1
|
Yeh FC, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC, Vettel JM, Verstynen T. Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage 2018; 178:57-68. [PMID: 29758339 DOI: 10.1016/j.neuroimage.2018.05.027] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 05/09/2018] [Indexed: 11/27/2022] Open
Abstract
A comprehensive map of the structural connectome in the human brain has been a coveted resource for understanding macroscopic brain networks. Here we report an expert-vetted, population-averaged atlas of the structural connectome derived from diffusion MRI data (N = 842). This was achieved by creating a high-resolution template of diffusion patterns averaged across individual subjects and using tractography to generate 550,000 trajectories of representative white matter fascicles annotated by 80 anatomical labels. The trajectories were subsequently clustered and labeled by a team of experienced neuroanatomists in order to conform to prior neuroanatomical knowledge. A multi-level network topology was then described using whole-brain connectograms, with subdivisions of the association pathways showing small-worldness in intra-hemisphere connections, projection pathways showing hub structures at thalamus, putamen, and brainstem, and commissural pathways showing bridges connecting cerebral hemispheres to provide global efficiency. This atlas of the structural connectome provides representative organization of human brain white matter, complementary to traditional histologically-derived and voxel-based white matter atlases, allowing for better modeling and simulation of brain connectivity for future connectome studies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
402 |
2
|
Verstynen T, Diedrichsen J, Albert N, Aparicio P, Ivry RB. Ipsilateral Motor Cortex Activity During Unimanual Hand Movements Relates to Task Complexity. J Neurophysiol 2005; 93:1209-22. [PMID: 15525809 DOI: 10.1152/jn.00720.2004] [Citation(s) in RCA: 349] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional imaging studies have revealed recruitment of ipsilateral motor areas during the production of sequential unimanual finger movements. This phenomenon is more prominent in the left hemisphere during left-hand movements than in the right hemisphere during right-hand movements. Here we investigate whether this lateralization pattern is related specifically to the sequential structure of the unimanual action or generalizes to other complex movements. Using event-related fMRI, we measured activation changes in the motor cortex during three types of unimanual movements: repetitions of a sequence of movements with multiple fingers, repetitive “chords” composed of three simultaneous key presses, and simple repetitive tapping movements with a single finger. During sequence and chord movements, strong ipsilateral activation was observed and was especially pronounced in the left hemisphere during left-hand movements. This pattern was evident for both right-handed and, to a lesser degree, left-handed individuals. Ipsilateral activation was less pronounced in the tapping condition. The site of ipsilateral activation was shifted laterally, ventrally, and anteriorly with respect to that observed during contralateral movements and the time course of activation implied a role in the execution rather than planning of the movement. A control experiment revealed that strong ipsilateral activity in left motor cortex is specific to complex movements and does not depend on the number of required muscles. These findings indicate a prominent role of left hemisphere in the execution of complex movements independent of the sequential nature of the task.
Collapse
|
|
20 |
349 |
3
|
Fernandez-Miranda JC, Pathak S, Engh J, Jarbo K, Verstynen T, Yeh FC, Wang Y, Mintz A, Boada F, Schneider W, Friedlander R. High-Definition Fiber Tractography of the Human Brain. Neurosurgery 2012; 71:430-53. [PMID: 22513841 DOI: 10.1227/neu.0b013e3182592faa] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
High-definition fiber tracking (HDFT) is a novel combination of processing, reconstruction, and tractography methods that can track white matter fibers from cortex, through complex fiber crossings, to cortical and subcortical targets with subvoxel resolution.
OBJECTIVE:
To perform neuroanatomical validation of HDFT and to investigate its neurosurgical applications.
METHODS:
Six neurologically healthy adults and 36 patients with brain lesions were studied. Diffusion spectrum imaging data were reconstructed with a Generalized Q-Ball Imaging approach. Fiber dissection studies were performed in 20 human brains, and selected dissection results were compared with tractography.
RESULTS:
HDFT provides accurate replication of known neuroanatomical features such as the gyral and sulcal folding patterns, the characteristic shape of the claustrum, the segmentation of the thalamic nuclei, the decussation of the superior cerebellar peduncle, the multiple fiber crossing at the centrum semiovale, the complex angulation of the optic radiations, the terminal arborization of the arcuate tract, and the cortical segmentation of the dorsal Broca area. From a clinical perspective, we show that HDFT provides accurate structural connectivity studies in patients with intracerebral lesions, allowing qualitative and quantitative white matter damage assessment, aiding in understanding lesional patterns of white matter structural injury, and facilitating innovative neurosurgical applications. High-grade gliomas produce significant disruption of fibers, and low-grade gliomas cause fiber displacement. Cavernomas cause both displacement and disruption of fibers.
