1
|
Roland P, Svensson G, Lindeberg T, Risch T, Baumann P, Dehmel A, Frederiksson J, Halldorson H, Forsberg L, Young J, Zilles K. A database generator for human brain imaging. Trends Neurosci 2001; 24:562-4. [PMID: 11576652 DOI: 10.1016/s0166-2236(00)01924-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sharing scientific data containing complex information requires new concepts and new technology. NEUROGENERATOR is a database generator for the neuroimaging community. A database generator is a database that generates new databases. The scientists submit raw PET and fMRI data to NEUROGENERATOR, which then processes the data in a uniform way to create databases of homogeneous data suitable for data sharing, met-analysis and modelling the human brain at the systems level. These databases are then distributed to the scientists.
Collapse
|
Review |
24 |
36 |
2
|
Appel K, Jainz M, Risch T, Sauter K, Schneider W, Schloz W, Griesser G, Kästner V. A DATA MANAGER for the health information system Berlin. COMPUTER PROGRAMS IN BIOMEDICINE 1976; 6:166-70. [PMID: 1000975 DOI: 10.1016/0010-468x(76)90022-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The needs for permanently changing the logical and physical structure of a medical datebase during the development of a health information system have initiated the project of implementing a DATA MANAGER. The concept of the DATA MANAGER covers facilities for the development of the logical data structure model including documentation of the model and programming support for application programs accessing the health information system (HIS) database. The outstanding facilities of the INTERLISP system have been found to be appropriate for writing the DATA MANAGER. A first data structure model, on which the DATA MANAGER will operate, is roughly outlined.
Collapse
|
|
49 |
2 |
3
|
Schippers P, Rasheed S, Park YM, Risch T, Wagmann L, Hemmer S, Manier SK, Müller R, Herrmann J, Meyer MR. Evaluation of extraction methods for untargeted metabolomic studies for future applications in zebrafish larvae infection models. Sci Rep 2023; 13:7489. [PMID: 37161044 PMCID: PMC10170104 DOI: 10.1038/s41598-023-34593-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023] Open
Abstract
Sample preparation in untargeted metabolomics should allow reproducible extractions of as many molecules as possible. Thus, optimizing sample preparation is crucial. This study compared six different extraction procedures to find the most suitable for extracting zebrafish larvae in the context of an infection model. Two one-phase extractions employing methanol (I) and a single miscible phase of methanol/acetonitrile/water (II) and two two-phase methods using phase separation between chloroform and methanol/water combinations (III and IV) were tested. Additional bead homogenization was used for methods III and IV (III_B and IV_B). Nine internal standards and 59 molecules of interest (MoInt) related to mycobacterial infection were used for method evaluation. Two-phase methods (III and IV) led to a lower feature count, higher peak areas of MoInt, especially amino acids, and higher coefficients of variation in comparison to one-phase extractions. Adding bead homogenization increased feature count, peak areas, and CVs. Extraction I showed higher peak areas and lower CVs than extraction II, thus being the most suited one-phase method. Extraction III and IV showed similar results, with III being easier to execute and less prone to imprecisions. Thus, for future applications in zebrafish larvae metabolomics and infection models, extractions I and III might be chosen.
Collapse
|
|
2 |
1 |
4
|
Risch T, Kolling D, Mostert D, Seedorf T, Heimann D, Kohnhäuser D, Deschner F, Fries F, Solga D, Hilgers JS, Dastbaz J, Mancini S, Hirsch AKH, Brönstrup M, Kirschning A, Sieber SA, Herrmann J, Müller R. YgiV promoter mutations cause resistance to cystobactamids and reduced virulence factor expression in Escherichia coli. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:33. [PMID: 39843645 PMCID: PMC11721078 DOI: 10.1038/s44259-024-00050-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/23/2024] [Indexed: 01/24/2025]
Abstract
Antimicrobial resistance is one of the major health threats of the modern world. Thus, new structural classes of antimicrobial compounds are needed in order to overcome existing resistance. Cystobactamids represent one such new compound class that inhibit the well-established target bacterial type II topoisomerases while exhibiting superior antibacterial and resistance-breaking properties. Understanding potential mechanisms of emerging resistances is crucial in the development of novel antibiotics as they directly impact the future therapeutic application and market success. Therefore, the frequency and molecular basis of cystobactamid resistance in Escherichia coli was analyzed. High-level resistant E. coli mutants were selected and found to harbor single nucleotide polymorphisms in the promotor region of the ygiV gene, causing an upregulation of the respective protein. These stable mutations are contrary to what was observed as a resistance genotype in the structurally related albicidins, where ygiV gene amplifications were identified as causing resistance. Overexpression of YgiV in the mutants was additionally amplified upon cystobactamid exposition, showing further adaptation to this compound class under treatment. YgiV binds cystobactamids with high binding affinity, thereby preventing their interaction with the antimicrobial targets topoisomerase IV and DNA gyrase. In addition, we observed a substantial impact of YgiV on in vitro gyrase activity by leading to increased DNA cleavage and concurrent reduction in the efficacy of cystobactamids in inhibiting gyrase supercoiling activity. Furthermore, we identified co-upregulation of membrane-modifying proteins, such as EptC, and the transcriptional regulator QseB. This presumably contributes to the observed reduced motility and fimbrial protein expression in resistant mutants, resulting in a reduced expression of virulence factors and potentially pathogenicity, associated with ygiV promotor mutations.
