1
|
Yao XH, Li TY, He ZC, Ping YF, Liu HW, Yu SC, Mou HM, Wang LH, Zhang HR, Fu WJ, Luo T, Liu F, Guo QN, Chen C, Xiao HL, Guo HT, Lin S, Xiang DF, Shi Y, Pan GQ, Li QR, Huang X, Cui Y, Liu XZ, Tang W, Pan PF, Huang XQ, Ding YQ, Bian XW. [A pathological report of three COVID-19 cases by minimal invasive autopsies]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2020; 49:411-417. [PMID: 32172546 DOI: 10.3760/cma.j.cn112151-20200312-00193] [Citation(s) in RCA: 458] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: To investigate the pathological characteristics and the clinical significance of novel coronavirus (2019-nCoV)-infected pneumonia (termed by WHO as coronavirus disease 2019, COVID-19). Methods: Minimally invasive autopsies from lung, heart, kidney, spleen, bone marrow, liver, pancreas, stomach, intestine, thyroid and skin were performed on three patients died of novel coronavirus pneumonia in Chongqing, China. Hematoxylin and eosin staining (HE), transmission electron microcopy, and histochemical staining were performed to investigate the pathological changes of indicated organs or tissues. Immunohistochemical staining was conducted to evaluate the infiltration of immune cells as well as the expression of 2019-nCoV proteins. Real time PCR was carried out to detect the RNA of 2019-nCoV. Results: Various damages were observed in the alveolar structure, with minor serous exudation and fibrin exudation. Hyaline membrane formation was observed in some alveoli. The infiltrated immune cells in alveoli were majorly macrophages and monocytes. Moderate multinucleated giant cells, minimal lymphocytes, eosinophils and neutrophils were also observed. Most of infiltrated lymphocytes were CD4-positive T cells. Significant proliferation of type Ⅱ alveolar epithelia and focal desquamation of alveolar epithelia were also indicated. The blood vessels of alveolar septum were congested, edematous and widened, with modest infiltration of monocytes and lymphocytes. Hyaline thrombi were found in a minority of microvessels. Focal hemorrhage in lung tissue, organization of exudates in some alveolar cavities, and pulmonary interstitial fibrosis were observed. Part of the bronchial epithelia were exfoliated. Coronavirus particles in bronchial mucosal epithelia and type Ⅱ alveolar epithelia were observed under electron microscope. Immunohistochemical staining showed that part of the alveolar epithelia and macrophages were positive for 2019-nCoV antigen. Real time PCR analyses identified positive signals for 2019-nCoV nucleic acid. Decreased numbers of lymphocyte, cell degeneration and necrosis were observed in spleen. Furthermore, degeneration and necrosis of parenchymal cells, formation of hyaline thrombus in small vessels, and pathological changes of chronic diseases were observed in other organs and tissues, while no evidence of coronavirus infection was observed in these organs. Conclusions: The lungs from novel coronavirus pneumonia patients manifest significant pathological lesions, including the alveolar exudative inflammation and interstitial inflammation, alveolar epithelium proliferation and hyaline membrane formation. While the 2019-nCoV is mainly distributed in lung, the infection also involves in the damages of heart, vessels, liver, kidney and other organs. Further studies are warranted to investigate the mechanism underlying pathological changes of this disease.
Collapse
|
Journal Article |
5 |
458 |
2
|
An FP, Bai JZ, Balantekin AB, Band HR, Beavis D, Beriguete W, Bishai M, Blyth S, Boddy K, Brown RL, Cai B, Cao GF, Cao J, Carr R, Chan WT, Chang JF, Chang Y, Chasman C, Chen HS, Chen HY, Chen SJ, Chen SM, Chen XC, Chen XH, Chen XS, Chen Y, Chen YX, Cherwinka JJ, Chu MC, Cummings JP, Deng ZY, Ding YY, Diwan MV, Dong L, Draeger E, Du XF, Dwyer DA, Edwards WR, Ely SR, Fang SD, Fu JY, Fu ZW, Ge LQ, Ghazikhanian V, Gill RL, Goett J, Gonchar M, Gong GH, Gong H, Gornushkin YA, Greenler LS, Gu WQ, Guan MY, Guo XH, Hackenburg RW, Hahn RL, Hans S, He M, He Q, He WS, Heeger KM, Heng YK, Hinrichs P, Ho TH, Hor YK, Hsiung YB, Hu BZ, Hu T, Hu T, Huang HX, Huang HZ, Huang PW, Huang X, Huang XT, Huber P, Isvan Z, Jaffe DE, Jetter S, Ji XL, Ji XP, Jiang HJ, Jiang WQ, Jiao JB, Johnson RA, Kang L, Kettell SH, Kramer M, Kwan KK, Kwok MW, Kwok T, Lai CY, Lai WC, Lai WH, Lau K, Lebanowski L, Lee J, Lee MKP, Leitner R, Leung JKC, Leung KY, et alAn FP, Bai JZ, Balantekin AB, Band HR, Beavis D, Beriguete W, Bishai M, Blyth S, Boddy K, Brown RL, Cai B, Cao GF, Cao J, Carr R, Chan WT, Chang JF, Chang Y, Chasman C, Chen HS, Chen HY, Chen SJ, Chen SM, Chen XC, Chen XH, Chen XS, Chen Y, Chen YX, Cherwinka JJ, Chu MC, Cummings JP, Deng ZY, Ding YY, Diwan MV, Dong L, Draeger E, Du XF, Dwyer DA, Edwards WR, Ely SR, Fang SD, Fu JY, Fu ZW, Ge LQ, Ghazikhanian V, Gill RL, Goett J, Gonchar M, Gong GH, Gong H, Gornushkin YA, Greenler LS, Gu WQ, Guan MY, Guo XH, Hackenburg RW, Hahn RL, Hans S, He M, He Q, He WS, Heeger KM, Heng YK, Hinrichs P, Ho TH, Hor YK, Hsiung YB, Hu BZ, Hu T, Hu T, Huang HX, Huang HZ, Huang PW, Huang X, Huang XT, Huber P, Isvan Z, Jaffe DE, Jetter S, Ji XL, Ji XP, Jiang HJ, Jiang WQ, Jiao JB, Johnson RA, Kang L, Kettell SH, Kramer M, Kwan KK, Kwok MW, Kwok T, Lai CY, Lai WC, Lai WH, Lau K, Lebanowski L, Lee J, Lee MKP, Leitner R, Leung JKC, Leung KY, Lewis CA, Li B, Li F, Li GS, Li J, Li QJ, Li SF, Li WD, Li XB, Li XN, Li XQ, Li Y, Li ZB, Liang H, Liang J, Lin CJ, Lin GL, Lin SK, Lin SX, Lin YC, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu BJ, Liu C, Liu DW, Liu H, Liu JC, Liu JL, Liu S, Liu X, Liu YB, Lu C, Lu HQ, Luk A, Luk KB, Luo T, Luo XL, Ma LH, Ma QM, Ma XB, Ma XY, Ma YQ, Mayes B, McDonald KT, McFarlane MC, McKeown RD, Meng Y, Mohapatra D, Morgan JE, Nakajima Y, Napolitano J, Naumov D, Nemchenok I, Newsom C, Ngai HY, Ngai WK, Nie YB, Ning Z, Ochoa-Ricoux JP, Oh D, Olshevski A, Pagac A, Patton S, Pearson C, Pec V, Peng JC, Piilonen LE, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Rosero R, Roskovec B, Ruan XC, Seilhan B, Shao BB, Shih K, Steiner H, Stoler P, Sun GX, Sun JL, Tam YH, Tanaka HK, Tang X, Themann H, Torun Y, Trentalange S, Tsai O, Tsang KV, Tsang RHM, Tull C, Viren B, Virostek S, Vorobel V, Wang CH, Wang LS, Wang LY, Wang LZ, Wang M, Wang NY, Wang RG, Wang T, Wang W, Wang X, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Webber DM, Wei YD, Wen LJ, Wenman DL, Whisnant K, White CG, Whitehead L, Whitten CA, Wilhelmi J, Wise T, Wong HC, Wong HLH, Wong J, Worcester ET, Wu FF, Wu Q, Xia DM, Xiang ST, Xiao Q, Xing ZZ, Xu G, Xu J, Xu J, Xu JL, Xu W, Xu Y, Xue T, Yang CG, Yang L, Ye M, Yeh M, Yeh YS, Yip K, Young BL, Yu ZY, Zhan L, Zhang C, Zhang FH, Zhang JW, Zhang QM, Zhang K, Zhang QX, Zhang SH, Zhang YC, Zhang YH, Zhang YX, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao QW, Zhao YB, Zheng L, Zhong WL, Zhou L, Zhou ZY, Zhuang HL, Zou JH. Observation of electron-antineutrino disappearance at Daya Bay. PHYSICAL REVIEW LETTERS 2012; 108:171803. [PMID: 22680853 DOI: 10.1103/physrevlett.108.171803] [Show More Authors] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Indexed: 05/23/2023]
Abstract
The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ(13) with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GWth reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43,000 ton-GWth-day live-time exposure in 55 days, 10,416 (80,376) electron-antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R=0.940±0.011(stat.)±0.004(syst.). A rate-only analysis finds sin(2)2θ(13)=0.092±0.016(stat.)±0.005(syst.) in a three-neutrino framework.