CONCLUSION:
Our HDFT approach provides an accurate reconstruction of white matter fiber tracts with unprecedented detail in both the normal and pathological human brain. Further studies to validate the clinical findings are needed.
Collapse
|
|
13 |
155 |
4
|
Fernández-Miranda JC, Wang Y, Pathak S, Stefaneau L, Verstynen T, Yeh FC. Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 2014; 220:1665-80. [PMID: 24633827 DOI: 10.1007/s00429-014-0751-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 03/04/2014] [Indexed: 01/01/2023]
Abstract
The structure and function of the arcuate fascicle is still controversial. The goal of this study was to investigate the asymmetry, connectivity, and segmentation patterns of the arcuate fascicle. We employed diffusion spectrum imaging reconstructed by generalized q-sampling and we applied both a subject-specific approach (10 subjects) and a template approach (q-space diffeomorphic reconstruction of 30 subjects). We complemented our imaging investigation with fiber microdissection of five post-mortem human brains. Our results confirmed the highly leftward asymmetry of the arcuate fascicle. In the template, the left arcuate had a volume twice as large as the right one, and the left superior temporal gyrus provided five times more volume of fibers than its counterpart. We identified four cortical frontal areas of termination: pars opercularis, pars triangularis, ventral precentral gyrus, and caudal middle frontal gyrus. We found clear asymmetry of the frontal terminations at pars opercularis and ventral precentral gyrus. The analysis of patterns of connectivity revealed the existence of a strong structural segmentation in the left arcuate, but not in the right one. The left arcuate fascicle is formed by an inner or ventral pathway, which interconnects pars opercularis with superior and rostral middle temporal gyri; and an outer or dorsal pathway, which interconnects ventral precentral and caudal middle frontal gyri with caudal middle and inferior temporal gyri. The fiber microdissection results provided further support to our tractography studies. We propose the existence of primary and supplementary language pathways within the dominant arcuate fascicle with potentially distinct functional and lesional features.
Collapse
|
Journal Article |
11 |
126 |
5
|
Diedrichsen J, Verstynen T, Lehman SL, Ivry RB. Cerebellar involvement in anticipating the consequences of self-produced actions during bimanual movements. J Neurophysiol 2004; 93:801-12. [PMID: 15356182 DOI: 10.1152/jn.00662.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anticipatory postural adjustments (APA) during bimanual actions can be observed when participants hold an object in one hand and then lift it with the other hand. The postural force used to hold the object is reduced in anticipation of unloading, indicating an accurate prediction of the change in load. We examined patients with unilateral or bilateral cerebellar damage as well as two individuals lacking the corpus callosum on the bimanual unloading task. The acallosal patients showed an intact APA, suggesting subcortical integration of motor signals for anticipatory adjustments during bimanual actions. Contrary to the hypothesis that the cerebellum is critical for predicting and compensating for the consequences of our actions, we found that the well-learned APA in this task was largely intact in cerebellar patients. However, cerebellar damage abolished short-term adaptation of the APA, and the patients were unable to acquire an APA in a similar but previously untrained situation. These results indicate that while over-learned anticipatory adjustments are preserved after cerebellar lesions, adaptation of this response and the acquisition of a novel coordination requires the cerebellum ipsilateral to the postural hand. Furthermore, this structure appears to be essential for the accurate timing of previously learned behaviors. The patients with cerebellar damage showed poorly timed adjustments with the APA beginning earlier than in healthy participants.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
114 |
6
|
Schlerf JE, Verstynen TD, Ivry RB, Spencer RMC. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol 2010; 103:3330-6. [PMID: 20393055 DOI: 10.1152/jn.01117.2009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human neocerebellum has been hypothesized to contribute to many high-level cognitive processes including attention, language, and working memory. Support for these nonmotor hypotheses comes from evidence demonstrating structural and functional connectivity between the lateral cerebellum and cortical association areas as well as a lack of somatotopy in lobules VI and VII, a hallmark of motor representations in other areas of the cerebellum and cerebral cortex. We set out to test whether somatotopy exists in these lobules by using functional magnetic resonance imaging to measure cerebellar activity while participants produced simple or complex movements, using either fingers or toes. We observed a previously undiscovered somatotopic organization in neocerebellar lobules VI and VIIA that was most prominent when participants executed complex movements. In contrast, activation in the anterior lobe showed a similar somatotopic organization for both simple and complex movements. While the anterior somatotopic representation responded selectively during ipsilateral movements, the new cerebellar map responded during both ipsi- and contralateral movements. The presence of a bilateral, task-dependent somatotopic map in the neocerebellum emphasizes an important role for this region in the control of skilled actions.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
112 |
7
|
Yeh FC, Badre D, Verstynen T. Connectometry: A statistical approach harnessing the analytical potential of the local connectome. Neuroimage 2016; 125:162-171. [DOI: 10.1016/j.neuroimage.2015.10.053] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
