1
|
Pei T, Widenhoefer RA. Palladium-catalyzed intramolecular addition of 1,3-diones to unactivated olefins. J Am Chem Soc 2001; 123:11290-1. [PMID: 11697972 DOI: 10.1021/ja011764x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
24 |
115 |
2
|
Ding K, Pei T, Bai Z, Jia Y, Ma P, Liang Z. SmMYB36, a Novel R2R3-MYB Transcription Factor, Enhances Tanshinone Accumulation and Decreases Phenolic Acid Content in Salvia miltiorrhiza Hairy Roots. Sci Rep 2017; 7:5104. [PMID: 28698552 PMCID: PMC5506036 DOI: 10.1038/s41598-017-04909-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022] Open
Abstract
Phenolic acids and tanshinones are two major bioactive components in Salvia miltiorrhiza Bunge. A novel endogenous R2R3-MYB transcription factor, SmMYB36, was identified in this research. This transcript factor can simultaneously influence the content of two types of components in SmMYB36 overexpression hairy roots. SmMYB36 was mainly localized in the nucleus of onion epidermis and it has transactivation activity. The overexpression of SmMYB36 promoted tanshinone accumulation but inhibited phenolic acid and flavonoid biosynthesis in Salvia miltiorrhiza hairy roots. The altered metabolite content was due to changed metabolic flow which was regulated by transcript expression of metabolic pathway genes. The gene transcription levels of the phenylpropanoid general pathway, tyrosine derived pathway, methylerythritol phosphate pathway and downstream tanshinone biosynthetic pathway changed significantly due to the overexpression of SmMYB36. The wide distribution of MYB binding elements (MBS, MRE, MBSI and MBSII) and electrophoretic mobility shift assay results indicated that SmMYB36 may be an effective tool to regulate metabolic flux shifts.
Collapse
|
research-article |
8 |
75 |
3
|
Perch NS, Pei T, Widenhoefer RA. Enantioselective diene Cyclization/Hydrosilylation catalyzed by optically active palladium bisoxazoline and pyridine-oxazoline complexes. J Org Chem 2000; 65:3836-45. [PMID: 10864772 DOI: 10.1021/jo0003192] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 1:1 mixture of (N-N)Pd(Me)Cl ¿N-N = (S,S)-4,4'-dibenzyl-4,5,4', 5'-tetrahydro-2,2'-bisoxazoline (S,S-4a) and NaBAr(4) ¿Ar = 3, 5-C(6)H(3)(CF(3))(2) (5 mol %) catalyzed the asymmetric cyclization/hydrosilylation of dimethyl diallylmalonate (2) and triethylsilane at -30 degrees C for 48 h to form an 8.1:1 mixture of the silylated carbocycle (S,S)-trans-1, 1-dicarbomethoxy-4-methyl-3-¿(triethylsilyl)methylcyclop ent ane (S, S-3) (95% de, 72% ee) and dimethyl 3,4-dimethylcyclopentane-1, 1-dicarboxylate (S,S-6) in 64% combined yield. In comparison, a 1:1 mixture of the palladium pyridine-oxazoline complex (N-N)Pd(Me)Cl ¿N-N = (R)-(+)-4-isopropyl-2-(2-pyridinyl)-2-oxazoline (R-5b) and NaBAr(4) (5 mol %) catalyzed the asymmetric cyclization/hydrosilylation of 2 and triethylsilane at -32 degrees C for 24 h to form carbocycle S,S-3 in 82% yield (>95% de, 87% ee) as the exclusive product. Asymmetric diene cyclization catalyzed by complex R-5b was compatible with a range of functional groups and produced carbocycles with up to 91% ee. The procedure also tolerated substitution at a terminal olefinic position and at the allylic position of the diene.