Collapse
|
|
13 |
183 |
3
|
Chen N, Luo T, Wellington C, Metzler M, McCutcheon K, Hayden MR, Raymond LA. Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem 1999; 72:1890-8. [PMID: 10217265 DOI: 10.1046/j.1471-4159.1999.0721890.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evidence suggests that NMDA receptor-mediated neurotoxicity plays a role in the selective neurodegeneration underlying Huntington's disease (HD). The gene mutation that causes HD encodes an expanded polyglutamine tract of >35 in huntingtin, a protein of unknown function. Both huntingtin and NMDA receptors interact with cytoskeletal proteins, and, for NMDA receptors, such interactions regulate surface expression and channel activity. To determine whether mutant huntingtin alters NMDA receptor expression or function, we coexpressed mutant or normal huntingtin, containing 138 or 15 glutamine repeats, respectively, with NMDA receptors in a cell line and then assessed receptor channel function by patch-clamp recording and surface expression by western blot analysis. It is interesting that receptors composed of NR1 and NR2B subunits exhibited significantly larger currents when coexpressed with mutant compared with normal huntingtin. Moreover, this effect was selective for NR1/NR2B, as NR1/NR2A showed similar currents when coexpressed with mutant versus normal huntingtin. However, ion channel properties and total surface expression of the NR1 subunit were unchanged in cells cotransfected with NR1/NR2B and mutant huntingtin. Our results suggest that mutant huntingtin may increase numbers of functional NR1/NR2B-type receptors at the cell surface. Because NR1/NR2B is the predominant NMDA receptor subtype expressed in medium spiny neostriatal neurons, our findings may help explain the selective vulnerability of these neurons in HD.
Collapse
|
|
26 |
151 |
4
|
Luo T, Douglas JL, Livingston RL, Garcia JV. Infectivity enhancement by HIV-1 Nef is dependent on the pathway of virus entry: implications for HIV-based gene transfer systems. Virology 1998; 241:224-33. [PMID: 9499797 DOI: 10.1006/viro.1997.8966] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviruses have been extensively used in the development of gene transfer systems. Recently, there has been a great deal of interest in the use of lentiviruses for gene transfer because they infect nondividing cells. Human immunodeficiency virus (HIV) has been the lentivirus most often used for this purpose, but its genomic complexity and limited tropism present some challenges to the establishment of efficient gene transfer systems. In this paper we present data showing intrinsic differences between the infectivity of wild-type HIV and HIV particles pseudotyped with heterologous envelope glycoproteins. Interestingly, HIV pseudotypes with envelope glycoproteins from the amphotropic murine leukemia virus or the vesicular stomatitis virus (VSV) are 3 and 40 times more infectious than wild-type HIV, respectively. In addition, we show that the reliance on Nef expression for maximal infectivity of HIV particles is dependent on the path of virus entry. The dependence on Nef for higher infectivity is greater for amphotropic pseudotypes and wild-type HIV than for VSV-G pseudotypes. We conclude that VSV-G pseudotypes of HIV vectors are an excellent choice for gene transfer purposes and Nef-mediated viral infectivity enhancement is affected by virus entry pathway.
Collapse
|
|
27 |
66 |
5
|
Luo T, Matsuo-Takasaki M, Sargent TD. Distinct roles for Distal-less genes Dlx3 and Dlx5 in regulating ectodermal development in Xenopus. Mol Reprod Dev 2001; 60:331-7. [PMID: 11599044 DOI: 10.1002/mrd.1095] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In vertebrates, there are six or more copies of genes related to the Drosophila pattern formation homeodomain gene Distal-less. Among this family, Dlx3 and Dlx5 share extensive sequence homology and have similar, but distinctive, expression patterns, suggesting that these two factors may have substantially redundant developmental functions. Here we show that at the earliest phases of embryogenesis in Xenopus, there are significant differences between Dlx3 and Dlx5 expression and that this correlates with different functions in the restriction of neural crest and neural plate boundaries, respectively.
Collapse
|
|
24 |
65 |
6
|
Wang Z, Luo T, Roeder RG. Identification of an autonomously initiating RNA polymerase III holoenzyme containing a novel factor that is selectively inactivated during protein synthesis inhibition. Genes Dev 1997; 11:2371-82. [PMID: 9308965 PMCID: PMC316516 DOI: 10.1101/gad.11.18.2371] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcription by RNA polymerase III (Pol III) requires multiple general initiation factors that, in isolated form, assemble onto the promoter in an ordered fashion. Here, it is shown that all components required for transcription of the VA1 and tRNA genes, including TFIIIB, TFIIIC, and RNA Pol III, can be coimmunopurified from a HeLa cell line that constantly expresses a FLAG epitope-tagged subunit of human RNA Pol III. This finding of an RNA Pol III "holoenzyme" suggests similarities between transcription initiation by RNA Pol II and RNA Pol III and has led to the identification of a novel general initiation factor (TDF, translation dependent factor) that is present within the holoenzyme. TDF is selectively inactivated during protein synthesis inhibition by cycloheximide and at a late stage of adenovirus infection, thus accounting for the loss of RNA Pol III-mediated transcription of the tRNA and VA RNA genes under these conditions. On the basis of these observations, possible mechanisms for the global regulation of transcription by RNA Pol III and for disassembly of RNA Pol III initiation complexes are proposed.
