1
|
Chalikian TV, Totrov M, Abagyan R, Breslauer KJ. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data. J Mol Biol 1996; 260:588-603. [PMID: 8759322 DOI: 10.1006/jmbi.1996.0423] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report the first thermodynamic characterization of protein hydration that does not depend on model compound data but rather is based exclusively on macroscopic (volumetric) and microscopic (X-ray) measurements on protein molecules themselves. By combining these macroscopic and microscopic characterizations, we describe a quantitative model that allows one for the first time to predict the partial specific volumes, v(zero), and the partial specific adiabatic compressibilities, ks(zero), of globular proteins from the crystallographic coordinates of the constituent atoms, without using data derived from studies on low-molecular-mass model compounds. Specifically, we have used acoustic and densimetric techniques to determine v(zero) and ks(zero) for 15 globular proteins over a temperature range from 18 to 55 degrees C. For the subset of the 12 proteins with known three-dimensional structures, we calculated the molecular volumes as well as the solvent-accessible surface areas of the constituent charged, polar and nonpolar atomic groups. By combining these measured and calculated properties and applying linear regression analysis, we determined, as a function of temperature, the average hydration contributions to v(zero) and ks(zero) of 1 A2 of the charged, polar, and nonpolar solvent-accessible protein surfaces. We compared these results with those derived from studies on low-molecular-mass compounds to assess the validity of existing models of protein hydration based on small molecule data. This comparison revealed the following features: the hydration contributions to v(zero) and ks(zero) of charged protein surface groups are similar to those of charged groups in small organic molecules. By contrast, the hydration contributions to v(zero) and ks(zero) of polar protein surface groups are qualitatively different from those of polar groups in low-molecular-mass compounds. We suggest that this disparity may reflect the presence of networks of water molecules adjacent to polar protein surface areas, with these networks involving waters from second and third coordination spheres. For nonpolar protein surface groups, we find the ability of low-molecular-mass compounds to model successfully protein properties depends on the temperature domain being examined. Specifically, at room temperatures and below, the hydration contribution to ks(zero) of protein nonpolar surface atomic groups is close to that of nonpolar groups in small organic molecules. By contrast, at higher temperatures, the hydration contribution to ks(zero) of protein nonpolar surface groups becomes more negative than that of nonpolar groups in small organic molecules. We suggest that this behaviour may reflect nonpolar groups on protein surfaces being hydrated independently at low temperatures, while at higher temperatures some of the solvating waters become influenced by neighboring polar groups. We discuss the implications of our aggregate results in terms of various approaches currently being used to describe the hydration properties of globular proteins, particularly focusing on the limitations of existing additive models based on small molecule data.
Collapse
|
|
29 |
249 |
2
|
Abstract
Structural and thermodynamic characterizations of a variety of intra- and intermolecular interactions stabilizing/destabilizing protein systems represent a major part of multidisciplinary efforts aimed at solving the problems of protein folding and binding. To this end, volumetric techniques have been successfully used to gain insights into protein hydration and intraglobular packing. Despite the fact that the use of volumetric measurements in protein-related studies dates back to the 1950s, such measurements still represent a relatively untapped yet potentially informative means for tackling the problems of protein folding and binding. This notion has been further emphasized by recent advances in the development of highly sensitive volumetric instrumentation that has led to intensifying volumetric investigations of protein systems. This paper reviews the volumetric properties of proteins and their low-molecular-weight analogs, in particular, discussing the recent progress in the use of volumetric data for studying conformational transitions of proteins as well as protein-ligand, protein-protein, and protein-nucleic acid interactions.
Collapse
|
Review |
22 |
242 |
3
|
Chalikian TV, Sarvazyan AP, Breslauer KJ. Hydration and partial compressibility of biological compounds. Biophys Chem 1994; 51:89-107; discussion 107-9. [PMID: 7919045 DOI: 10.1016/0301-4622(94)85007-0] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We review the results of compressibility studies on proteins, nucleic acids, and systematically altered low molecular weight compounds that model the constituents of these biopolymers. The model compound data allow one to define the compressibility properties of water surrounding charged, polar, and nonpolar groups. These results, in conjunction with compressibility data on proteins and nucleic acids, were used to define the properties of water that is perturbed by the presence of these biopolymers in aqueous solutions. Throughout this review, we emphasize the importance of compressibility data for characterizing the hydration properties of solutes (particularly, proteins, nucleic acids, and their constituents), while describing how such data can be interpreted to gain insight into role that hydration can play in modulating the stability of and recognition between biologically important compounds.