|
|
9 |
108 |
8
|
Pyles JA, Verstynen TD, Schneider W, Tarr MJ. Explicating the face perception network with white matter connectivity. PLoS One 2013; 8:e61611. [PMID: 23630602 PMCID: PMC3632522 DOI: 10.1371/journal.pone.0061611] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
A network of multiple brain regions is recruited in face perception. Our understanding of the functional properties of this network can be facilitated by explicating the structural white matter connections that exist between its functional nodes. We accomplished this using functional MRI (fMRI) in combination with fiber tractography on high angular resolution diffusion weighted imaging data. We identified the three nodes of the core face network: the "occipital face area" (OFA), the "fusiform face area" (mid-fusiform gyrus or mFus), and the superior temporal sulcus (STS). Additionally, a region of the anterior temporal lobe (aIT), implicated as being important for face perception was identified. Our data suggest that we can further divide the OFA into multiple anatomically distinct clusters - a partitioning consistent with several recent neuroimaging results. More generally, structural white matter connectivity within this network revealed: 1) Connectivity between aIT and mFus, and between aIT and occipital regions, consistent with studies implicating this posterior to anterior pathway as critical to normal face processing; 2) Strong connectivity between mFus and each of the occipital face-selective regions, suggesting that these three areas may subserve different functional roles; 3) Almost no connectivity between STS and mFus, or between STS and the other face-selective regions. Overall, our findings suggest a re-evaluation of the "core" face network with respect to what functional areas are or are not included in this network.
Collapse
|
research-article |
12 |
100 |
9
|
Yeh FC, Vettel JM, Singh A, Poczos B, Grafton ST, Erickson KI, Tseng WYI, Verstynen TD. Quantifying Differences and Similarities in Whole-Brain White Matter Architecture Using Local Connectome Fingerprints. PLoS Comput Biol 2016; 12:e1005203. [PMID: 27846212 PMCID: PMC5112901 DOI: 10.1371/journal.pcbi.1005203] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/14/2016] [Indexed: 01/03/2023] Open
Abstract
Quantifying differences or similarities in connectomes has been a challenge due to the immense complexity of global brain networks. Here we introduce a noninvasive method that uses diffusion MRI to characterize whole-brain white matter architecture as a single local connectome fingerprint that allows for a direct comparison between structural connectomes. In four independently acquired data sets with repeated scans (total N = 213), we show that the local connectome fingerprint is highly specific to an individual, allowing for an accurate self-versus-others classification that achieved 100% accuracy across 17,398 identification tests. The estimated classification error was approximately one thousand times smaller than fingerprints derived from diffusivity-based measures or region-to-region connectivity patterns for repeat scans acquired within 3 months. The local connectome fingerprint also revealed neuroplasticity within an individual reflected as a decreasing trend in self-similarity across time, whereas this change was not observed in the diffusivity measures. Moreover, the local connectome fingerprint can be used as a phenotypic marker, revealing 12.51% similarity between monozygotic twins, 5.14% between dizygotic twins, and 4.51% between none-twin siblings, relative to differences between unrelated subjects. This novel approach opens a new door for probing the influence of pathological, genetic, social, or environmental factors on the unique configuration of the human connectome. The local organization of white matter architecture is highly unique to individuals, making it a tangible metric of connectomic differences. The variability in local white matter architecture is found to be partially determined by genetic factors, but largely plastic across time. This approach opens a new door for probing the influence of pathological, genetic, social, or environmental factors on the unique configuration of the human connectome.
Collapse
|
Twin Study |
9 |
99 |
10
|
Wang Y, Fernández-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC. Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. ACTA ACUST UNITED AC 2012; 23:2347-56. [PMID: 22875865 DOI: 10.1093/cercor/bhs225] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The middle longitudinal fascicle (MdLF) was originally described in the monkey brain as a pathway that interconnects the superior temporal and angular gyri. Only recently have diffusion tensor imaging studies provided some evidence of its existence in humans, with a connectivity pattern similar to that in monkeys and a potential role in the language system. In this study, we combine high-angular-resolution fiber tractography and fiber microdissection techniques to determine the trajectory, cortical connectivity, and a quantitative analysis of the MdLF. Here, we analyze diffusion spectrum imaging (DSI) studies in 6 subjects (subject-specific approach) and in a template of 90 DSI studies (NTU-90 Atlas). Our tractography and microdissection results show that the human MdLF differs significantly from the monkey. Indeed, the human MdLF interconnects the superior temporal gyrus with the superior parietal lobule and parietooccipital region, and has only minor connections with the angular gyrus. On the basis of the roles of these interconnected cortical regions, we hypothesize that, rather than a language-related tract, the MdLF may contribute to the dorsal "where" pathway of the auditory system.
