in the modulation of microglial activity that ultimately may interfere with neuronal survival in the context of Parkinson’s disease (PD) and, eventually, other neurodegenerative diseases which are accompanied by microglia-induced neuroinflammation. Importantly, our results also open promising new perspectives for the therapeutic use of H1R antagonists to treat or ameliorate neurodegenerative processes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0600-0) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
85 |
11
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
|
Review |
4 |
73 |
12
|
Maia J, Santos T, Aday S, Agasse F, Cortes L, Malva JO, Bernardino L, Ferreira L. Controlling the neuronal differentiation of stem cells by the intracellular delivery of retinoic acid-loaded nanoparticles. ACS NANO 2011; 5:97-106. [PMID: 21171566 DOI: 10.1021/nn101724r] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The manipulation of endogenous stem cell populations from the subventricular zone (SVZ), a neurogenic niche, creates an opportunity to induce neurogenesis and influence brain regenerative capacities in the adult brain. Herein, we demonstrate the ability of polyelectrolyte nanoparticles to induce neurogenesis exclusively after being internalized by SVZ stem cells. The nanoparticles are not cytotoxic for concentrations equal or below 10 μg/mL. The internalization process is rapid, and nanoparticles escape endosomal fate in a few hours. Retinoic acid-loaded nanoparticles increase the number of neuronal nuclear protein (NeuN)-positive neurons and functional neurons responding to depolarization with KCl and expressing NMDA receptor subunit type 1 (NR1). These nanoparticles offer an opportunity for in vivo delivery of proneurogenic factors and neurodegenerative disease treatment.
Collapse
|
|
14 |
70 |
13
|
Lone MA, Santos T, Alecu I, Silva LC, Hornemann T. 1-Deoxysphingolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:512-521. [PMID: 30625374 DOI: 10.1016/j.bbalip.2018.12.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Sphingolipids (SLs) are fundamental components of eukaryotic cells. 1-Deoxysphingolipids differ structurally from canonical SLs as they lack the essential C1-OH group. Consequently, 1-deoxysphingolipids cannot be converted to complex sphingolipids and are not degraded over the canonical catabolic pathways. Pathologically elevated 1-deoxySLs are involved in several disease conditions. Within this review, we will provide an up-to-date overview on the metabolic, physiological and pathophysiological aspects of this enigmatic class of "headless" sphingolipids.
Collapse
|
Review |
6 |
70 |
14
|
Santos T, Ferreira R, Maia J, Agasse F, Xapelli S, Cortes L, Bragança J, Malva JO, Ferreira L, Bernardino L. Polymeric nanoparticles to control the differentiation of neural stem cells in the subventricular zone of the brain. ACS NANO 2012; 6:10463-10474. [PMID: 23176155 DOI: 10.1021/nn304541h] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Herein, we report the use of retinoic acid-loaded polymeric nanoparticles as a potent tool to induce the neuronal differentiation of subventricular zone neural stem cells. The intracellular delivery of retinoic acid by the nanoparticles activated nuclear retinoic acid receptors, decreased stemness, and increased proneurogenic gene expression. Importantly, this work reports for the first time a nanoparticle formulation able to modulate in vivo the subventricular zone neurogenic niche. The work further compares the dynamics of initial stages of differentiation between SVZ cells treated with retinoic acid-loaded polymeric nanoparticles and solubilized retinoic acid. The nanoparticle formulation developed here may ultimately offer new perspectives to treat neurodegenerative diseases.