Collapse
|
Review |
31 |
221 |
4
|
Chalikian TV, Völker J, Plum GE, Breslauer KJ. A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. Proc Natl Acad Sci U S A 1999; 96:7853-8. [PMID: 10393911 PMCID: PMC22151 DOI: 10.1073/pnas.96.14.7853] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/1999] [Accepted: 05/13/1999] [Indexed: 11/18/2022] Open
Abstract
We use a combination of calorimetric and volumetric techniques to detect and to characterize the thermodynamic changes that accompany helix-to-coil transitions for five polymeric nucleic acid duplexes. Our calorimetric measurements reveal that melting of the duplexes is accompanied by positive changes in heat capacity (DeltaCP) of similar magnitude, with an average DeltaCP value of 64.6 +/- 21.4 cal deg-1 mol-1. When this heat capacity value is used to compare significantly different transition enthalpies (DeltaHo) at a common reference temperature, Tref, we find DeltaHTref for duplex melting to be far less dependent on duplex type, base composition, or base sequence than previously believed on the basis of the conventional assumption of a near-zero value for DeltaCP. Similarly, our densimetric and acoustic measurements reveal that, at a given temperature, all the AT- and AU-containing duplexes studied here melt with nearly the same volume and compressibility changes. In the aggregate, our results, in conjunction with literature data, suggest a more unified picture for the thermodynamics of nucleic acid duplex melting. Specifically, when compared at a common temperature, the apparent large differences present in the literature for the transition enthalpies of different duplexes become much more compressed, and the melting of all-AT- and all-AU-containing duplexes exhibits similar volume and compressibility changes despite differences in sequence and conformation. Thus, insofar as thermodynamic properties are concerned, when comparing duplexes, the temperature under consideration is as important as, if not more important than, the duplex type, the base composition, or the base sequence. This general behavior has significant implications for our basic understanding of the forces that stabilize nucleic acid duplexes. This behavior also is of practical significance in connection with the use of thermodynamic databases for designing probes and for assessing the affinity and specificity associated with hybridization-based protocols used in a wide range of sequencing, diagnostic, and therapeutic applications.
Collapse
|
research-article |
26 |
188 |
5
|
Taulier N, Chalikian TV. Characterization of pH-induced transitions of beta-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies. J Mol Biol 2001; 314:873-89. [PMID: 11734004 DOI: 10.1006/jmbi.2001.5188] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depending on solution conditions, beta-lactoglobulin can exist in one of its six pH-dependent structural states. We have characterized the acid and basic-induced conformational transitions between these structural states over the pH range of pH 1 to pH 13. To this end, we have employed high-precision ultrasonic and densimetric measurements coupled with fluorescence and CD spectroscopic data. Our combined spectroscopic and volumetric results have revealed five pH-induced transitions of beta-lactoglobulin between pH 1 and pH 13. The first transition starts at pH 2 and is not completed even at pH 1, our lowest experimental pH. This transition is followed by the dimer-to-monomer transition of beta-lactoglobulin between pH 2.5 and pH 4. The dimer-to-monomer transition is accompanied by decreases in volume, v degrees (-0.008(+/-0.003) cm3 x g(-1)), and adiabatic compressibility, k degrees (S) (-(0.7(+/-0.4))x10(-6) cm3 x g(-1) x bar(-1)). We interpret the observed changes in volume and compressibility associated with the dimer-to-monomer transition of beta-lactoglobulin, in conjunction with X-ray crystallographic data, as suggesting a 7 % increase in protein hydration, with the hydration changes being localized in the area of contact between the two monomeric subunits. The so-called N-to-Q transition of beta-lactoglobulin occurs between pH 4.5 and pH 6 and is accompanied by increases in volume, v degrees (0.004(+/-0.003) cm3 x g(-1)), and compressibility, k degrees (S) ((0.7(+/-0.4))x10(-6) cm3 x g(-1) x bar(-1)). The Tanford transition of beta-lactoglobulin is centered at pH 7.5 and is accompanied by a decrease in volume, v degrees (-0.006(+/-0.003) cm3 x g(-1)), and an increase in compressibility, k degrees (S) ((1.5(+/-0.5))x10(-6) cm3 x g(-1) x bar(-1)). Based on these volumetric results, we propose that the Tanford transition is accompanied by a 5 to 10 % increase in the protein hydration and a loosening of the interior packing of beta-lactoglobulin as reflected in a 12 % increase in its intrinsic compressibility. Finally, above pH 9, the protein undergoes irreversible base-induced unfolding which is accompanied by decreases in v degrees (-0.014(+/-0.003) cm3 x g(-1)) and k degrees (S) (-(7.0(+/-0.5))x10(-6) cm3 x g(-1) x bar(-1)). Combining these results with our CD spectroscopic data, we propose that, in the base-induced unfolded state of beta-lactoglobulin, only 80 % of the surface area of the fully unfolded conformation is exposed to the solvent. Thus, in so far as solvent exposure is concerned, the base-induced unfolded states of beta-lactoglobulin retains some order, with 20 % of its amino acid residues remaining solvent inaccessible.