Collapse
|
research-article |
28 |
61 |
7
|
Ablikim M, Achasov MN, Ai XC, Albayrak O, Ambrose DJ, An FF, An Q, Bai JZ, Baldini Ferroli R, Ban Y, Becker J, Bennett JV, Bertani M, Bian JM, Boger E, Bondarenko O, Boyko I, Briere RA, Bytev V, Cai H, Cai X, Cakir O, Calcaterra A, Cao GF, Cetin SA, Chang JF, Chelkov G, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen X, Chen YB, Cheng HP, Chu YP, Cronin-Hennessy D, Dai HL, Dai JP, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, Ding WM, Ding Y, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fava L, Feng CQ, Friedel P, Fu CD, Fu JL, Fuks O, Gao Q, Gao Y, Geng C, Goetzen K, Gong WX, Gradl W, Greco M, Gu MH, Gu YT, Guan YH, Guo AQ, Guo LB, Guo T, Guo YP, Han YL, Harris FA, He KL, He M, He ZY, Held T, Heng YK, Hou ZL, Hu C, Hu HM, Hu JF, Hu T, Huang GM, Huang GS, Huang JS, Huang L, Huang XT, Huang Y, Huang YP, Hussain T, Ji CS, Ji Q, Ji QP, Ji XB, Ji XL, Jiang LL, Jiang XS, Jiao JB, Jiao Z, et alAblikim M, Achasov MN, Ai XC, Albayrak O, Ambrose DJ, An FF, An Q, Bai JZ, Baldini Ferroli R, Ban Y, Becker J, Bennett JV, Bertani M, Bian JM, Boger E, Bondarenko O, Boyko I, Briere RA, Bytev V, Cai H, Cai X, Cakir O, Calcaterra A, Cao GF, Cetin SA, Chang JF, Chelkov G, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen X, Chen YB, Cheng HP, Chu YP, Cronin-Hennessy D, Dai HL, Dai JP, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, Ding WM, Ding Y, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fava L, Feng CQ, Friedel P, Fu CD, Fu JL, Fuks O, Gao Q, Gao Y, Geng C, Goetzen K, Gong WX, Gradl W, Greco M, Gu MH, Gu YT, Guan YH, Guo AQ, Guo LB, Guo T, Guo YP, Han YL, Harris FA, He KL, He M, He ZY, Held T, Heng YK, Hou ZL, Hu C, Hu HM, Hu JF, Hu T, Huang GM, Huang GS, Huang JS, Huang L, Huang XT, Huang Y, Huang YP, Hussain T, Ji CS, Ji Q, Ji QP, Ji XB, Ji XL, Jiang LL, Jiang XS, Jiao JB, Jiao Z, Jin DP, Jin S, Jing FF, Kalantar-Nayestanaki N, Kavatsyuk M, Kopf B, Kornicer M, Kühn W, Lai W, Lange JS, Lara M, Larin P, Leyhe M, Li CH, Li C, Li C, Li DM, Li F, Li G, Li HB, Li JC, Li K, Li L, Li QJ, Li SL, Li WD, Li WG, Li XL, Li XN, Li XQ, Li XR, Li ZB, Liang H, Liang YF, Liang YT, Liao GR, Liao XT, Lin D, Liu BJ, Liu CL, Liu CX, Liu FH, Liu F, Liu F, Liu H, Liu HB, Liu HH, Liu HM, Liu HW, Liu JP, Liu K, Liu KY, Liu K, Liu PL, Liu Q, Liu SB, Liu X, Liu YB, Liu ZA, Liu Z, Liu Z, Loehner H, Lou XC, Lu GR, Lu HJ, Lu JG, Lu QW, Lu XR, Lu YP, Luo CL, Luo MX, Luo T, Luo XL, Lv M, Ma CL, Ma FC, Ma HL, Ma QM, Ma S, Ma T, Ma XY, Maas FE, Maggiora M, Malik QA, Mao YJ, Mao ZP, Messchendorp JG, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Moeini H, Morales Morales C, Moriya K, Muchnoi NY, Muramatsu H, Nefedov Y, Nicholson C, Nikolaev IB, Ning Z, Olsen SL, Ouyang Q, Pacetti S, Park JW, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Poling R, Prencipe E, Qi M, Qian S, Qiao CF, Qin LQ, Qin XS, Qin Y, Qin ZH, Qiu JF, Rashid KH, Rong G, Ruan XD, Sarantsev A, Schaefer BD, Shao M, Shen CP, Shen XY, Sheng HY, Shepherd MR, Song WM, Song XY, Spataro S, Spruck B, Sun DH, Sun GX, Sun JF, Sun SS, Sun YJ, Sun YZ, Sun ZJ, Sun ZT, Tang CJ, Tang X, Tapan I, Thorndike EH, Toth D, Ullrich M, Uman I, Varner GS, Wang BQ, Wang D, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang P, Wang PL, Wang QJ, Wang SG, Wang XF, Wang XL, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZG, Wang ZY, Wei DH, Wei JB, Weidenkaff P, Wen QG, Wen SP, Werner M, Wiedner U, Wu LH, Wu N, Wu SX, Wu W, Wu Z, Xia LG, Xia YX, Xiao ZJ, Xie YG, Xiu QL, Xu GF, Xu GM, Xu QJ, Xu QN, Xu XP, Xu ZR, Xue F, Xue Z, Yan L, Yan WB, Yan YH, Yang HX, Yang Y, Yang YX, Ye H, Ye M, Ye MH, Yu BX, Yu CX, Yu HW, Yu JS, Yu SP, Yuan CZ, Yuan Y, Zafar AA, Zallo A, Zang SL, Zeng Y, Zhang BX, Zhang BY, Zhang C, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang L, Zhang R, Zhang SH, Zhang XJ, Zhang XY, Zhang Y, Zhang YH, Zhang ZP, Zhang ZY, Zhang Z, Zhao G, Zhao HS, Zhao JW, Zhao KX, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao XH, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhou L, Zhou X, Zhou XK, Zhou XR, Zhu C, Zhu K, Zhu KJ, Zhu SH, Zhu XL, Zhu YC, Zhu YM, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of a charged charmoniumlike structure in e+ e- → π+ π- J/ψ at sqrt[s] = 4.26 GeV. PHYSICAL REVIEW LETTERS 2013; 110:252001. [PMID: 23829729 DOI: 10.1103/physrevlett.110.252001] [Show More Authors] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Indexed: 06/02/2023]
Abstract
We study the process ee+ e- → π+ π- J/ψ at a center-of-mass energy of 4.260 GeV using a 525 pb(-1) data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross section is measured to be (62.9±1.9±3.7) pb, consistent with the production of the Y(4260). We observe a structure at around 3.9 GeV/c2 in the π(±)J/ψ mass spectrum, which we refer to as the Z(c)(3900). If interpreted as a new particle, it is unusual in that it carries an electric charge and couples to charmonium. A fit to the π(±)J/ψ invariant mass spectrum, neglecting interference, results in a mass of (3899.0±3.6±4.9) MeV/c2 and a width of (46±10±20) MeV. Its production ratio is measured to be R = (σ(e+ e- → π(±)Z(c)(3900)(∓) → π+ π- J/ψ)/σ(e+ e- → π+ π- J/ψ)) = (21.5±3.3±7.5)%. In all measurements the first errors are statistical and the second are systematic.
Collapse
|
|
12 |
57 |
8
|
Spolverato G, Maqsood H, Kim Y, Margonis G, Luo T, Ejaz A, Pawlik TM. Neutrophil-lymphocyte and platelet-lymphocyte ratio in patients after resection for hepato-pancreatico-biliary malignancies. J Surg Oncol 2015; 111:868-74. [PMID: 25865111 DOI: 10.1002/jso.23900] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/04/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES We sought to determine whether Neutrophil-lymphocyte ratio (NLR) or platelet-lymphocyte ratio (PLR) were associated with outcomes of patients undergoing surgery for a hepatopancreatico-biliary (HPB) malignancy. METHOD Between 2000 and 2013, 452 patients who underwent an HPB procedure for a malignant indication were identified. Clinicopathological characteristics, NLR, and PLR, as well as short- and long-term outcomes were analyzed. High NLR and PLR were classified using a cut-off value of 5 and 190, respectively, based on ROC curve analysis. RESULTS Patients with low versus high NLR and PLR had similar baseline characteristics with regard to performance status and tumor stage (all P > 0.05). Elevated PLR (HR = 1.40) tends to be association with shorter recurrence-free survival (RFS) (P = 0.05), whereas NLR was not a predictor of shorter RFS. Differently, both elevated NLR (HR = 1.94) and PLR (HR = 1.79) were associated with worse overall survival (OS) (both P < 0.05). Patients with NLR ≥5 and those with PLR ≥190 had a significantly shorter OS compared to patients with NLR <5 and PLR <190, respectively (log-rank test, both P < 0.05). Moreover, patients who had both NLR and PLR elevated had worse OS compared to patients with either one or none inflammatory markers elevated (log-rank P = 0.02). CONCLUSION Elevated NLR and PLR were predictors of worse long-term outcome among patients with HPB malignancy undergoing resection.