Collapse
|
|
13 |
67 |
15
|
Santi CM, Santos T, Hernández-Cruz A, Darszon A. Properties of a novel pH-dependent Ca2+ permeation pathway present in male germ cells with possible roles in spermatogenesis and mature sperm function. J Gen Physiol 1998; 112:33-53. [PMID: 9649582 PMCID: PMC2229410 DOI: 10.1085/jgp.112.1.33] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rises of intracellular Ca2+ ([Ca2+]i) are key signals for cell division, differentiation, and maturation. Similarly, they are likely to be important for the unique processes of meiosis and spermatogenesis, carried out exclusively by male germ cells. In addition, elevations of [Ca2+]i and intracellular pH (pHi) in mature sperm trigger at least two events obligatory for fertilization: capacitation and acrosome reaction. Evidence implicates the activity of Ca2+ channels modulated by pHi in the origin of these Ca2+ elevations, but their nature remains unexplored, in part because work in individual spermatozoa are hampered by formidable experimental difficulties. Recently, late spermatogenic cells have emerged as a model system for studying aspects relevant for sperm physiology, such as plasmalemmal ion fluxes. Here we describe the first study on the influence of controlled intracellular alkalinization on [Ca2+]i on identified spermatogenic cells from mouse adult testes. In BCECF [(2',7')-bis(carboxymethyl)- (5, 6)-carboxyfluorescein]-AM-loaded spermatogenic cells, a brief (30-60 s) application of 25 mM NH4Cl increased pHi by approximately 1.3 U from a resting pHi approximately 6.65. A steady pHi plateau was maintained during NH4Cl application, with little or no rebound acidification. In fura-2-AM-loaded cells, alkalinization induced a biphasic response composed of an initial [Ca2+]i drop followed by a two- to threefold rise. Maneuvers that inhibit either Ca2+ influx or intracellular Ca2+ release demonstrated that the majority of the Ca2+ rise results from plasma membrane Ca2+ influx, although a small component likely to result from intracellular Ca2+ release was occasionally observed. Ca2+ transients potentiated with repeated NH4Cl applications, gradually obliterating the initial [Ca2+]i drop. The pH-sensitive Ca2+ permeation pathway allows the passage of other divalents (Sr2+, Ba2+, and Mn2+) and is blocked by inorganic Ca2+ channel blockers (Ni2+ and Cd2+), but not by the organic blocker nifedipine. The magnitude of these Ca2+ transients increased as maturation advanced, with the largest responses being recorded in testicular sperm. By extrapolation, these findings suggest that the pH-dependent Ca2+ influx pathway could play significant roles in mature sperm physiology. Its pharmacology and ion selectivity suggests that it corresponds to an ion channel different from the voltage-gated T-type Ca2+ channel also present in spermatogenic cells. We postulate that the Ca2+ permeation pathway regulated by pHi, if present in mature sperm, may be responsible for the dihydropyridine-insensitive Ca2+ influx required for initiating the acrosome reaction and perhaps other important sperm functions.
Collapse
|
research-article |
27 |
62 |
16
|
|
|
43 |
53 |
17
|
Ferreira R, Santos T, Cortes L, Cochaud S, Agasse F, Silva AP, Xapelli S, Malva JO. Neuropeptide Y inhibits interleukin-1 beta-induced microglia motility. J Neurochem 2011; 120:93-105. [DOI: 10.1111/j.1471-4159.2011.07541.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
14 |
53 |
18
|
Xapelli S, Agasse F, Sardà-Arroyo L, Bernardino L, Santos T, Ribeiro FF, Valero J, Bragança J, Schitine C, de Melo Reis RA, Sebastião AM, Malva JO. Activation of type 1 cannabinoid receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures. PLoS One 2013; 8:e63529. [PMID: 23704915 PMCID: PMC3660454 DOI: 10.1371/journal.pone.0063529] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 04/06/2013] [Indexed: 11/18/2022] Open
Abstract
The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive), neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation), at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca2+]i) in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
52 |
19
|
Madeira N, Albuquerque E, Santos T, Mendes A, Roque M. Death ideation in cancer patients: contributing factors. J Psychosoc Oncol 2012; 29:636-42. [PMID: 22035536 DOI: 10.1080/07347332.2011.615381] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Advances in cancer research and therapy have improved prognosis and the quality of life of many patients. However, previous epidemiological studies in oncologic patients have shown an increased risk of suicide. Suicidal thoughts, relatively well known in those terminally ill, may be just as important for cancer patients who are survivors or are living with the disease. Nonetheless, there is a relative paucity of data about suicidality in this setting. The authors conducted a prospective observational study to identify death thoughts and to explore the factors associated with suicidal ideation in cancer patients. A sample of 130 patients referred for psychiatric consultation was obtained following informed consent and authorization from the local ethics committee. A semistructured interview assessed sociodemographic data, psychosocial support, and information regarding the cancer process and its treatment. Psychometric instruments were used to evaluate psychopathology, namely the Hospital Anxiety and Depression Scale, the Beck Hopelessness Scale, and the Beck Scale for Suicide Ideation. Psychiatric diagnoses were obtained through the application of the Mini International Neuropsychiatric Interview. Death ideation was identified in 34.6% of patients, yet only 10% had active suicidal thoughts. Risk of suicide was associated with female gender, a psychiatric diagnosis (major depressive disorder, panic disorder, or dysthymia), difficult interpersonal relationships, associated pain, high hopelessness, and depressive and anxiety symptoms. Although suicidal thoughts are frequent in cancer patients at different stages of disease, most are transitory. Risk factors for suicidal ideation have been identified, such as depression, hopelessness, uncontrolled pain, and difficult interpersonal relationships. Further assessment is necessary to identify those at higher risk of attempting suicide, and underlying psychiatric disorders should be vigorously treated.