Collapse
|
|
24 |
178 |
6
|
|
Review |
29 |
166 |
7
|
Chalikian TV, Sarvazyan AP, Breslauer KJ. Partial molar volumes, expansibilities, and compressibilities of .alpha.,.omega.-aminocarboxylic acids in aqueous solutions between 18 and 55.degree.C. ACTA ACUST UNITED AC 2002. [DOI: 10.1021/j100151a061] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
153 |
8
|
Abstract
We review the results of compressibility studies on proteins and low molecular weight compounds that model the hydration properties of these biopolymers. In particular, we present an analysis of compressibility changes accompanying conformational transitions of globular proteins. This analysis, in conjunction with experimental compressibility data on protein transitions, were used to define the changes in the hydration properties and intrinsic packing associated with native-to-molten globule, native-to-partially unfolded, and native-to-fully unfolded transitions of globular proteins. In addition, we discuss the molecular origins of predominantly positive changes in compressibility observed for pressure-induced denaturation transitions of globular proteins. Throughout this review, we emphasize the importance of compressibility data for characterizing protein transitions, while also describing how such data can be interpreted to gain insight into role that hydration and intrinsic packing play in modulating the stability of and recognition between proteins and other biologically important compounds.
Collapse
|
Review |
23 |
123 |
9
|
Chalikian TV, Gindikin VS, Breslauer KJ. Volumetric characterizations of the native, molten globule and unfolded states of cytochrome c at acidic pH. J Mol Biol 1995; 250:291-306. [PMID: 7608975 DOI: 10.1006/jmbi.1995.0377] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytochrome c can exist in a native (N), a molten globule (MG) or an unfolded (U) state depending on solution conditions. We have used high-precision ultrasonic and densimetric techniques to measure volume and compressibility changes accompanying the N to MG, N to U and U to MG transitions of the protein. For the N to MG transition (induced by lowering the pH to 2 in the presence of 200 mM CsCl), we measure a volume increase of 0.014 cm3g-1 and a compressibility increase of 3.8 x 10(-6) cm3g-1bar-1. For the N to U transition (induced by lowering the pH to 2 in the absence of salt), we measure a volume increase of 0.010 cm3 g-1 and a compressibility decrease of 2.0 x 10(-6) cm3 g-1 bar-1. For the U to MG transition at pH 2 (induced by adding CsCl up to 200 mM), we measure a volume increase of 0.006 cm3 g-1 and a compressibility increase of 6.8 x 10(-6) cm3 g-1 bar-1. We interpret these data to reach the following conclusions about the three states of cytochrome c. (1) A solvent-inaccessible core is preserved in the molten globule state, with the volume of this core being about 40% of the intrinsic volume of native cytochrome c. (2) The coefficient of the adiabatic compressibility of this preserved molten globule core is 61 x 10(-6) bar-1, a value that is over four times higher than that of the interior of the native protein. This result is consistent with the interior of the preserved MG core being liquid-like in contrast to the more tightly packed, solid-like interior of the native state. (3) In the unfolded state of cytochrome c, only 70 to 80% of the surface area of a fully unfolded conformation is exposed to the solvent, a result that reflects some level of order in the "denatured" state. (4) The relative volume fluctuations of the solvent-inaccessible interiors of the native, molten globule and unfolded states are equal to 0.6%, 2.0% and 2.9%, respectively. These data are consistent with the solvent-inaccessible core of the molten globule state being much more loosely packed than the core of the native state. In fact, the fluctuations in the molten globule and unfolded states are so high that one cannot exclude the possibility that formally buried atomic groups transiently contact solvent molecules. To the best of our knowledge, the data reported here provide the first characterizations of the intrinsic volume and compressibility properties of the native, molten globule and unfolded states of a single protein. We discuss in terms of the current protein literature the new insights that can be derived from these data.