Collapse
|
|
25 |
70 |
4
|
Pei T, Ma P, Ding K, Liu S, Jia Y, Ru M, Dong J, Liang Z. SmJAZ8 acts as a core repressor regulating JA-induced biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1663-1678. [PMID: 29281115 DOI: 10.1093/jxb/erx484] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 05/19/2023]
Abstract
Jasmonates (JAs) are important plant hormones that regulate a variety of plant development and defense processes, including biosynthesis of secondary metabolites. The JASMONATE ZIM DOMAIN (JAZ) proteins act as negative regulators in the JA signaling pathways of plants. We first verified that methyl jasmonate (MeJA) enhanced the accumulation of both salvianolic acids and tanshinones in Salvia miltiorrhiza (Danshen) hairy roots by inducing the expression of their biosynthetic pathway genes. Nine JAZ genes were cloned from Danshen and their expression levels in hairy roots were all increased by treatment with MeJA. When analyzed in detail, however, SmJAZ8 showed the strongest expression in the induced hairy roots. Overexpression or RNAi of SmJAZ8 deregulated or up-regulated the yields of salvianolic acids and tanshinones in the MeJA-induced transgenic hairy roots, respectively, and transcription factors and biosynthetic pathway genes showed an expression pattern that mirrored the production of the compounds. Genetic transformation of SmJAZ8 altered the expression of other SmJAZ genes, suggesting evidence of crosstalk occurring in JAZ-regulated secondary metabolism. Furthermore, the transcriptome analysis revealed a primary-secondary metabolism balance regulated by SmJAZ8. Altogether, we propose a novel role for SmJAZ8 as a negative feedback loop controller in the JA-induced biosynthesis of salvianolic acids and tanshinones.
Collapse
|
|
7 |
65 |
5
|
Pei T, Widenhoefer RA. Use of pentamethyldisiloxane in the palladium-catalyzed cyclization/hydrosilylation of functionalized dienes. Org Lett 2000; 2:1469-71. [PMID: 10814475 DOI: 10.1021/ol005810u] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction--see text] Pentamethyldisiloxane reacts with a range of functionalized dienes in the presence of a catalytic 1:1 mixture of (N-N)Pd(Me)Cl [N-N = 1, 10-phenanthroline or (R)-(+)-4-isopropyl-2-(2-pyridinyl)-2-oxazoline] and NaBAr(4) [Ar = 3,5-C(6)H(3)(CF(3))(2)] to form the corresponding silylated carbocycles in good yield and with good stereoselectivity. Treatment of these silylated carbocycles with excess KF and peracetic acid at room temperature for 48 h formed the corresponding alcohols in excellent yield with retention of stereochemistry.
Collapse
|
|
25 |
45 |
6
|
Pei T, Widenhoefer RA. Palladium-catalyzed asymmetric diene cyclization/hydrosilylation employing functionalized silanes and disiloxanes. J Org Chem 2001; 66:7639-45. [PMID: 11701015 DOI: 10.1021/jo015724n] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pentasubstituted disiloxanes and silanes of the form HSiMe(2)CH(x)Ph(3-x)(x = 1 or 2) reacted with dimethyl diallylmalonate (1) and other functionalized 1,6-dienes in the presence of a catalytic 1:1 mixture of (N-N)Pd(Me)Cl [N-N = (R)-(+)-4-isopropyl-2-(2-pyridinyl)-2-oxazoline] [(R)-2] and NaBAr(4) [Ar = 3,5-C(6)H(3)(CF(3))(2)] to form the corresponding silylated cyclopentanes in good yield with high diastereoselectivity. The enantioselectivity of cyclization/hydrosilylation of 1 with disiloxanes and functionalized silanes at -20 degrees C increased in the following order: HSiMe(2)OSiMe(3) (75% ee) < HSiMe(2)OSiMe(2)-t-Bu (80% ee) < HSi(i-Pr)(2)OSiMe(3) (86% ee) = HSiMe(2)Bn (86% ee) < HSiMe(2)OSi(i-Pr)(3) (89% ee) < HSiMe(2)OSiPh(2)-t-Bu (91% ee) < HSiMe(2)CHPh(2) (93% ee). Silylated cyclopentanes derived from HSiMe(2)OSiMe(3) were oxidized with excess KF and peracetic acid at room temperature for 48 h to form the corresponding hydroxymethylcyclopentanes in good yield (82-95%). Silylated cyclopentanes derived from HSiMe(2)OSiPh(2)t-Bu were oxidized with a mixture of tetrabutylammonium fluoride and either H(2)O(2) or peracetic acid to form the corresponding alcohols in 48-76% yield. Silylated carbocycles generated from benzhydryldimethylsilane were oxidized with a mixture of TBAF/KHCO(3)/H(2)O(2) in 71-98% yield. Asymmetric cyclization/hydrosilylation/oxidation employing benzhydryldimethylsilane tolerated allylic and terminal olefinic substitution and a range of functional groups.