Collapse
|
research-article |
1 |
1 |
5
|
Koch S, Risch T, Schneider W, Wagner IV. An object-relational model for structured representation of medical knowledge. INTERNATIONAL JOURNAL OF COMPUTERIZED DENTISTRY 2006; 9:237-52. [PMID: 17194050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Domain specific knowledge is often not static but continuously evolving. This is especially true for the medical domain. Furthermore, the lack of standardized structures for presenting knowledge makes it difficult or often impossible to assess new knowledge in the context of existing knowledge. Possibilities to compare knowledge easily and directly are often not given. It is therefore of utmost importance to create a model that allows for comparability, consistency and quality assurance of medical knowledge in specific work situations. For this purpose, we have designed on object-relational model based on structured knowledge elements that are dynamically reusable by different multi-media-based tools for case-based documentation, disease course simulation, and decision support. With this model, high-level components, such as patient case reports or simulations of the course of a disease, and low-level components (e.g., diagnoses, symptoms or treatments) as well as the relationships between these components are modeled. The resulting schema has been implemented in AMOS II, on object-relational multi-database system supporting different views with regard to search and analysis depending on different work situations.
Collapse
|
|
19 |
|
6
|
Deschner F, Risch T, Baier C, Schlüter D, Herrmann J, Müller R. Nitroxoline resistance is associated with significant fitness loss and diminishes in vivo virulence of Escherichia coli. Microbiol Spectr 2024; 12:e0307923. [PMID: 38063385 PMCID: PMC10782962 DOI: 10.1128/spectrum.03079-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Antimicrobial resistance (AMR) poses a global threat and requires the exploration of underestimated treatment options. Nitroxoline, an effective broad-spectrum antibiotic, does not suffer from high resistance rates in the clinics but surprisingly, it is not heavily used yet. Our findings provide compelling evidence that Nitroxoline resistance renders bacteria unable to cause an infection in vivo, thereby reinvigorating the potential of Nitroxoline in combating AMR.
Collapse
|
research-article |
1 |
|
7
|
Leyvraz S, Schuette M, Rieke D, Kessler T, Ochsenreither S, Amstislavskiy V, Risch T, Wierling C, Joehrens K, Peuker C, Lamping M, Burock S, Poch G, Kiecker F, Schaefer R, Lange B, Lehrach H, Joussen A, Keilholz U, Yaspo ML. Precision medicine for the treatment of metastatic uveal melanoma: A pilot study. Ann Oncol 2017. [DOI: 10.1093/annonc/mdx377.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
8 |
|
8
|
Leyvraz S, Schütte M, Kessler T, Lamping M, Burock S, Ochsenreither S, Amstislavskiy V, Risch T, Jelas I, Ulrich C, Dobos G, Klauschen F, Schäfer R, Lange B, Klinghammer K, Yaspo ML, Keilholz U. 847P Precision oncology for resistant acral, mucosal and cutaneous melanomas: A prospective broad high throughput genomics feasibility study. Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.07.973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
|
3 |
|
9
|
Mashayekhi V, Schomisch A, Rasheed S, Aparicio-Puerta E, Risch T, Yildiz D, Koch M, Both S, Ludwig N, Legroux TM, Keller A, Müller R, Fuhrmann G, Hoppstädter J, Kiemer AK. The RNA binding protein IGF2BP2/IMP2 alters the cargo of cancer cell-derived extracellular vesicles supporting tumor-associated macrophages. Cell Commun Signal 2024; 22:344. [PMID: 38937789 PMCID: PMC11212187 DOI: 10.1186/s12964-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization. METHODS EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting. RESULTS EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells. CONCLUSION Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.