Collapse
|
|
30 |
119 |
10
|
|
|
24 |
110 |
11
|
Abstract
Fundamental thermodynamic relationships reveal that volumetric studies on molecules of interest can yield useful new information. In particular, appropriately designed volumetric studies can characterize the properties of molecules as a function of solution conditions, including the role of solvation. Until recently, such studies on biologically interesting molecules have been limited because of the lack of readily available instrumentation with the requisite sensitivity; however, during the past decade, advances in the development of highly sensitive, small-volume densimetric, acoustic and high-pressure spectroscopic instrumentation have enabled biological molecules to be subjected to a wide range of volumetric studies. In fact, the volumetric methods used in these studies have already provided unique insights into the molecular origins of the intramolecular and intermolecular recognition events that modulate biomolecular processes. Of particular note are recent volumetric studies on globular proteins and nucleic acid duplexes. These studies have provided unique insights into the role of hydration in modulating the stabilities of these biopolymers, as well as their conformational transitions and ligand-binding properties.
Collapse
|
Review |
27 |
105 |
12
|
Chalikian TV, Sarvazyan AP, Plum GE, Breslauer KJ. Influence of base composition, base sequence, and duplex structure on DNA hydration: apparent molar volumes and apparent molar adiabatic compressibilities of synthetic and natural DNA duplexes at 25 degrees C. Biochemistry 1994; 33:2394-401. [PMID: 8117699 DOI: 10.1021/bi00175a007] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using high-precision densitometric and ultrasonic measurements, we have determined, at 25 degrees C, the apparent molar volumes, phi V, and the apparent molar compressibilities, phi KS, of five natural and three synthetic B-form DNA duplexes with varying base compositions and base sequences. We find that phi V ranges from 152.0 to 186.6 cm3 mol-1, while phi KS ranges from -73.0 x 10(-4) to -32.6 x 10(-4) cm3 mol-1 bar-1. We interpret these data in terms of DNA hydration which, by the definition employed in this work, refers to those water molecules whose density and compressibility differ from those of bulk water due to interactions with the DNA solute. This definition implies that hydration depends not just on the quantity but also on the quality of the solvent molecules perturbed by the solute. In fact, we find that the number of water molecules perturbed by the DNA duplexes (the quantity of water in their hydration shells) is approximately the same for all of the B-form double helixes studied, while the quality of this water differs as measured by its density and compressibility, thereby yielding differences in the overall hydration properties. Specifically, we find a linear relationship between the density and the coefficient of adiabatic compressibility, beta Sh, of water in the hydration shell of the DNA duplexes, with the range of values for beta Sh being only 65-80% of the value of bulk water.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
31 |
98 |
13
|
Chalikian TV, Plum GE, Sarvazyan AP, Breslauer KJ. Influence of drug binding on DNA hydration: acoustic and densimetric characterizations of netropsin binding to the poly(dAdT).poly(dAdT) and poly(dA).poly(dT) duplexes and the poly(dT).poly(dA).poly(dT) triplex at 25 degrees C. Biochemistry 1994; 33:8629-40. [PMID: 8038152 DOI: 10.1021/bi00195a003] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We use high-precision acoustic and densimetric techniques to determine, at 25 degrees C, the changes in volume, delta V, and adiabatic compressibility, delta Ks, that accompany the binding of netropsin to the poly(dAdT).poly(dAdT) and poly(dA).poly(dT) duplexes, as well as to the poly(dT).poly(dA).poly(dT) triplex. We find that netropsin binding to the heteropolymeric poly(dAdT).poly(dAdT) duplex is accompanied by negative changes in volume, delta V, and small positive changes in compressibility, delta Ks. By contrast, netropsin binding to the homopolymeric poly(dA).poly(dT) duplex is accompanied by large positive changes in both volume, delta V, and compressibility, delta Ks. Furthermore, netropsin binding to the poly(dT).poly(dA).poly(dT) triplex causes changes in both volume and compressibility that are nearly twice as large as those observed when netropsin binds to the poly(dA).poly(dT) duplex. We interpret these macroscopic data in terms of binding-induced microscopic changes in the hydration of the DNA structures and the drug. Specifically, we find that netropsin binding induces the release of approximately 22 waters from the hydration shell of the poly(dAdT).poly(dAdT) heteropolymeric duplex, approximately 40 waters from the hydration shell of the poly(dA).poly(dT) homopolymeric duplex, and about 53 waters from the hydration shell of the poly(dA).poly(dT), induces the release of 18 more water molecules than netropsin binding to