Collapse
|
|
24 |
40 |
7
|
Pei T, Yan M, Huang Y, Wei Y, Martin C, Zhao Q. Specific Flavonoids and Their Biosynthetic Pathway in Scutellaria baicalensis. FRONTIERS IN PLANT SCIENCE 2022; 13:866282. [PMID: 35310641 PMCID: PMC8928390 DOI: 10.3389/fpls.2022.866282] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 06/07/2023]
Abstract
Scutellaria baicalensis, is one of the most traditional medicinal plants in the Lamiaceae family, and has been widely used to treat liver and lung complaints and as a complementary cancer treatment in traditional Chinese medicine. The preparation from its roots, called "Huang Qin," is rich in specialized flavones such as baicalein, wogonin, and their glycosides which lack a 4'-hydroxyl group on the B ring (4'-deoxyflavones), with anti-tumor, antioxidant, and antiviral activities. Baicalein has recently been reported to inhibit the replication of the COVID-19 virus. These 4'-deoxyflavones are found only in the order Lamiales and were discovered in the genus Scutellaria, suggesting that a new metabolic pathway synthesizing 4'-deoxyflavones evolved recently in this genus. In this review, we focus on the class of 4'-deoxyflavones in S. baicalensis and their pharmacological properties. We also describe the apparent evolutionary route taken by the genes encoding enzymes involved in the novel, root-specific, biosynthetic pathway for baicalein and wogonin, which provides insights into the evolution of specific flavone biosynthetic pathways in the mint family.
Collapse
|
Review |
3 |
34 |
8
|
|
|
25 |
24 |
9
|
Li W, Bai Z, Pei T, Yang D, Mao R, Zhang B, Liu C, Liang Z. SmGRAS1 and SmGRAS2 Regulate the Biosynthesis of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2019; 10:1367. [PMID: 31737003 PMCID: PMC6831727 DOI: 10.3389/fpls.2019.01367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/04/2019] [Indexed: 05/24/2023]
Abstract
Salvia miltiorrhiza is one of the most widely used traditional Chinese medicinal plants because of its excellent performance in treating heart diseases. Tanshinones and phenolic acids are two important classes of effective metabolites, and their biosynthesis has attracted widespread interest. Here, we functionally characterized SmGRAS1 and SmGRAS2, two GRAS family transcription factors from S. miltiorrhiza. SmGRAS1/2 were highly expressed in the root periderm, where tanshinones mainly accumulated in S. miltiorrhiza. Overexpression of SmGRAS1/2 upregulated tanshinones accumulation and downregulated GA, phenolic acids contents, and root biomass. However, antisense expression of SmGRAS1/2 reduced the tanshinones accumulation and increased the GA, phenolic acids contents, and root biomass. The expression patterns of biosynthesis genes were consistent with the changes in compounds accumulation. GA treatment increased tanshinones, phenolic acids, and GA contents in the overexpression lines, and restored the root growth inhibited by overexpressing SmGRAS1/2. Subsequently, yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays (EMSA) showed SmGRAS1 promoted tanshinones biosynthesis by directly binding to the GARE motif in the SmKSL1 promoter and activating its expression. Yeast two-hybrid assays showed SmGRAS1 interacted physically with SmGRAS2. Taken together, the results revealed that SmGRAS1/2 acted as repressors in root growth and phenolic acids biosynthesis but as positive regulators in tanshinones biosynthesis. Overall, our findings revealed the potential value of SmGRAS1/2 in genetically engineering changes in secondary metabolism.