Collapse
|
Journal Article |
10 |
50 |
9
|
Voelker U, Luo T, Smirnova N, Haldenwang W. Stress activation of Bacillus subtilis sigma B can occur in the absence of the sigma B negative regulator RsbX. J Bacteriol 1997; 179:1980-4. [PMID: 9068644 PMCID: PMC178922 DOI: 10.1128/jb.179.6.1980-1984.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Environmental stress activates sigma B, the general stress response sigma factor of Bacillus subtilis, by a pathway that is negatively controlled by the RsbX protein. To determine whether stress activation of sigma B occurs by a direct effect of stress on RsbX, we constructed B. subtilis strains which synthesized various amounts of RsbX or lacked RsbX entirely and subjected these strains to ethanol stress. Based on the induction of a sigma B-dependent promoter, stress activation of sigma B can occur in the absence of RsbX. Higher levels of RsbX failed to detectably influence stress induction, but reduced levels of RsbX resulted in greater and longer-lived sigma B activation. The data suggest that RsbX is not a direct participant in the sigma B stress induction process but rather serves as a device to limit the magnitude of the stress response.
Collapse
|
research-article |
28 |
49 |
10
|
Teng Y, Gao M, Wang J, Kong Q, Hua H, Luo T, Jiang Y. Inhibition of eIF2α dephosphorylation enhances TRAIL-induced apoptosis in hepatoma cells. Cell Death Dis 2014; 5:e1060. [PMID: 24525736 PMCID: PMC3944242 DOI: 10.1038/cddis.2014.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/03/2014] [Accepted: 01/09/2014] [Indexed: 02/05/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inducer of cancer cell death that holds promise in cancer therapy. Cancer cells are more susceptible than normal cells to the cell-death-inducing effects of TRAIL. However, a variety of cancer cells are resistant to TRAIL through complex mechanisms. Here, we investigate the effects of inhibition of eukaryotic initiation factor 2 subunit α (eIF2α) dephosphorylation on TRAIL-induced apoptosis in hepatoma cells. Treatment of hepatoma cells with salubrinal, an inhibitor of eIF2α dephosphorylation, enhances TRAIL-induced eIF2α phosphorylation, CCAAT/enhancer-binding protein homologous protein (CHOP) expression and caspase activation. Salubrinal enhances TRAIL-induced apoptosis, which could be abrogated by caspase inhibitor. Overexpression of phosphomimetic eIF2α (S51D) enhances TRAIL-induced CHOP expression, caspase 7 and PARP cleavage and apoptosis. By contrast, overexpression of phosphodeficient eIF2α (S51A) abrogates the stimulation of TRAIL-induced apoptosis by salubrinal. Moreover, knockdown of growth arrest and DNA damage-inducible protein 34 (GADD34), which recruits protein phosphatase 1 to dephosphorylate eIF2α, enhances TRAIL-induced eIF2α phosphorylation, CHOP expression, caspase activation and apoptosis. Furthermore, the sensitization of hepatoma cells to TRAIL by salubrinal is dependent on CHOP. Knockdown of CHOP abrogates the stimulation of TRAIL-induced caspase activation and apoptosis by salubrinal. Combination of salubrinal and TRAIL leads to increased expression of Bim, a CHOP-regulated proapoptotic protein. Bim knockdown blunts the stimulatory effect of salubrinal on TRAIL-induced apoptosis. Collectively, these findings suggest that inhibition of eIF2α dephosphorylation may lead to synthetic lethality in TRAIL-treated hepatoma cells.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
48 |
11
|
Luo T, Garcia JV. The association of Nef with a cellular serine/threonine kinase and its enhancement of infectivity are viral isolate dependent. J Virol 1996; 70:6493-6. [PMID: 8709288 PMCID: PMC190686 DOI: 10.1128/jvi.70.9.6493-6496.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The nef genes of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) encode a 27- to 34-kDa myristoylated protein which induces downregulation of CD4 surface levels and enhances virus infectivity. In adult macaques, Nef has been implicated in pathogenesis and disease progression. Both HIV-1 SF2 Nef and SIVmac239 Nef have been shown to associate with a cellular serine/threonine kinase. We tested five functional Nef isolates to examine whether this kinase association is a property conserved among different isolates. HIV-1 SF2 and 248 and SIVmac239 Nef proteins were found associated with the kinase. HIV-1 NL4-3 and 233 Nef proteins were found weakly associated or not associated with the kinase. All five Nef isolates efficiently downregulated CD4 cell surface expression, suggesting that the association with this cellular kinase is not required for Nef to downregulate CD4. Comparison of the SF2 and NL4-3 isolates shows a differential ability of Nef to enhance infectivity that suggests a possible correlation between kinase association and enhancement of infectivity.
Collapse
|
research-article |
29 |
46 |
12
|
Wu H, Luo T, Li YM, Gao ZP, Zhang KQ, Song JY, Xiao JS, Cao YP. Granny Smith apple procyanidin extract upregulates tight junction protein expression and modulates oxidative stress and inflammation in lipopolysaccharide-induced Caco-2 cells. Food Funct 2018; 9:3321-3329. [DOI: 10.1039/c8fo00525g] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Granny Smith apple procyanidin extracts upregulate tight junction protein expression, probably acting via the modulation of oxidative stress and inflammation in lipopolysaccharide-induced Caco-2 cells.
Collapse
|
|
7 |
44 |
13
|
Luo T, Fredericksen BL, Hasumi K, Endo A, Garcia JV. Human immunodeficiency virus type 1 Nef-induced CD4 cell surface downregulation is inhibited by ikarugamycin. J Virol 2001; 75:2488-92. [PMID: 11160755 PMCID: PMC114835 DOI: 10.1128/jvi.75.5.2488-2492.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One well-characterized in vitro function of Nef is its ability to remove CD4, the human immunodeficiency virus (HIV) receptor, from the cell surface. Nef accomplishes this by accelerating the internalization and degradation of CD4. Current models propose that Nef promotes CD4 internalization via an increased association of CD4 with clathrin-coated pits (CCP). Here, we investigated the effect of a naturally occurring antiprotozoan antibiotic, ikarugamycin (IKA), on CD4 cell surface expression in human monocytic cells stably expressing HIV type 1 SF2 Nef. IKA was able to efficiently restore CD4 cell surface expression in Nef-expressing cells without affecting either CD4 synthesis or Nef expression. In addition, we demonstrate that IKA is also capable of efficiently blocking CD4 down-modulation in response to phorbol myristate acetate. Our data suggest that IKA may be an efficient and useful inhibitor of CCP-dependent endocytosis.
Collapse
|
research-article |
24 |
42 |
14
|
Ju J, Luo T, Haldenwang WG. Bacillus subtilis Pro-sigmaE fusion protein localizes to the forespore septum and fails to be processed when synthesized in the forespore. J Bacteriol 1997; 179:4888-93. [PMID: 9244279 PMCID: PMC179338 DOI: 10.1128/jb.179.15.4888-4893.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endospore formation in Bacillus subtilis begins with an asymmetric cell division that partitions the bacterium into mother cell and forespore compartments. Mother cell-specific gene expression is initiated by sigmaE, a transcription factor that is active only in the mother cell but which existed as an inactive precursor (pro-sigmaE) in the predivisional cell. Activation of pro-sigmaE involves the removal of 27 amino acids from its amino terminus. A chimera of pro-sigmaE and the green fluorescent protein (GFP) was expressed from either the normal sigE promoter (P(spoIIG)), which places pro-sigmaE::GFP in both mother cell and forespore compartments, or the forespore-specific promoter (P(dacF)), which produces pro-sigmaE::GFP only in the forespore compartment. The pro-sigmaE::GFP expressed from P(spoIIG), but not P(dacF), was converted to a lower-molecular-weight form by a mechanism dependent on gene products (SpoIIGA and sigmaF) that are essential for normal pro-sigmaE processing. This finding is consistent with the pro-sigmaE processing reaction occurring only in the mother cell compartment. In processing-deficient cells, pro-sigmaE::GFP was found to accumulate at the septal membrane, a location where its processing apparatus would be susceptible to triggering from the adjoining forespore.