the heteropolymeric duplex, poly(dAdT).poly(dAdT). On the basis of apparent molar volume, phi V, and apparent molar adiabatic compressibility, phi Ks, values for the initial drug-free and final drug-bound states of the two all-AT duplexes, we propose that the larger dehydration of the poly(dA).poly(dT) duplex reflects, in part, the formation of a less hydrated poly(dA).poly(dT)-netropsin complex compared with the corresponding poly(dAdT).poly(dAdT)-netropsin complex. In conjunction with our previously published entropy data [Marky, L. A., & Breslauer, K. J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4359-4363], we calculate that each water of hydration released to the bulk solvent by ligand binding contributes 1.6 cal K-1 mol-1 to the entropy of binding. This value corresponds to the average difference between the partial molar entropy of water in the bulk state and water in the hydration shells of the two all-AT duplexes. When netropsin binds to the poly(dT).poly(dA).poly(dT) triplex, the changes in both volume and compressibility suggest that the binding event induces more dehydration of the triplex than of the duplex state. Specifically, we calculate that netropsin binding to the poly(dT).poly(dA).poly(dT) triplex causes the release of 13 more waters than netropsin binding to the poly(dA).poly(dT) duplex.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
31 |
81 |
14
|
Dubins DN, Lee A, Macgregor RB, Chalikian TV. On the stability of double stranded nucleic acids. J Am Chem Soc 2001; 123:9254-9. [PMID: 11562205 DOI: 10.1021/ja004309u] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present the first pressure-versus-temperature phase diagram for the helix-to-coil transition of double stranded nucleic acids. The thermodynamic stability of a nucleic acid duplex is a complex function of temperature and pressure and strongly depends on the denaturation temperature, T(M), of the duplex at atmospheric pressure. Depending upon T(M), pressure, and temperature, the phase diagram shows that pressure may stabilize, destabilize, or have no effect on the conformational state of DNA. To verify the phase diagram, we have conducted high-pressure UV melting experiments on poly(dIdC)poly(dIdC), a DNA duplex, poly(rA)poly(rU), an RNA duplex, and poly(dA)poly(rU), a DNA/RNA hybrid duplex. The T(M) values of these duplexes have been modulated by altering the solution ionic strength. Significantly, at low salt, these three duplexes have helix-to-coil transition temperatures of 50 degrees C or less. In agreement with the derived phase diagram, we found that the polymeric duplexes were destabilized by pressure if the T(M) is < approximately 50 degrees C. However, these duplexes were stabilized by pressure if the T(M) is > approximately 50 degrees C. The DNA/RNA hybrid duplex, poly(dA)poly(rU), with a T(M) of 31 degrees C in 20 mM NaCl undergoes a pressure-induced helix-to-coil transition at room temperature. This is the first report of pressure-induced denaturation of a nucleic acid duplex and provides new insights into the molecular forces stabilizing these structures.
Collapse
|
|
24 |
79 |
15
|
Chalikian TV, Völker J, Srinivasan AR, Olson WK, Breslauer KJ. The hydration of nucleic acid duplexes as assessed by a combination of volumetric and structural techniques. Biopolymers 1999; 50:459-71. [PMID: 10479730 DOI: 10.1002/(sici)1097-0282(19991015)50:5<459::aid-bip1>3.0.co;2-b] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using high precision densimetric and ultrasonic measurements, we have determined, at 25 degrees C, the apparent molar volumes PhiV and the apparent molar compressibilities PhiK(S) of four nucleic acid duplexes-namely, the DNA duplex, poly(dIdC)poly(dIdC); the RNA duplex, poly(rA)poly(rU); and the two DNA/RNA hybrid duplexes, poly(rA)poly(dT) and poly(dA)poly(rU). Using available fiber diffraction data on these duplexes, we have calculated the molecular volumes as well as the solvent-accessible surface areas of the constituent charged, polar, and nonpolar atomic groups. We found that the hydration properties of these nucleic acid duplexes do not correlate with the extent and the chemical nature of the solvent-exposed surfaces, thereby suggesting a more specific set of duplex-water interactions beyond general solvation effects. A comparative analysis of our volumetric data on the four duplexes, in conjunction with available structural information, suggests the following features of duplex hydration: (a) The four duplexes exhibit different degrees of hydration, in the order poly(dIdC)poly(dIdC) > poly(dGdC)poly(dGdC) > poly(dAdT)poly(dAdT) approximately poly(dA)poly(dT). (b) Repetitive AT and IC sequences within a duplex are solvated beyond general effects by a spine of hydration in the minor groove, with this sequence-specific water network involving about 8 additional water molecules from the second and, perhaps, even the third hydration layers. (c) Repetitive GC and IC sequences within a duplex are solvated beyond general effects by a "patch of hydration" in the major