Collapse
|
research-article |
6 |
20 |
10
|
Jia Y, Bai Z, Pei T, Ding K, Liang Z, Gong Y. The Protein Kinase SmSnRK2.6 Positively Regulates Phenolic Acid Biosynthesis in Salvia miltiorrhiza by Interacting with SmAREB1. FRONTIERS IN PLANT SCIENCE 2017; 8:1384. [PMID: 28848585 PMCID: PMC5552723 DOI: 10.3389/fpls.2017.01384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/25/2017] [Indexed: 05/03/2023]
Abstract
Subclass III members of the sucrose non-fermenting-1-related protein kinase 2 (SnRK2) play essential roles in both the abscisic acid signaling and abiotic stress responses of plants by phosphorylating the downstream ABA-responsive element (ABRE)-binding proteins (AREB/ABFs). This comprehensive study investigated the function of new candidate genes, namely SmSnRK2.3, SmSnRK2.6, and SmAREB1, with a view to breeding novel varieties of Salvia miltiorrhiza with improved stress tolerance stresses and more content of bioactive ingredients. Exogenous ABA strongly induced the expression of these genes. PlantCARE predicted several hormones and stress response cis-elements in their promoters. SmSnRK2.6 and SmAREB1 showed the highest expression levels in the leaves of S. miltiorrhiza seedlings, while SmSnRK2.3 exhibited a steady expression in their roots, stems, and leaves. A subcellular localization assay revealed that both SmSnRK2.3 and SmSnRK2.6 were located in the cell membrane, cytoplasm, and nucleus, whereas SmAREB1 was exclusive to the nucleus. Overexpressing SmSnRK2.3 did not significantly promote the accumulation of rosmarinic acid (RA) and salvianolic acid B (Sal B) in the transgenic S. miltiorrhiza hairy roots. However, overexpressing SmSnRK2.6 and SmAREB1 increased the contents of RA and Sal B, and regulated the expression levels of structural genes participating in the phenolic acid-branched and side-branched pathways, including SmPAL1, SmC4H, Sm4CL1, SmTAT, SmHPPR, SmRAS, SmCHS, SmCCR, SmCOMT, and SmHPPD. Furthermore, SmSnRK2.3 and SmSnRK2.6 interacted physically with SmAREB1. In summary, our results indicate that SmSnRK2.6 is involved in stress responses and can regulate structural gene transcripts to promote greater metabolic flux to the phenolic acid-branched pathway, via its interaction with SmAREB1, a transcription factor. In this way, SmSnRK2.6 contributes to the positive regulation of phenolic acids in S. miltiorrhiza hairy roots.
Collapse
|
research-article |
8 |
18 |
11
|
Pei T, Yan M, Li T, Li X, Yin Y, Cui M, Fang Y, Liu J, Kong Y, Xu P, Zhao Q. Characterization of UDP-glycosyltransferase family members reveals how major flavonoid glycoside accumulates in the roots of Scutellaria baicalensis. BMC Genomics 2022; 23:169. [PMID: 35232374 PMCID: PMC8888134 DOI: 10.1186/s12864-022-08391-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/15/2022] [Indexed: 01/01/2023] Open
Abstract
Background Flavonoid glycosides extracted from roots of Scutellaria baicalensis exhibit strong pharmaceutical antitumor, antioxidative, anti-inflammatory, and antiviral activities. UDP glycosyltransferase (UGT) family members are responsible for the transfer of a glycosyl moiety from UDP sugars to a wide range of acceptor flavonoids. Baicalin is the major flavonoid glycoside found in S. baicalensis roots, and its aglycone baicalein is synthesized from a specially evolved pathway that has been elucidated. However, it is necessary to carry out a genome-wide study of genes involved in 7-O-glucuronidation, the final biosynthesis step of baicalin, which might elucidate the relationship between the enzymes and the metabolic accumulation patterns in this medicinal plant. Results We reported the phylogenetic analysis, tissue-specific expression, biochemical characterization and evolutionary analysis of glucosyltransferases (SbUGTs) and glucuronosyltransferases (SbUGATs) genes based on the recently released genome of S. baicalensis. A total of 124 UGTs were identified, and over one third of them were highly expressed in roots. In vitro enzyme assays showed that 6 SbUGTs could use UDP-glucose as a sugar donor and convert baicalein to oroxin A (baicalein 7-O-glucoside), while 4 SbUGATs used only UDP-glucuronic acid as the sugar donor and catalyzed baicalein to baicalin. SbUGAT4 and SbUGT2 are the most highly expressed SbUGAT and SbUGT genes in root tissues, respectively. Kinetic measurements revealed that SbUGAT4 had a lower Km value and higher Vmax/Km ratio to baicalein than those of SbUGT2. Furthermore, tandem duplication events were detected in SbUGTs and SbUGATs. Conclusions This study demonstrated that glucosylation and glucuronidation are two major glycosylated decorations in the roots of S. baicalensis. Higher expression level and affinity to substrate of SbUGAT4, and expansion of this gene family contribute high accumulation of baicalin in the root of S. baicalensis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08391-1.