Collapse
|
research-article |
28 |
38 |
15
|
|
|
22 |
37 |
16
|
Zhao X, Fu J, Xu A, Yu L, Zhu J, Dai R, Su B, Luo T, Li N, Qin W, Wang B, Jiang J, Li S, Chen Y, Wang H. Gankyrin drives malignant transformation of chronic liver damage-mediated fibrosis via the Rac1/JNK pathway. Cell Death Dis 2015; 6:e1751. [PMID: 25950481 PMCID: PMC4669699 DOI: 10.1038/cddis.2015.120] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
Abstract
Hepatocarcinogenesis is a complex process involving chronic liver injury, inflammation, unregulated wound healing, subsequent fibrosis and carcinogenesis. To decipher the molecular mechanism underlying transition from chronic liver injury to dysplasia, we investigated the oncogenic role of gankyrin (PSMD10 or p28GANK) during malignant transformation in a transgenic mouse model. Here, we find that gankyrin increased in patients with cirrhosis. In addition to more severe liver fibrosis and tumorigenesis after DEN plus CCl4 treatment, hepatocyte-specific gankyrin-overexpressing mice (gankyrinhep) exhibited malignant transformation from liver fibrosis to tumors even under single CCl4 administration, whereas wild-type mice merely experienced fibrosis. Consistently, enhanced hepatic injury, severe inflammation and strengthened compensatory proliferation occurred in gankyrinhep mice during CCl4 performance. This correlated with augmented expressions of cell cycle-related genes and abnormal activation of Rac1/c-jun N-terminal kinase (JNK). Pharmacological inhibition of the Rac1/JNK pathway attenuated hepatic fibrosis and prevented CCl4-induced carcinogenesis in gankyrinhep mice. Together, these findings suggest that gankyrin promotes liver fibrosis/cirrhosis progression into hepatocarcinoma relying on a persistent liver injury and inflammatory microenvironment. Blockade of Rac1/JNK activation impeded gankyrin-mediated hepatocytic malignant transformation, indicating the combined inhibition of gankyrin and Rac1/JNK as a potential prevention mechanism for cirrhosis transition.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
37 |
17
|
Xiang Q, Huang D, Zhao Y, Wang G, Liu Y, Zhong L, Luo T. Caudal dexmedetomidine combined with bupivacaine inhibit the response to hernial sac traction in children undergoing inguinal hernia repair. Br J Anaesth 2013; 110:420-4. [DOI: 10.1093/bja/aes385] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
12 |
36 |
18
|
Ablikim M, Achasov M, Ai X, Albayrak O, Albrecht M, Ambrose D, Amoroso A, An F, An Q, Bai J, Baldini Ferroli R, Ban Y, Bennett D, Bennett J, Bertani M, Bettoni D, Bian J, Bianchi F, Boger E, Boyko I, Briere R, Cai H, Cai X, Cakir O, Calcaterra A, Cao G, Cetin S, Chang J, Chelkov G, Chen G, Chen H, Chen H, Chen J, Chen M, Chen S, Chen X, Chen X, Chen Y, Cheng H, Chu X, Cibinetto G, Dai H, Dai J, Dbeyssi A, Dedovich D, Deng Z, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong L, Dong M, Dou Z, Du S, Duan P, Fan J, Fang J, Fang S, Fang X, Fang Y, Farinelli R, Fava L, Fedorov O, Feldbauer F, Felici G, Feng C, Fioravanti E, Fritsch M, Fu C, Gao Q, Gao X, Gao X, Gao Y, Gao Z, Garzia I, Goetzen K, Gong L, Gong W, Gradl W, Greco M, Gu M, Gu Y, Guan Y, Guo A, Guo L, Guo Y, Guo Y, Haddadi Z, Hafner A, Han S, Hao X, Harris F, He K, Held T, Heng Y, Hou Z, Hu C, et alAblikim M, Achasov M, Ai X, Albayrak O, Albrecht M, Ambrose D, Amoroso A, An F, An Q, Bai J, Baldini Ferroli R, Ban Y, Bennett D, Bennett J, Bertani M, Bettoni D, Bian J, Bianchi F, Boger E, Boyko I, Briere R, Cai H, Cai X, Cakir O, Calcaterra A, Cao G, Cetin S, Chang J, Chelkov G, Chen G, Chen H, Chen H, Chen J, Chen M, Chen S, Chen X, Chen X, Chen Y, Cheng H, Chu X, Cibinetto G, Dai H, Dai J, Dbeyssi A, Dedovich D, Deng Z, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong L, Dong M, Dou Z, Du S, Duan P, Fan J, Fang J, Fang S, Fang X, Fang Y, Farinelli R, Fava L, Fedorov O, Feldbauer F, Felici G, Feng C, Fioravanti E, Fritsch M, Fu C, Gao Q, Gao X, Gao X, Gao Y, Gao Z, Garzia I, Goetzen K, Gong L, Gong W, Gradl W, Greco M, Gu M, Gu Y, Guan Y, Guo A, Guo L, Guo Y, Guo Y, Haddadi Z, Hafner A, Han S, Hao X, Harris F, He K, Held T, Heng Y, Hou Z, Hu C, Hu H, Hu J, Hu T, Hu Y, Huang G, Huang J, Huang X, Huang Y, Hussain T, Ji Q, Ji Q, Ji X, Ji X, Jiang L, Jiang X, Jiang X, Jiao J, Jiao Z, Jin D, Jin S, Johansson T, Julin A, Kalantar-Nayestanaki N, Kang X, Kang X, Kavatsyuk M, Ke B, Kiese P, Kliemt R, Kloss B, Kolcu O, Kopf B, Kornicer M, Kupsc A, Kühn W, Lange J, Lara M, Larin P, Leng C, Li C, Li C, Li D, Li F, Li F, Li G, Li H, Li J, Li J, Li K, Li K, Li L, Li P, Li Q, Li T, Li W, Li W, Li X, Li X, Li X, Li Z, Liang H, Liang Y, Liang Y, Liao G, Lin D, Liu B, Liu C, Liu D, Liu F, Liu F, Liu F, Liu H, Liu H, Liu H, Liu H, Liu J, Liu J, Liu J, Liu J, Liu K, Liu K, Liu L, Liu P, Liu Q, Liu S, Liu X, Liu Y, Liu Z, Liu Z, Loehner H, Lou X, Lu H, Lu J, Lu Y, Lu Y, Luo C, Luo M, Luo T, Luo X, Lyu X, Ma F, Ma H, Ma L, Ma Q, Ma T, Ma X, Ma X, Ma Y, Maas F, Maggiora M, Mao Y, Mao Z, Marcello S, Messchendorp J, Min J, Mitchell R, Mo X, Mo Y, Morales Morales C, Muchnoi N, Muramatsu H, Nefedov Y, Nerling F, Nikolaev I, Ning Z, Nisar S, Niu S, Niu X, Olsen S, Ouyang Q, Pacetti S, Pan Y, Patteri P, Pelizaeus M, Peng H, Peters K, Pettersson J, Ping J, Ping R, Poling R, Prasad V, Qi H, Qi M, Qian S, Qiao C, Qin L, Qin N, Qin X, Qin Z, Qiu J, Rashid K, Redmer C, Ripka M, Rong G, Rosner C, Ruan X, Santoro V, Sarantsev A, Savrié M, Schoenning K, Schumann S, Shan W, Shao M, Shen C, Shen P, Shen X, Sheng H, Song W, Song X, Sosio S, Spataro S, Sun G, Sun J, Sun S, Sun Y, Sun Y, Sun Z, Sun Z, Tang C, Tang X, Tapan I, Thorndike E, Tiemens M, Ullrich M, Uman I, Varner G, Wang B, Wang B, Wang D, Wang D, Wang K, Wang L, Wang L, Wang M, Wang P, Wang P, Wang S, Wang W, Wang W, Wang X, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wang Z, Weber T, Wei D, Wei J, Weidenkaff P, Wen S, Wiedner U, Wolke M, Wu L, Wu Z, Xia L, Xia L, Xia Y, Xiao D, Xiao H, Xiao Z, Xie Y, Xiu Q, Xu G, Xu L, Xu Q, Xu Q, Xu X, Yan L, Yan W, Yan W, Yan Y, Yang H, Yang H, Yang L, Yang Y, Ye M, Ye M, Yin J, Yu B, Yu C, Yu J, Yuan C, Yuan W, Yuan Y, Yuncu A, Zafar A, Zallo A, Zeng Y, Zeng Z, Zhang B, Zhang B, Zhang C, Zhang C, Zhang D, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang J, Zhang K, Zhang L, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Z, Zhang Z, Zhang Z, Zhao G, Zhao J, Zhao J, Zhao J, Zhao L, Zhao L, Zhao M, Zhao Q, Zhao Q, Zhao S, Zhao T, Zhao Y, Zhao Z, Zhemchugov A, Zheng B, Zheng J, Zheng W, Zheng Y, Zhong B, Zhou L, Zhou X, Zhou X, Zhou X, Zhou X, Zhu K, Zhu K, Zhu S, Zhu S, Zhu X, Zhu Y, Zhu Y, Zhu Z, Zhuang J, Zotti L, Zou B, Zou J. Observation of pseudoscalar and tensor resonances inJ/ψ→γϕϕ. Int J Clin Exp Med 2016. [DOI: 10.1103/physrevd.93.112011] [Show More Authors] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
9 |
34 |
19
|