groove, with this water network involving about 13 additional water molecules from the second and, perhaps, even the third hydration layers. (d) Random sequence, polymeric DNA duplexes, which statistically lack extended regions of repetitive AT, GC, or IC sequences, do not experience such specific enhancements of hydration. Consequently, consistent with our previous observations (T. V. Chalikian, A. P. Sarvazyan, G. E. Plum, and K. J. Breslauer, Biochemistry, 1994, Vol. 33, pp. 2394-2401), duplexes with approximately 50% AT content exhibit the weakest hydration, while an increase or decrease from this AT content causes enhancement of hydration, either due to stronger hydration of the minor groove (an increase in AT content) or due to stronger hydration of the major groove (an increase in GC content). (e) In dilute aqueous solutions, a B-DNA duplex is more hydrated than an A-DNA duplex, a volumetric-based conclusion that is in agreement with previous results obtained on crystals, fibers, and DNA solutions in organic solvent-water mixtures. (f) the A-like, RNA duplex poly(rA)poly(rU) and the structurally similar A-like, hybrid duplex poly(rA)poly(dT), exhibit similar hydration properties, while the structurally distinct A-like, hybrid duplex poly(rA)poly(dT) and non-A-like, hybrid duplex poly(dA)poly(rU) exhibit differential hydration properties, consistent with structural features dictating hydration characteristics. We discuss how volumetric characterizations, in conjunction with structural studies, can be used to describe, define, and resolve the general and sequence/conformation-specific hydration properties of nucleic acid duplexes.
Collapse
|
|
26 |
75 |
16
|
Chalikian TV, Sarvazyan AP, Funck T, Breslauer KJ. Partial molar volumes, expansibilities, and compressibilities of oligoglycines in aqueous solutions at 18-55°C. Biopolymers 2004. [DOI: 10.1002/bip.360340409] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
21 |
71 |
17
|
Fan HY, Shek YL, Amiri A, Dubins DN, Heerklotz H, Macgregor RB, Chalikian TV. Volumetric characterization of sodium-induced G-quadruplex formation. J Am Chem Soc 2011; 133:4518-26. [PMID: 21370889 DOI: 10.1021/ja110495c] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oligodeoxyribonucleotides (ODN) with repeats of the human telomeric sequence can adopt different tetrahelical conformations that exhibit similar energetic parameters. We studied the volumetric properties of the folded and unfolded states of an ODN with four repeats of the human telomeric sequence, d[A(GGGTTA)(3)GGG], by combining pressure-perturbation calorimetry (PPC), vibrating tube densimetry, ultrasonic velocimetry, and UV melting under high pressure. We carried out our volumetric measurements in aqueous buffers at pH 7 containing 20, 50, and 100 mM NaCl. All of the methods employed yielded volumetric parameters that were in excellent agreement. The molar volume changes, ΔV, of the conformational transition leading to formation of the folded state are large and positive. At 50 mM NaCl, the average transition volume, ΔV(tr), obtained from all the methods is 56.4 ± 3.5 cm(3) mol(-1) at the transition temperature of 47 °C, with ΔV(tr) decreasing with an increase in temperature. We carried out a molecular dynamics simulation of the change in the intrinsic geometric parameters of the ODN accompanying quadruplex formation. On the basis of the experimental and computational results, the folding transition of the ODN is accompanied by a release of 103 ± 44 water molecules from its hydration shell to the bulk. This number corresponds to ~18% of the net hydration of the coil conformation.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
71 |
18
|
Chalikian TV, Breslauer KJ. Compressibility as a means to detect and characterize globular protein states. Proc Natl Acad Sci U S A 1996; 93:1012-4. [PMID: 8577705 PMCID: PMC40021 DOI: 10.1073/pnas.93.3.1012] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report compressibility data on single-domain, globular proteins which suggest a general relationship between protein conformational transitions and delta kzeroS, the change in the partial specific adiabatic compressibility which accompanies the transition. Specifically, we find transitions between native and compact intermediate states to be accompanied by small increases in kzeroS of +(1-4) x 10(-6) cm3.g-1.bar-1 (1 bar = 100 kPa). By contrast, transitions between native and partially unfolded states are accompanied by small decreases in kzeroS of -(3-7) x 10(-6) cm3.g-1.bar-1, while native-to-fully unfolded transitions result in large decreases in kzeroS of -(18-20) x 10(-6) cm3.g-1.bar-1. Thus, for the single-domain, globular proteins studied here, changes in kzeroS correlate with the type of transition being monitored, independent of the specific protein. Consequently, kzeroS measurements may provide a convenient approach for detecting the existence of and for defining the nature of protein transitions, while also characterizing the hydration properties of individual protein states.