Collapse
|
|
3 |
10 |
12
|
Pei T, Zhu S, Liao W, Fang Y, Liu J, Kong Y, Yan M, Cui M, Zhao Q. Gap-free genome assembly and CYP450 gene family analysis reveal the biosynthesis of anthocyanins in Scutellaria baicalensis. HORTICULTURE RESEARCH 2023; 10:uhad235. [PMID: 38156283 PMCID: PMC10753160 DOI: 10.1093/hr/uhad235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2023] [Indexed: 12/30/2023]
Abstract
Scutellaria baicalensis Georgi, a member of the Lamiaceae family, is a widely utilized medicinal plant. The flavones extracted from S. baicalensis contribute to numerous health benefits, including anti-inflammatory, antiviral, and anti-tumor activities. However, the incomplete genome assembly hinders biological studies on S. baicalensis. This study presents the first telomere-to-telomere (T2T) gap-free genome assembly of S. baicalensis through the integration of Pacbio HiFi, Nanopore ultra-long and Hi-C technologies. A total of 384.59 Mb of genome size with a contig N50 of 42.44 Mb was obtained, and all sequences were anchored into nine pseudochromosomes without any gap or mismatch. In addition, we analysed the major cyanidin- and delphinidin-based anthocyanins involved in the determination of blue-purple flower using a widely-targeted metabolome approach. Based on the genome-wide identification of Cytochrome P450 (CYP450) gene family, three genes (SbFBH1, 2, and 5) encoding flavonoid 3'-hydroxylases (F3'Hs) and one gene (SbFBH7) encoding flavonoid 3'5'-hydroxylase (F3'5'H) were found to hydroxylate the B-ring of flavonoids. Our studies enrich the genomic information available for the Lamiaceae family and provide a toolkit for discovering CYP450 genes involved in the flavonoid decoration.
Collapse
|
research-article |
2 |
10 |
13
|
Wen Y, Ares N, Schupp F, Pei T, Briggs G, Laird E. A coherent nanomechanical oscillator driven by single-electron tunnelling. NATURE PHYSICS 2020; 16:75-82. [PMID: 31915459 PMCID: PMC6949122 DOI: 10.1038/s41567-019-0683-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A single-electron transistor embedded in a nanomechanical resonator represents an extreme limit of electron-phonon coupling. While it allows fast and sensitive electromechanical measurements, it also introduces backaction forces from electron tunnelling that randomly perturb the mechanical state. Despite the stochastic nature of this backaction, it has been predicted to create self-sustaining coherent mechanical oscillations under strong coupling conditions. Here, we verify this prediction using real-time measurements of a vibrating carbon nanotube transistor. This electromechanical oscillator has some similarities with a laser. The single-electron transistor pumped by an electrical bias acts as a gain medium and the resonator acts as a phonon cavity. Although the operating principle is unconventional because it does not involve stimulated emission, we confirm that the output is coherent. We demonstrate other analogues of laser behaviour, including injection locking, classical squeezing through anharmonicity, and frequency narrowing through feedback.
Collapse
|
research-article |
5 |
9 |
14
|
Ma P, Pei T, Lv B, Wang M, Dong J, Liang Z. Functional pleiotropism, diversity, and redundancy of Salvia miltiorrhiza Bunge JAZ family proteins in jasmonate-induced tanshinone and phenolic acid biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhac166. [PMID: 36204204 PMCID: PMC9531341 DOI: 10.1093/hr/uhac166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Jasmonate (JA) signaling regulates plant growth and development, biotic and abiotic stress tolerance, and primary and secondary metabolism biosynthesis. It is extensively modulated by JA-ZIM-domain (JAZ) family genes. In previous work, we obtained nine SmJAZ genes of Salvia miltiorrhiza and proved that SmJAZ8 was the core repressor of JA-induced tanshinone and phenolic acid biosynthesis. Here, we demonstrate that SmJAZ3 and SmJAZ4 act as repressors of JA-induced biosynthesis of tanshinones and salvianolic acid B (Sal B). This suggests that SmJAZ3/4 are functionally redundant in tanshinone and Sal B biosynthesis. SmJAZ1/2/5/6/9 are activators of JA-induced tanshinone biosynthesis and repressors of JA-induced Sal B biosynthesis. This demonstrates the redundancy and diversity of SmJAZ1/2/5/6/9 functions. Besides, SmJAZ10 inhibited JA-induced Sal B synthesis, but had no effect on the synthesis of tanshinone. Two-hybrid screening (Y2H) showed that SmJAZs formed homologous or heterogeneous dimers. Y2H and firefly luciferase complementation imaging (LCI) assays revealed that SmJAZs also formed a complex regulatory network with SmMYC2a, SmMYC2b, SmMYB39, and SmPAP1. Quantitative reverse transcription-PCR (qRT-PCR) indicated that SmJAZs regulated each other at the transcriptional level. Herein, we prove that SmJAZs have functional pleiotropism, diversity, and redundancy in JA-induced tanshinone and phenolic acid biosynthesis. This study provides an important clue for further understanding the inherent biological significance and molecular mechanisms of the JAZ family as the gene number increases during plant evolution.