Hernandez R, Luo T, Brown DT. Exposure to low pH is not required for penetration of mosquito cells by Sindbis virus. J Virol 2001; 75:2010-3. [PMID: 11160702 PMCID: PMC115149 DOI: 10.1128/jvi.75.4.2010-2013.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is widely held that the penetration of cells by alphaviruses is dependent on exposure to the acid environment of an endosome. The alphavirus Sindbis virus replicates in both vertebrate and invertebrate cell cultures. We have found that exposure to an acid environment may not be required for infection of cells of the insect host. In this work, we investigated the effects of two agents (NH(4)Cl and chloroquine), which raise the pH of intracellular compartments (lysosomotropic weak bases) on the infection and replication of Sindbis virus in cells of the insect host Aedes albopictus. The results show that both of these agents increase the pH of endosomes, as indicated by protection against diphtheria toxin intoxication. NH(4)Cl blocked the production of infectious virus and blocked virus RNA synthesis when added prior to infection. Chloroquine, in contrast to its effect on vertebrate cells, had no inhibitory effect on infectious virus production in mosquito cells even when added prior to infection. Treatment with NH(4)Cl did not prevent the penetration of virus RNA into the cell cytoplasm or translation of the RNA to produce a precursor to virus nonstructural proteins. These data suggest that while these two drugs raise the pH of endosomes, they do not block insect cell penetration. These data support previous results published by our laboratory suggesting that exposure to an acid environment within the cell may not be an obligatory step in the process of infection of cells by alphaviruses.
Collapse
|
research-article |
24 |
33 |
20
|
Foster JL, Molina RP, Luo T, Arora VK, Huang Y, Ho DD, Garcia JV. Genetic and functional diversity of human immunodeficiency virus type 1 subtype B Nef primary isolates. J Virol 2001; 75:1672-80. [PMID: 11160665 PMCID: PMC114076 DOI: 10.1128/jvi.75.4.1672-1680.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized the functional integrity of seven primary Nef isolates: five from a long-term nonprogressing human immunodeficiency virus (HIV)-infected individual and one each from two patients with AIDS. One of the seven Nefs was defective for CD4 downregulation, two others were defective for PAK-2 activation, and one Nef was defective for PAK-2 activation and major histocompatibility complex (MHC) class I downregulation. Five of the Nefs were tested and found to be functional for the enhancement of virus particle infectivity. The structural basis for each of the functional defects has been analyzed by constructing a consensus nef, followed by mutational analysis of the variant amino acid residues. Mutations A29V and F193I were deleterious to CD4 downregulation and PAK-2 activation, respectively, while S189R rendered Nef defective for both MHC class I downregulation and PAK-2 activation. A search of the literature identified HIVs from five patients with Nefs predominantly mutated at F193 and from one patient with Nefs predominantly mutated at A29. A29 is highly conserved in all HIV subtypes except for subtype E. F193 is conserved in subtype B (and possibly in the closely related subtype D), but none of the other HIV group M subtypes. Our results suggest that functional distinctions may exist between HIV subtypes.
Collapse
|
research-article |
24 |
32 |
21
|
Ju J, Luo T, Haldenwang WG. Forespore expression and processing of the SigE transcription factor in wild-type and mutant Bacillus subtilis. J Bacteriol 1998; 180:1673-81. [PMID: 9537362 PMCID: PMC107077 DOI: 10.1128/jb.180.7.1673-1681.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SigmaE is a mother cell-specific transcription factor of sporulating Bacillus subtilis that is derived from an inactive precursor protein (pro-sigmaE). To examine the process that prevents sigmaE activity from developing in the forespore, we fused the sigmaE structural gene (sigE) to forespore-specific promoters (PdacF and PspoIIIG), placed these fusions at sites on the B. subtilis chromosome which translocate into the forespore either early or late, and used Western blot analysis to monitor SigE accumulation and pro-sigmaE processing. sigE alleles, placed at sites which entered the forespore early, were found to generate more protein product than the same fusion placed at a late entering site. SigE accumulation and processing in the forespore were enhanced by null mutations in spoIIIE, a gene whose product is essential for translocation of the distal portion of the B. subtilis chromosome into the forespore. In other experiments, a chimera of pro-sigmaE and green fluorescence protein, previously shown to be unprocessed if it is synthesized within the forespore, was found to be processed in this compartment if coexpressed with the gene for the pro-sigmaE-processing enzyme, SpoIIGA. The need for spoIIGA coexpression is obviated in the absence of SpoIIIE. We interpret these results as evidence that selective degradation of both SigE and SpoIIGA prevent mature sigmaE from accumulating in the forespore compartment of wild-type B. subtilis. Presumably, a gene(s) located at a site that is distal to the origin of chromosome transfer is responsible for this phenomenon when it is translocated and expressed in the forespore.
Collapse
|
research-article |
27 |
31 |
22
|
Luo T, Downing JR, Garcia JV. Induction of phosphorylation of human immunodeficiency virus type 1 Nef and enhancement of CD4 downregulation by phorbol myristate acetate. J Virol 1997; 71:2535-9. [PMID: 9032396 PMCID: PMC191369 DOI: 10.1128/jvi.71.3.2535-2539.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nef gene of the human and simian immunodeficiency viruses (HIV and SIV) encodes a 27 to 34 kDa myristoylated protein that induces downregulation of CD4 from the cell surface and enhances virus infectivity. As shown by experiments on SIV-infected adult macaques, Nef is important in pathogenesis and disease progression. In vitro, protein kinase C (PKC) phosphorylates Nef, but the role of phosphorylation in the function and expression of this protein has not yet been determined. Here we show that in HIV type 1-infected cells, phosphorylation of Nef increased 8- to 12-fold after treatment with phorbol myristate acetate and phytohemagglutinin (PMA/PHA). Basal and PMA/PHA-induced phosphorylation occurred on serine residues of Nef and was independent of other HIV proteins. The PMA/PHA-induced phosphorylation of Nef was inhibited by bisindolylmaleimide I, a potent and specific inhibitor of PKC, but was unaffected by H89, an inhibitor of protein kinase A. In contrast, treatment with bisindolylmaleimide I did not affect the basal level of Nef phosphorylation, suggesting two different phosphorylation pathways. A PMA-insensitive CD4 mutant in which three serine residues in the cytoplasmic domain have been replaced by alanines was used to determine whether PMA-induced phosphorylation affects Nef-induced CD4 downregulation. In Nef-expressing cells, treatment with PMA enhanced downregulation of the CD4 serine triple mutant from the cell surface, suggesting that phosphorylation is important for Nef function.