Collapse
|
Journal Article |
13 |
50 |
20
|
Santos T, Silva N, Igrejas G, Rodrigues P, Micael J, Rodrigues T, Resendes R, Gonçalves A, Marinho C, Gonçalves D, Cunha R, Poeta P. Dissemination of antibiotic resistant Enterococcus spp. and Escherichia coli from wild birds of Azores Archipelago. Anaerobe 2013; 24:25-31. [DOI: 10.1016/j.anaerobe.2013.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/25/2013] [Accepted: 09/02/2013] [Indexed: 11/26/2022]
|
|
12 |
50 |
21
|
Branco A, Silva R, Santos T, Jorge H, Rodrigues A, Fernandes R, Bandarra S, Barahona I, Matos A, Lorenz K, Polido M, Colaço R, Serro A, Figueiredo-Pina C. Suitability of 3D printed pieces of nanocrystalline zirconia for dental applications. Dent Mater 2020; 36:442-455. [PMID: 32001023 DOI: 10.1016/j.dental.2020.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 01/14/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The main goal of this work is to evaluate the suitability of nanostructured zirconia pieces obtained by robocasting additive manufacturing (AM), for dental applications. METHODS The density, crystalline structure, morphology/porosity, surface roughness, hardness, toughness, wettability and biocompatibility of the produced samples were compared with those of samples obtained by conventional subtractive manufacturing (SM) of a similar commercial zirconia material. Chewing simulation studies were carried out against dental human cusps in artificial saliva. The wear of the material was quantified and the wear mechanisms investigated, as well as the influence of glaze coating. RESULTS AM samples, that revealed to be biocompatible, are slightly less dense and more porous than SM samples, showing lower hardness, toughness and wettability than SM samples. After chewing tests, no wear was found both on AM and SM samples. However, the dental wear was significantly lower when AM samples were used as counterbody. Concerning the glazed samples, both coated surfaces and dental cusps suffered wear, being the cusps' wear higher than that found for unglazed samples. More, cusps tested against AM coated samples suffered less wear comparatively to those opposed to SM coated samples. SIGNIFICANCE Overall, the results presented in this paper show that AM processed nanostructured zirconia can be used in dental restorations, with important advantages from the point of view of processing and tribological performance. Moreover, the option for glaze finishing should be carefully considered both in SM and AM processed specimens.
Collapse
|
|
5 |
45 |
22
|
Dias-Ferreira C, Santos T, Oliveira V. Hospital food waste and environmental and economic indicators--A Portuguese case study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 46:146-154. [PMID: 26427934 DOI: 10.1016/j.wasman.2015.09.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/07/2015] [Accepted: 09/18/2015] [Indexed: 06/05/2023]
Abstract
This study presents a comprehensive characterization of plate waste (food served but not eaten) at an acute care hospital in Portugal and elaborates on possible waste reduction measures. Even though waste prevention is a priority in Europe, large amounts of food are still being wasted every day, with hospitals giving rise to two to three times more food waste than other foodservice sectors. For this work the plate waste arising at the ward level was audited during 8 weeks, covering almost 8000 meals, using a general hospital as case study. Weighing the food served to patients and that returned after the meal allowed calculating plate waste for the average meal, as well as for individual meal items. Comparison of food waste arising showed that differences exist among wards, with some generating more waste than others. On average each patient throws away 953 g of food each day, representing 35% of the food served. This equates to 8.7 thousand tonnes of food waste being thrown away each year at hospitals across Portugal. These tonnes of food transformed into waste represent economic losses and environmental impacts, being estimated that 16.4 thousand tonnes of CO2 (equivalent) and 35.3 million euros are the annual national indicators in Portugal. This means that 0.5% of the Portuguese National Health budget gets thrown away as food waste. Given the magnitude of the food problem five measures were suggested to reduce food waste, and their potential impact and ease of implementation were discussed. Even though food waste is unavoidable the results obtained in this work highlight the potential financial and environmental savings for Portuguese hospitals, providing a basis to establish future strategies to tackle food waste.