Collapse
|
research-article |
3 |
9 |
15
|
Fang Y, Liu J, Zheng M, Zhu S, Pei T, Cui M, Chang L, Xiao H, Yang J, Martin C, Zhao Q. SbMYB3 transcription factor promotes root-specific flavone biosynthesis in Scutellaria baicalensis. HORTICULTURE RESEARCH 2023; 10:uhac266. [PMID: 36778188 PMCID: PMC9909510 DOI: 10.1093/hr/uhac266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Scutellaria baicalensis Georgi produces abundant root-specific flavones (RSFs), which provide various benefits to human health. We have elucidated the complete biosynthetic pathways of baicalein and wogonin. However, the transcriptional regulation of flavone biosynthesis in S. baicalensis remains unclear. We show that the SbMYB3 transcription factor functions as a transcriptional activator involved in the biosynthesis of RSFs in S. baicalensis. Yeast one-hybrid and transcriptional activation assays showed that SbMYB3 binds to the promoter of flavone synthase II-2 (SbFNSII-2) and enhances its transcription. In S. baicalensis hairy roots, RNAi of SbMYB3 reduced the accumulation of baicalin and wogonoside, and SbMYB3 knockout decreased the biosynthesis of baicalein, baicalin, wogonin, and wogonoside, whereas SbMYB3 overexpression enhanced the contents of baicalein, baicalin, wogonin, and wogonoside. Transcript profiling by qRT-PCR demonstrated that SbMYB3 activates SbFNSII-2 expression directly, thus leading to more abundant accumulation of RSFs. This study provides a potential target for metabolic engineering of RSFs.
Collapse
|
research-article |
2 |
9 |
16
|
Ares N, Pei T, Mavalankar A, Mergenthaler M, Warner JH, Briggs GAD, Laird EA. Resonant Optomechanics with a Vibrating Carbon Nanotube and a Radio-Frequency Cavity. PHYSICAL REVIEW LETTERS 2016; 117:170801. [PMID: 27824476 DOI: 10.1103/physrevlett.117.170801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 05/05/2023]
Abstract
In an optomechanical setup, the coupling between cavity and resonator can be increased by tuning them to the same frequency. We study this interaction between a carbon nanotube resonator and a radio-frequency tank circuit acting as a cavity. In this resonant regime, the vacuum optomechanical coupling is enhanced by the dc voltage coupling the cavity and the mechanical resonator. Using the cavity to detect the nanotube's motion, we observe and simulate interference between mechanical and electrical oscillations. We measure the mechanical ring down and show that further improvements to the system could enable the measurement of mechanical motion at the quantum limit.