Collapse
|
research-article |
28 |
28 |
23
|
Ablikim M, Achasov MN, Albayrak O, Ambrose DJ, An FF, An Q, Bai JZ, Baldini Ferroli R, Ban Y, Becker J, Bennett JV, Bertani M, Bian JM, Boger E, Bondarenko O, Boyko I, Braun S, Briere RA, Bytev V, Cai H, Cai X, Cakir O, Calcaterra A, Cao GF, Cetin SA, Chang JF, Chelkov G, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng HP, Chu XK, Chu YP, Cronin-Hennessy D, Dai HL, Dai JP, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, Ding WM, Ding Y, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fava L, Feng CQ, Friedel P, Fu CD, Fu JL, Fuks O, Gao Y, Geng C, Goetzen K, Gong WX, Gradl W, Greco M, Gu MH, Gu YT, Guan YH, Guo AQ, Guo LB, Guo T, Guo YP, Han YL, Harris FA, He KL, He M, He ZY, Held T, Heng YK, Hou ZL, Hu C, Hu HM, Hu JF, Hu T, Huang GM, Huang GS, Huang JS, Huang L, Huang XT, Huang Y, Hussain T, Ji CS, Ji Q, Ji QP, Ji XB, Ji XL, Jiang LL, Jiang XS, Jiao JB, Jiao Z, Jin DP, et alAblikim M, Achasov MN, Albayrak O, Ambrose DJ, An FF, An Q, Bai JZ, Baldini Ferroli R, Ban Y, Becker J, Bennett JV, Bertani M, Bian JM, Boger E, Bondarenko O, Boyko I, Braun S, Briere RA, Bytev V, Cai H, Cai X, Cakir O, Calcaterra A, Cao GF, Cetin SA, Chang JF, Chelkov G, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng HP, Chu XK, Chu YP, Cronin-Hennessy D, Dai HL, Dai JP, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, Ding WM, Ding Y, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fava L, Feng CQ, Friedel P, Fu CD, Fu JL, Fuks O, Gao Y, Geng C, Goetzen K, Gong WX, Gradl W, Greco M, Gu MH, Gu YT, Guan YH, Guo AQ, Guo LB, Guo T, Guo YP, Han YL, Harris FA, He KL, He M, He ZY, Held T, Heng YK, Hou ZL, Hu C, Hu HM, Hu JF, Hu T, Huang GM, Huang GS, Huang JS, Huang L, Huang XT, Huang Y, Hussain T, Ji CS, Ji Q, Ji QP, Ji XB, Ji XL, Jiang LL, Jiang XS, Jiao JB, Jiao Z, Jin DP, Jin S, Jing FF, Kalantar-Nayestanaki N, Kavatsyuk M, Kloss B, Kopf B, Kornicer M, Kuehn W, Lai W, Lange JS, Lara M, Larin P, Leyhe M, Li CH, Li C, Li C, Li DL, Li DM, Li F, Li G, Li HB, Li JC, Li K, Li L, Li N, Li PR, Li QJ, Li WD, Li WG, Li XL, Li XN, Li XQ, Li XR, Li ZB, Liang H, Liang YF, Liang YT, Liao GR, Lin DX, Liu BJ, Liu CL, Liu CX, Liu FH, Liu F, Liu F, Liu HB, Liu HH, Liu HM, Liu JP, Liu K, Liu KY, Liu PL, Liu Q, Liu SB, Liu X, Liu YB, Liu ZA, Liu Z, Liu Z, Loehner H, Lou XC, Lu GR, Lu HJ, Lu JG, Lu XR, Lu YP, Luo CL, Luo MX, Luo T, Luo XL, Lv M, Ma FC, Ma HL, Ma QM, Ma S, Ma T, Ma XY, Maas FE, Maggiora M, Malik QA, Mao YJ, Mao ZP, Messchendorp JG, Min J, Min TJ, Mitchell RE, Mo XH, Moeini H, Morales Morales C, Moriya K, Muchnoi NY, Muramatsu H, Nefedov Y, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Park JW, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Poling R, Prencipe E, Qi M, Qian S, Qiao CF, Qin LQ, Qin XS, Qin Y, Qin ZH, Qiu JF, Rashid KH, Redmer CF, Ripka M, Rong G, Ruan XD, Sarantsev A, Schumann S, Shan W, Shao M, Shen CP, Shen XY, Sheng HY, Shepherd MR, Song WM, Song XY, Spataro S, Spruck B, Sun GX, Sun JF, Sun SS, Sun YJ, Sun YZ, Sun ZJ, Sun ZT, Tang CJ, Tang X, Tapan I, Thorndike EH, Toth D, Ullrich M, Uman I, Varner GS, Wang B, Wang D, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang P, Wang PL, Wang QJ, Wang SG, Wang XF, Wang XL, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZG, Wang ZH, Wang ZY, Wei DH, Wei JB, Weidenkaff P, Wen QG, Wen SP, Werner M, Wiedner U, Wu LH, Wu N, Wu SX, Wu W, Wu Z, Xia LG, Xia YX, Xiao ZJ, Xie YG, Xiu QL, Xu GF, Xu QJ, Xu QN, Xu XP, Xu ZR, Xue Z, Yan L, Yan WB, Yan WC, Yan YH, Yang HX, Yang Y, Yang YX, Yang YZ, Ye H, Ye M, Ye MH, Yu BX, Yu CX, Yu HW, Yu JS, Yu SP, Yuan CZ, Yuan WL, Yuan Y, Zafar AA, Zallo A, Zang SL, Zeng Y, Zhang BX, Zhang BY, Zhang C, Zhang CB, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang L, Zhang SH, Zhang XJ, Zhang XY, Zhang Y, Zhang YH, Zhang ZP, Zhang ZY, Zhang Z, Zhao G, Zhao JW, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao XH, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhou L, Zhou X, Zhou XK, Zhou XR, Zhu K, Zhu KJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of a charged charmoniumlike structure Zc(4020) and search for the Zc(3900) in e+e-→π+π-hc. PHYSICAL REVIEW LETTERS 2013; 111:242001. [PMID: 24483645 DOI: 10.1103/physrevlett.111.242001] [Show More Authors] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Indexed: 06/03/2023]
Abstract
We study e+e-→π+π-hc at center-of-mass energies from 3.90 to 4.42 GeV by using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross sections are measured at 13 energies and are found to be of the same order of magnitude as those of e+e-→π+π-J/ψ but with a different line shape. In the π±hc mass spectrum, a distinct structure, referred to as Zc(4020), is observed at 4.02 GeV/c2. The Zc(4020) carries an electric charge and couples to charmonium. A fit to the π±hc invariant mass spectrum, neglecting possible interferences, results in a mass of (4022.9±0.8±2.7) MeV/c2 and a width of (7.9±2.7±2.6) MeV for the Zc(4020), where the first errors are statistical and the second systematic. The difference between the parameters of this structure and the Zc(4025) observed in the D*D[over ¯]* final state is within 1.5σ, but whether they are the same state needs further investigation. No significant Zc(3900) signal is observed, and upper limits on the Zc(3900) production cross sections in π±hc at center-of-mass energies of 4.23 and 4.26 GeV are set.