Collapse
|
research-article |
29 |
68 |
19
|
Chalikian TV, Völker J, Anafi D, Breslauer KJ. The native and the heat-induced denatured states of alpha-chymotrypsinogen A: thermodynamic and spectroscopic studies. J Mol Biol 1997; 274:237-52. [PMID: 9398530 DOI: 10.1006/jmbi.1997.1394] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report the first protein phase-diagram characterized by a combination of volumetric, calorimetric, and spectroscopic techniques. More specifically, we use ultrasonic velocimetry, densimetry, and differential scanning calorimetry, in conjunction with UV absorbance and CD spectroscopy to detect and to characterize the conformational transitions of alpha-chymotrypsinogen A as a function of both pH and temperature. As judged by the CD spectra, we find that, at room temperature, the protein remains in the native state over the entire pH range investigated (pH 1 to 10). The melting profiles of the native state reveal three distinct pH domains in which protein denaturation produces different final states. Below pH 3.1, we find the heat-induced denatured state of the protein to be molten globule (MG), lacking the native-like tertiary structure, while exhibiting significant secondary structural elements. At neutral and alkaline pH, we find the heat-induced denatured state to be unfolded (U), lacking both tertiary and secondary structures, while being structurally similar to the urea-unfolded state. At intermediate pH values (between pH 3.1 and 7), we find the heat-induced denatured state to exhibit properties characteristic of both the MG and U states. Although at room temperature the protein remains native within the whole pH range studied (pH 1 to 10), our volumetric data reveal that the native state slightly "softens" at low pH, probably, due to pH-induced alterations in electrostatic forces causing the packing of the protein interior at low pH and room temperature to become less "tight". This softening of the protein at low pH is reflected in an 8% increase in the intrinsic compressibility, kM, of the protein "native" state. Our volumetric data also allow us to conclude that the heat-induced MG state retains a liquid-like, water-inaccessible core, with a volume that corresponds to about 40% of the solvent-inaccessible core of the native state. By contrast, our volumetric data are consistent with the U state of the protein being essentially unfolded, with the majority of its constituent atomic groups being solvent exposed and, therefore, strongly hydrated.
Collapse
|
|
28 |
67 |
20
|
Tikhomirova A, Beletskaya IV, Chalikian TV. Stability of DNA Duplexes Containing GG, CC, AA, and TT Mismatches. Biochemistry 2006; 45:10563-71. [PMID: 16939208 DOI: 10.1021/bi060304j] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We employed salt-dependent differential scanning calorimetric measurements to characterize the stability of six oligomeric DNA duplexes (5'-GCCGGAXTGCCGG-3'/5'-CCGGCAYTCCGGC-3') that contain in the central XY position the GC, AT, GG, CC, AA, or TT base pair. The heat-induced helix-to-coil transitions of all the duplexes are associated with positive changes in heat capacity, DeltaC(p), ranging from 0.43 to 0.53 kcal/mol. Positive values of DeltaC(p) result in strong temperature dependences of changes in enthalpy, DeltaH degrees, and entropy, DeltaS degrees , accompanying duplex melting and cause melting free energies, DeltaG degrees, to exhibit characteristically curved shapes. These observations suggest that DeltaC(p) needs to be carefully taken into account when the parameters of duplex stability are extrapolated to temperatures distant from the transition temperature, T(M). Comparison of the calorimetric and van't Hoff enthalpies revealed that none of the duplexes studied in this work exhibits two-state melting. Within the context of the central AXT/TYA triplet, the thermal and thermodynamic stabilities of the duplexes in question change in the following order: GC > AT > GG > AA approximately TT > CC. Our estimates revealed that the thermodynamic impact of the GG, AA, and TT mismatches is confined within the central triplet. In contrast, the thermodynamic impact of the CC mismatch propagates into the adjacent helix domains and may involve 7-9 bp. We discuss implications of our results for understanding the origins of initial recognition of mismatched DNA sites by enzymes of the DNA repair machinery.