Collapse
|
|
9 |
6 |
17
|
Wang J, Liu K, Wang H, Li Z, Li Y, Ping S, Bardeesi ASA, Guo Y, Zhou Y, Pei T, Deng L, Sheng P, Liu S, Li C. Role of nifedipine and hydrochlorothiazide in MAPK activation and vascular smooth muscle cell proliferation and apoptosis. Herz 2016; 42:573-584. [DOI: 10.1007/s00059-016-4489-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/28/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022]
|
|
9 |
5 |
18
|
Xie Y, Ding M, Zhang B, Yang J, Pei T, Ma P, Dong J. Genome-wide characterization and expression profiling of MAPK cascade genes in Salvia miltiorrhiza reveals the function of SmMAPK3 and SmMAPK1 in secondary metabolism. BMC Genomics 2020; 21:630. [PMID: 32928101 PMCID: PMC7488990 DOI: 10.1186/s12864-020-07023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The contribution of mitogen-activated protein kinase (MAPK) cascades to plant growth and development has been widely studied, but this knowledge has not yet been extended to the medicinal plant Salvia miltiorrhiza, which produces a number of pharmacologically active secondary metabolites. RESULTS In this study, we performed a genome-wide survey and identified six MAPKKK kinases (MAPKKKKs), 83 MAPKK kinases (MAPKKKs), nine MAPK kinases (MAPKKs) and 18 MAPKs in the S. miltiorrhiza genome. Within each class of genes, a small number of subfamilies were recognized. A transcriptional analysis revealed differences in the genes' behaviour with respect to both their site of transcription and their inducibility by elicitors and phytohormones. Two genes were identified as strong candidates for playing roles in phytohormone signalling. A gene-to-metabolite network was constructed based on correlation analysis, highlighting the likely involvement of two of the cascades in the synthesis of two key groups of pharmacologically active secondary metabolites: phenolic acids and tanshinones. CONCLUSION The data provide insight into the functional diversification and conservation of MAPK cascades in S. miltiorrhiza.
Collapse
|
research-article |
5 |
4 |
19
|
Pei T, Pályi A, Mergenthaler M, Ares N, Mavalankar A, Warner JH, Briggs GAD, Laird EA. Hyperfine and Spin-Orbit Coupling Effects on Decay of Spin-Valley States in a Carbon Nanotube. PHYSICAL REVIEW LETTERS 2017; 118:177701. [PMID: 28498696 DOI: 10.1103/physrevlett.118.177701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 06/07/2023]
Abstract
The decay of spin-valley states is studied in a suspended carbon nanotube double quantum dot via the leakage current in Pauli blockade and via dephasing and decoherence of a qubit. From the magnetic field dependence of the leakage current, hyperfine and spin-orbit contributions to relaxation from blocked to unblocked states are identified and explained quantitatively by means of a simple model. The observed qubit dephasing rate is consistent with the hyperfine coupling strength extracted from this model and inconsistent with dephasing from charge noise. However, the qubit coherence time, although longer than previously achieved, is probably still limited by charge noise in the device.
Collapse
|
|
8 |
2 |
20
|
Pei T, Yan M, Kong Y, Fan H, Liu J, Cui M, Fang Y, Ge B, Yang J, Zhao Q. The genome of Tripterygium wilfordii and characterization of the celastrol biosynthesis pathway. GIGABYTE 2021; 2021:gigabyte14. [PMID: 36967728 PMCID: PMC10038137 DOI: 10.46471/gigabyte.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/25/2021] [Indexed: 11/09/2022] Open
Abstract
Tripterygium wilfordii is a vine from the Celastraceae family that is used in traditional Chinese medicine (TCM). The active ingredient, celastrol, is a friedelane-type pentacyclic triterpenoid with putative roles as an antitumor, immunosuppressive, and anti-obesity agent. Here, we report a reference genome assembly of T. wilfordii with high-quality annotation using a hybrid sequencing strategy. The total genome size obtained is 340.12 Mb, with a contig N50 value of 3.09 Mb. We successfully anchored 91.02% of sequences into 23 pseudochromosomes using high-throughput chromosome conformation capture (Hi–C) technology. The super-scaffold N50 value was 13.03 Mb. We also annotated 31,593 structural genes, with a repeat percentage of 44.31%. These data demonstrate that T. wilfordii diverged from Malpighiales species approximately 102.4 million years ago. By integrating genome, transcriptome and metabolite analyses, as well as in vivo and in vitro enzyme assays of two cytochrome P450 (CYP450) genes, TwCYP712K1 and TwCYP712K2, it is possible to investigate the second biosynthesis step of celastrol and demonstrate that this was derived from a common ancestor. These data provide insights and resources for further investigation of pathways related to celastrol, and valuable information to aid the conservation of resources, as well as understand the evolution of Celastrales.