Collapse
|
|
12 |
27 |
24
|
Hirose S, Iijima T, Adachi I, Adamczyk K, Aihara H, Al Said S, Asner DM, Atmacan H, Aulchenko V, Aushev T, Ayad R, Babu V, Badhrees I, Bakich AM, Bansal V, Barberio E, Behera P, Berger M, Bhuyan B, Biswal J, Bondar A, Bonvicini G, Bozek A, Bračko M, Browder TE, Červenkov D, Chang P, Chen A, Cheon BG, Chilikin K, Chistov R, Cho K, Choi Y, Cinabro D, Danilov M, Dash N, Di Carlo S, Dingfelder J, Doležal Z, Drásal Z, Dutta D, Eidelman S, Epifanov D, Farhat H, Fast JE, Ferber T, Fulsom BG, Gaur V, Gabyshev N, Garmash A, Goldenzweig P, Golob B, Greenwald D, Grygier J, Haba J, Hara K, Hasenbusch J, Hayasaka K, Hayashii H, Higuchi T, Hou WS, Hsu CL, Inami K, Inguglia G, Ishikawa A, Itoh R, Iwasaki Y, Jacobs WW, Jaegle I, Jin Y, Joffe D, Joo KK, Julius T, Kato Y, Kawasaki T, Kichimi H, Kiesling C, Kim DY, Kim JB, Kim KT, Kim MJ, Kim SH, Kinoshita K, Kodyš P, Korpar S, Kotchetkov D, Križan P, Krokovny P, Kuhr T, Kulasiri R, Kumar R, Kwon YJ, Lange JS, Li CH, Li L, Li Y, Li Gioi L, Libby J, Liventsev D, Lubej M, et alHirose S, Iijima T, Adachi I, Adamczyk K, Aihara H, Al Said S, Asner DM, Atmacan H, Aulchenko V, Aushev T, Ayad R, Babu V, Badhrees I, Bakich AM, Bansal V, Barberio E, Behera P, Berger M, Bhuyan B, Biswal J, Bondar A, Bonvicini G, Bozek A, Bračko M, Browder TE, Červenkov D, Chang P, Chen A, Cheon BG, Chilikin K, Chistov R, Cho K, Choi Y, Cinabro D, Danilov M, Dash N, Di Carlo S, Dingfelder J, Doležal Z, Drásal Z, Dutta D, Eidelman S, Epifanov D, Farhat H, Fast JE, Ferber T, Fulsom BG, Gaur V, Gabyshev N, Garmash A, Goldenzweig P, Golob B, Greenwald D, Grygier J, Haba J, Hara K, Hasenbusch J, Hayasaka K, Hayashii H, Higuchi T, Hou WS, Hsu CL, Inami K, Inguglia G, Ishikawa A, Itoh R, Iwasaki Y, Jacobs WW, Jaegle I, Jin Y, Joffe D, Joo KK, Julius T, Kato Y, Kawasaki T, Kichimi H, Kiesling C, Kim DY, Kim JB, Kim KT, Kim MJ, Kim SH, Kinoshita K, Kodyš P, Korpar S, Kotchetkov D, Križan P, Krokovny P, Kuhr T, Kulasiri R, Kumar R, Kwon YJ, Lange JS, Li CH, Li L, Li Y, Li Gioi L, Libby J, Liventsev D, Lubej M, Luo T, MacNaughton J, Masuda M, Matsuda T, Matvienko D, Miyabayashi K, Miyake H, Miyata H, Mizuk R, Mohanty GB, Moon HK, Mori T, Mussa R, Nakao M, Nanut T, Nath KJ, Natkaniec Z, Nayak M, Niiyama M, Nisar NK, Nishida S, Ogawa S, Okuno S, Ono H, Onuki Y, Ostrowicz W, Pakhlov P, Pakhlova G, Pal B, Park CW, Park H, Paul S, Pesántez L, Pestotnik R, Piilonen LE, Prasanth K, Ritter M, Rostomyan A, Rozanska M, Sakai Y, Sandilya S, Santelj L, Sanuki T, Sato Y, Savinov V, Schlüter T, Schneider O, Schnell G, Schwanda C, Seino Y, Senyo K, Seon O, Sevior ME, Shebalin V, Shen CP, Shibata TA, Shiu JG, Simon F, Sokolov A, Solovieva E, Starič M, Strube JF, Sumisawa K, Sumiyoshi T, Takizawa M, Tamponi U, Tenchini F, Trabelsi K, Uchida M, Uglov T, Unno Y, Uno S, Urquijo P, Ushiroda Y, Usov Y, Van Hulse C, Varner G, Varvell KE, Vossen A, Wang CH, Wang MZ, Wang P, Watanabe M, Watanabe Y, Widmann E, Won E, Yamashita Y, Ye H, Yelton J, Yuan CZ, Zhang ZP, Zhilich V, Zhulanov V, Zupanc A. Measurement of the τ Lepton Polarization and R(D^{*}) in the Decay B[over ¯]→D^{*}τ^{-}ν[over ¯]_{τ}. PHYSICAL REVIEW LETTERS 2017; 118:211801. [PMID: 28598663 DOI: 10.1103/physrevlett.118.211801] [Show More Authors] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 06/07/2023]
Abstract
We report the first measurement of the τ lepton polarization P_{τ}(D^{*}) in the decay B[over ¯]→D^{*}τ^{-}ν[over ¯]_{τ} as well as a new measurement of the ratio of the branching fractions R(D^{*})=B(B[over ¯]→D^{*}τ^{-}ν[over ¯]_{τ})/B(B[over ¯]→D^{*}ℓ^{-}ν[over ¯]_{ℓ}), where ℓ^{-} denotes an electron or a muon, and the τ is reconstructed in the modes τ^{-}→π^{-}ν_{τ} and τ^{-}→ρ^{-}ν_{τ}. We use the full data sample of 772×10^{6} BB[over ¯] pairs recorded with the Belle detector at the KEKB electron-positron collider. Our results, P_{τ}(D^{*})=-0.38±0.51(stat)_{-0.16}^{+0.21}(syst) and R(D^{*})=0.270±0.035(stat)_{-0.025}^{+0.028}(syst), are consistent with the theoretical predictions of the standard model.
Collapse
|
|
8 |
27 |
25
|
Luo T, Anderson SJ, Garcia JV. Inhibition of Nef- and phorbol ester-induced CD4 degradation by macrolide antibiotics. J Virol 1996; 70:1527-34. [PMID: 8627671 PMCID: PMC189974 DOI: 10.1128/jvi.70.3.1527-1534.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of AIDS. The simian immunodeficiency virus (SIV) causes a similar syndrome in macaques. The product of the nef gene of SIV has been shown to be important for virus replication and disease progression in vivo. In vitro, both SIV and HIV Nef downregulate surface expression of CD4 and accelerate total CD4 turnover. The mechanism by which Nef downregulates CD4 has not been established. A current model suggests that Nef enhances cell surface CD4 endocytosis and degradation in lysosomes. However, this was recently challenged when CD4 was found to accumulate in early endosomes of cells expressing Nef. Because inhibition of Nef function might halt virus replication and disease progression, we tested two macrolide antibiotics for their ability to inhibit Nef function. Concanamycin B (ConB) and bafilomycin A1 (BFLA1) are specific inhibitors of acidification of cell endosomes and lysosomes and, unlike other inhibitors, do not affect transport. Although ConB (25 nM) and BFLA1 (100 nM) blocked phorbol myristate acetate- and Nef-induced CD4 degradation in human monocyte U937 cells, CD4 surface expression was not recovered. Instead, CD4 accumulated in lysosomes. To determine if Nef is directly responsible for CD4 degradation or if they bind to each other in a manner similar to Vpu, transcripts of human CD4 and HIV-1 nef were cotranslated in vitro. Our results indicate that under our experimental conditions, Nef does not affect CD4 stability and does not associate with CD4 in this in vitro system. Our data suggest that (i) CD4 downregulation by Nef results in degradation of CD4 in lysosomes, (ii) inhibition of CD4 degradation by macrolide antibiotics does not restore surface expression, and (iii) the inhibition of CD4 expression by Nef appears to be indirect and is likely to involve cellular factors.
Collapse
|
research-article |
29 |
25 |