Collapse
|
|
19 |
66 |
21
|
Han F, Taulier N, Chalikian TV. Association of the minor groove binding drug Hoechst 33258 with d(CGCGAATTCGCG)2: volumetric, calorimetric, and spectroscopic characterizations. Biochemistry 2005; 44:9785-94. [PMID: 16008363 DOI: 10.1021/bi047374f] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed ultrasonic velocimetry, high-precision densimetry, circular dichroism and fluorescence spectroscopy, and isothermal titration calorimetry to characterize the binding of Hoechst 33258 to the d(CGCGAATTCGCG)(2) oligomeric duplex at 25 degrees C. We used this experimental combination to determine the full thermodynamic profile for the binding of Hoechst 33258 to the DNA. Specifically, we report changes in binding free energy, enthalpy, entropy, volume, and adiabatic compressibility accompanying the binding. We interpret our volumetric data in terms of hydration and evaluate the number of waters of hydration that become released to or taken up from the bulk. Our calorimetric data reveal that the drug-DNA binding event studied in this work is entropy-driven and proceeds with an unfavorable change in enthalpy. The favorable binding entropy predominantly results from hydration changes. In contrast to a large and positive change in hydrational entropy, the binding-induced change in configurational entropy is insignificant. The latter observation is consistent with the "lock-and-key" mode of minor groove binding.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
66 |
22
|
Chalikian TV. Ultrasonic and Densimetric Characterizations of the Hydration Properties of Polar Groups in Monosaccharides. J Phys Chem B 1998. [DOI: 10.1021/jp981418a] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
27 |
63 |
23
|
Abstract
Volumetric studies can yield useful new information on a myriad of intra- and intermolecular interactions that stabilize nucleic acid structures. In particular, appropriately designed volumetric measurements can characterize the conformation-dependent hydration properties of nucleic acids as a function of solution conditions, including temperature, pressure, ionic strength, pH, and cosolvent concentration. We have started to accumulate a substantial database on volumetric properties of DNA and RNA, as well as on related low molecular weight model compounds. This database already has provided unique insights into the molecular origins of various nucleic acid recognition processes, including helix-to-coil and helix-to-helix conformational transitions, as well as drug-DNA interactions. In this article, we review recent progress in volumetric investigations of nucleic acids, emphasizing how these data can be used to gain insight into intra-and intermolecular interactions, including hydration properties. Throughout this review, we underscore the importance of volume and compressibility data for characterizing the hydration properties of nucleic acids and their constituents. We also describe how such volumetric data can be interpreted at the molecular level to yield a better understanding of the role that hydration can play in modulating the stability and recognition of nucleic acids.
Collapse
|
Review |
25 |
56 |
24
|
Likhodi O, Chalikian TV. Partial Molar Volumes and Adiabatic Compressibilities of a Series of Aliphatic Amino Acids and Oligoglycines in D2O. J Am Chem Soc 1999. [DOI: 10.1021/ja983127l] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
26 |
55 |
25
|
Chalikian TV, Filfil R. How large are the volume changes accompanying protein transitions and binding? Biophys Chem 2003; 104:489-99. [PMID: 12878316 DOI: 10.1016/s0301-4622(03)00037-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We present a simple model to describe volume changes accompanying protein folding and binding events. The model enables one to resolve the changes in volume accompanying conformational transitions of proteins as well as association of proteins with other molecules in terms of the intrinsic, thermal and interaction (hydration) contributions. The thermal contribution to protein volume results from thermally activated mutual vibrational motions of contacting solute and solvent molecules. Our calculations suggest that near zero volume changes accompanying protein folding and binding events reflect compensation between significant changes in the intrinsic, thermal and interaction terms. We have quantitatively estimated these terms as a function of the protein's molecular weight and degree of its unfolding. Results described in this work lay foundation for more reliable and physically justified interpretations of volumetric data on protein folding and binding events. We also discuss potential ways of extending applications of our model to analyzing other macromolecular systems and events, including drug-DNA and protein-DNA interactions and helix-to-helix and helix-to-coil transitions of nucleic acids.
Collapse
|
|
22 |
54 |