Collapse
|
|
10 |
45 |
23
|
Telleria JL, Santos T, Alcantara M. Abundance and Food-Searching Intensity of Wood Mice (Apodemus sylvaticus) in Fragmented Forests. J Mammal 1991. [DOI: 10.2307/1381994] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
|
34 |
43 |
24
|
Santos T, Viala D, Chambon C, Esbelin J, Hébraud M. Listeria monocytogenes Biofilm Adaptation to Different Temperatures Seen Through Shotgun Proteomics. Front Nutr 2019; 6:89. [PMID: 31259174 PMCID: PMC6587611 DOI: 10.3389/fnut.2019.00089] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause invasive severe human illness (listeriosis) in susceptible patients. Most human listeriosis cases appear to be caused by consumption of refrigerated ready-to-eat foods. Although initial contamination levels in foods are usually low, the ability of these bacteria to survive and multiply at low temperatures allows it to reach levels high enough to cause disease. This study explores the set of proteins that might have an association with L. monocytogenes adaptation to different temperatures. Cultures were grown in biofilm, the most widespread mode of growth in natural and industrial realms. Protein extractions were performed from three different growth temperatures (10, 25, and 37°C) and two growth phases (early stage and mature biofilm). L. monocytogenes subproteomes were targeted using three extraction methods: trypsin-enzymatic shaving, biotin-labeling and cell fractionation. The different subproteomes obtained were separated and analyzed by shotgun proteomics using high-performance liquid chromatography combined with tandem mass spectrometry (LC-OrbiTrap LTQVelos, ThermoFisher Scientific). A total of 141 (biotinylation), 98 (shaving) and 910 (fractionation) proteins were identified. Throughout the 920 unique proteins identified, many are connected to basic cell functions, but some are linked with thermoregulation. We observed some noteworthy protein abundance shifts associated with the major adaptation to cold mechanisms present in L. monocytogenes, namely: the role of ribosomes and the stressosome with a higher abundance of the general stress protein Ctc (Rl25) and the general stress transcription factor sigma B (σB), changes in cell fluidity and motility seen by higher levels of foldase protein PrsA2 and flagellin (FlaA), the uptake of osmolytes with a higher abundance of glycine betaine (GbuB) and carnitine transporters (OpucA), and the relevance of the overexpression of chaperone proteins such as cold shock proteins (CspLA and Dps). As for 37°C, we observed a significantly higher percentage of proteins associated with transcriptional or translational activity present in higher abundance upon comparison with the colder settings. These contrasts of protein expression throughout several conditions will enrich databases and help to model the regulatory circuitry that drives adaptation of L. monocytogenes to environments.
Collapse
|
research-article |
6 |
39 |
25
|
Ferreira AC, Santos T, Sampaio-Marques B, Novais A, Mesquita SD, Ludovico P, Bernardino L, Correia-Neves M, Sousa N, Palha JA, Sousa JC, Marques F. Lipocalin-2 regulates adult neurogenesis and contextual discriminative behaviours. Mol Psychiatry 2018; 23:1031-1039. [PMID: 28485407 DOI: 10.1038/mp.2017.95] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 12/24/2022]
Abstract
In the adult mammalian brain, newborn granule cells are continuously integrated into hippocampal circuits, and the fine-tuning of this process is important for hippocampal function. Thus, the identification of factors that control adult neural stem cells (NSCs) maintenance, differentiation and integration is essential. Here we show that the deletion of the iron trafficking protein lipocalin-2 (LCN2) induces deficits in NSCs proliferation and commitment, with impact on the hippocampal-dependent contextual fear discriminative task. Mice deficient in LCN2 present an increase in the NSCs population, as a consequence of a G0/G1 cell cycle arrest induced by increased endogenous oxidative stress. Of notice, supplementation with the iron-chelating agent deferoxamine rescues NSCs oxidative stress, promotes cell cycle progression and improves contextual fear conditioning. LCN2 is, therefore, a novel key modulator of neurogenesis that, through iron, controls NSCs cell cycle progression and death, self-renewal, proliferation and differentiation and, ultimately, hippocampal function.
Collapse
|
|
7 |
37 |