Collapse
|
research-article |
1 |
|
10
|
Adam S, Fries F, von Tesmar A, Rasheed S, Deckarm S, Sousa CF, Reberšek R, Risch T, Mancini S, Herrmann J, Koehnke J, Kalinina OV, Müller R. The Peptide Antibiotic Corramycin Adopts a β-Hairpin-like Structure and Is Inactivated by the Kinase ComG. J Am Chem Soc 2024; 146:8981-8990. [PMID: 38513269 PMCID: PMC10996006 DOI: 10.1021/jacs.3c13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
The rapid development of antibiotic resistance, especially among difficult-to-treat Gram-negative bacteria, is recognized as a serious and urgent threat to public health. The detection and characterization of novel resistance mechanisms are essential to better predict the spread and evolution of antibiotic resistance. Corramycin is a novel and modified peptidic antibiotic with activity against several Gram-negative pathogens. We demonstrate that the kinase ComG, part of the corramycin biosynthetic gene cluster, phosphorylates and thereby inactivates corramycin, leading to the resistance of the host. Remarkably, we found that the closest structural homologues of ComG are aminoglycoside phosphotransferases; however, ComG shows no activity toward this class of antibiotics. The crystal structure of ComG in complex with corramycin reveals that corramycin adopts a β-hairpin-like structure and allowed us to define the changes leading to a switch in substrate from sugar to peptide. Bioinformatic analyses suggest a limited occurrence of ComG-like proteins, which along with the absence of cross-resistance to clinically used drugs positions corramycin as an attractive antibiotic for further development.
Collapse
|
research-article |
1 |
|
11
|
Deschner F, Mostert D, Daniel JM, Voltz A, Schneider DC, Khangholi N, Bartel J, Pessanha de Carvalho L, Brauer M, Gorelik TE, Kleeberg C, Risch T, Haeckl FPJ, Herraiz Benítez L, Andreas A, Kany AM, Jézéquel G, Hofer W, Müsken M, Held J, Bischoff M, Seemann R, Brötz-Oesterhelt H, Schneider T, Sieber S, Müller R, Herrmann J. Natural products chlorotonils exert a complex antibacterial mechanism and address multiple targets. Cell Chem Biol 2025; 32:586-602.e15. [PMID: 40203831 DOI: 10.1016/j.chembiol.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/12/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance is a threat to human health rendering current first-line antibiotics ineffective. New agents overcoming resistance mechanisms are urgently needed to guarantee successful treatment of human disease in the future. Chlorotonils, a natural product class with yet unknown mode of action, were shown to have broad-spectrum activity against multi-resistant Gram-positive bacteria and the malaria parasite Plasmodium falciparum, with promising activity and safety in murine infection models. Here, we report that chlorotonils can target the cell membrane, cell wall, and protein biosynthesis. They can be characterized by a rapid onset of action via interference with ion homeostasis leading to membrane depolarization, however, without inducing severe barrier failure or cellular lysis. Further characterization confirmed binding of chlorotonils to bacterial membrane lipids eventually leading to uncontrolled potassium transport. Additionally, we identified functional inhibition of the peptidoglycan biosynthesis protein YbjG and methionine aminopeptidase MetAP as secondary targets of chlorotonils.
Collapse
|
|
1 |
|
12
|
Reinhardt T, El Harraoui Y, Rothemann A, Jauch AT, Müller-Deubert S, Köllen MF, Risch T, Jacobs LJ, Müller R, Traube FR, Docheva D, Zahler S, Riemer J, Bach NC, Sieber SA. Chemical Proteomics Reveals Human Off-Targets of Fluoroquinolone Induced Mitochondrial Toxicity. Angew Chem Int Ed Engl 2025; 64:e202421424. [PMID: 39964703 DOI: 10.1002/anie.202421424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 04/03/2025]
Abstract
Fluoroquinolones (FQs) are an important class of potent broad-spectrum antibiotics. However, their general use is more and more limited by adverse side effects. While general mechanisms for the fluoroquinolone-associated disability (FQAD) have been identified, the underlying molecular targets of toxicity remain elusive. In this study, focusing on the most commonly prescribed FQs Ciprofloxacin and Levofloxacin, whole proteome analyses revealed prominent mitochondrial dysfunction in human cells, specifically of the complexes I and IV of the electron transport chain (ETC). Furthermore, global untargeted chemo-proteomic methodologies such as photo-affinity profiling with FQ-derived probes, as well as derivatization-free thermal proteome profiling, were applied to elucidate human protein off-targets of FQs in living cells. Accordingly, the interactions of FQs with mitochondrial AIFM1 and IDH2 have been identified and biochemically validated for their contribution to mitochondrial dysfunction. Of note, the FQ induced ETC dysfunction via AIFM1 activates the reverse carboxylation pathway of IDH2 for rescue, however, its simultaneous inhibition further enhances mitochondrial toxicity. This off-target discovery study provides unique insights into FQ toxicity enabling the utilization of identified molecular principles for the design of a safer FQ generation.
Collapse
|
|
1 |
|