Collapse
|
|
4 |
|
21
|
Ma J, Guo W, Pei T, Guo S, Yi X, Gao T, Li C. 796 The up-regulated Ubiquitin Ligase TNFAIP3 plays an oncogenic role in melanoma. J Invest Dermatol 2017. [DOI: 10.1016/j.jid.2017.02.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
8 |
|
22
|
Chen J, Pei T, Tao X, Liu S, Niu L. [Effect of unsymmetrical cutting along both river slopes on rainstorm-runoff process]. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2000; 11:210-4. [PMID: 11767597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
A simulation experiment was conducted to compare the effect of cutting and no-cutting at both slopes along a river on the rainstorm run-off in catchment, and a model was constructed. The results showed that the appearance of outflow and peak flow of surface run-off was later on forest slope than on forest-cutting slope. On forest slope, the duration was prolonged, and the peak flow and surface runoff were lower. These effects were more obvious as the slope gradient was bigger. When rain intensity was 1.98 mm.min-1 and rainfall was 108.8 mm, the peak flow and the total runoff on both forested slopes of gradient 15 degrees was 5% and 4% less than that on the cutting slopes, respectively.
Collapse
|
English Abstract |
25 |
|
23
|
Qiu S, Wang J, Pei T, Gao R, Xiang C, Chen J, Zhang C, Xiao Y, Li Q, Wu Z, He M, Wang R, Zhao Q, Xu Z, Hu J, Chen W. Functional evolution and diversification of CYP82D subfamily members have shaped flavonoid diversification in the genus Scutellaria. PLANT COMMUNICATIONS 2025; 6:101134. [PMID: 39277789 PMCID: PMC11783885 DOI: 10.1016/j.xplc.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Flavonoids, the largest class of polyphenols, exhibit substantial structural and functional diversity, yet their evolutionary diversification and specialized functions remain largely unexplored. The genus Scutellaria is notable for its rich flavonoid diversity, particularly of 6/8-hydroxylated variants biosynthesized by the cytochrome P450 subfamily CYP82D. Our study analyzes metabolic differences between Scutellaria baicalensis and Scutellaria barbata, and the results suggest that CYP82Ds have acquired a broad range of catalytic functions over their evolution. By integrating analyses of metabolic networks and gene evolution across 22 Scutellaria species, we rapidly identified 261 flavonoids and delineated five clades of CYP82Ds associated with various catalytic functions. This approach revealed a unique catalytic mode for 6/8-hydroxylation of flavanone substrates and the first instance of 7-O-demethylation of flavonoid substrates catalyzed by a cytochrome P450. Ancestral sequence reconstruction and functional validation demonstrated that gradual neofunctionalization of CYP82Ds has driven the chemical diversity of flavonoids in the genus Scutellaria throughout its evolutionary history. These findings enhance our understanding of flavonoid diversity, reveal the intricate roles of CYP82Ds in Scutellaria species, and highlight the extensive catalytic versatility of cytochrome P450 members within plant taxa.
Collapse
|
research-article |
1 |
|
24
|
Bush E, Nicholas A, Pei T, Kuipers I, Cheng W, Hamilton H, Hegge J, Li X, Glebocka A, Zhu R, Chen B, Kuehl P, Schluep T, Li Z. WS09.4 Targeting αENaC with an epithelial RNAi trigger delivery platform for the treatment of cystic fibrosis. J Cyst Fibros 2018. [DOI: 10.1016/s1569-1993(18)30170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
|
7 |
|
25
|
Fan S, Pei T, Jiang D, Cao C. [Rainfall interception capacity of forest canopy between two different stands]. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2000; 11:671-4. [PMID: 11767519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Based on the observation data, the rainfall interception capacity of the canopy in plantation and natural forest stands and its relation to rainfall were examined using the method of taking maximum under the same rainfall. The results showed that the rainfall interception capacity of plantation forest increased rapidly with the increase of rainfall, because of its even distribution of branches and leaves, which was higher under low rainfall less than 30 mm, and the saturation interception capacity was easily reached, depending on the quantity of branches and leaves in the canopy. Although the interception capacity of natural forest was relatively weak under low rainfall less than 30 mm, compared with plantation forest, it was much stronger under heavy rainfall more than 30 mm. The saturation interception of natural forest was larger than that of plantation forest.
Collapse
|
Comparative Study |
25 |
|