Collapse
|
Journal Article |
13 |
99 |
11
|
Esterman M, Verstynen T, Ivry RB, Robertson LC. Coming unbound: disrupting automatic integration of synesthetic color and graphemes by transcranial magnetic stimulation of the right parietal lobe. J Cogn Neurosci 2006; 18:1570-6. [PMID: 16989556 DOI: 10.1162/jocn.2006.18.9.1570] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In some individuals, a visually presented letter or number automatically evokes the perception of a specific color, an experience known as color-grapheme synesthesia. It has been suggested that parietal binding mechanisms play a role in the phenomenon. We used a noninvasive stimulation technique, transcranial magnetic stimulation (TMS), to determine whether the posterior parietal lobe is critical for the integration of color and shape in color-grapheme synesthesia, as it appears to be for normal color-shape binding. Using a color-naming task with colored letters that were either congruent or incongruent with the synesthetic photism, we demonstrate that inhibition of the right posterior parietal lobe with repetitive TMS transiently attenuates synesthetic binding. These findings suggest that synesthesia (the induction of color from shape) relies on similar mechanisms as found in normal perception (where the perception of color is induced by wavelength).
Collapse
|
Journal Article |
19 |
96 |
12
|
Gianaros PJ, Marsland AL, Sheu LK, Erickson KI, Verstynen TD. Inflammatory pathways link socioeconomic inequalities to white matter architecture. ACTA ACUST UNITED AC 2012; 23:2058-71. [PMID: 22772650 DOI: 10.1093/cercor/bhs191] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Socioeconomic disadvantage confers risk for aspects of ill health that may be mediated by systemic inflammatory influences on the integrity of distributed brain networks. Following this hypothesis, we tested whether socioeconomic disadvantage related to the structural integrity of white matter tracts connecting brain regions of distributed networks, and whether such a relationship would be mediated by anthropometric, behavioral, and molecular risk factors associated with systemic inflammation. Otherwise healthy adults (N= 155, aged 30-50 years, 78 men) completed protocols assessing multilevel indicators of socioeconomic position (SEP), anthropometric and behavioral measures of adiposity and cigarette smoking, circulating levels of C-reactive protein (CRP), and white matter integrity by diffusion tensor imaging. Mediation modeling was used to test associations between SEP indicators and measures of white matter tract integrity, as well as indirect mediating paths. Measures of tract integrity followed a socioeconomic gradient: individuals completing more schooling, earning higher incomes, and residing in advantaged neighborhoods exhibited increases in white matter fractional anisotropy and decreases in radial diffusivity, relative to disadvantaged individuals. Moreover, analysis of indirect paths showed that adiposity, cigarette smoking, and CRP partially mediated these effects. Socioeconomic inequalities may relate to diverse health disparities via inflammatory pathways impacting the structural integrity of brain networks.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
91 |
13
|
Oberlin LE, Verstynen TD, Burzynska AZ, Voss MW, Prakash RS, Chaddock-Heyman L, Wong C, Fanning J, Awick E, Gothe N, Phillips SM, Mailey E, Ehlers D, Olson E, Wojcicki T, McAuley E, Kramer AF, Erickson KI. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults. Neuroimage 2015; 131:91-101. [PMID: 26439513 DOI: 10.1016/j.neuroimage.2015.09.053] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 01/25/2023] Open
Abstract
White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected<.05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
89 |
14
|
Lichenstein SD, Verstynen T, Forbes EE. Adolescent brain development and depression: A case for the importance of connectivity of the anterior cingulate cortex. Neurosci Biobehav Rev 2016; 70:271-287. [PMID: 27461914 DOI: 10.1016/j.neubiorev.2016.07.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 01/07/2023]
Abstract
We propose that structural and functional connectivity of the anterior cingulate cortex (ACC) represents a critical component of adolescent developmental psychopathology. We hypothesize that connectivity of the ACC, a hub for integrating cognitive, affective, and social information to guide self-regulation across domains, supports adaptive development of self-regulation during adolescence and that, conversely, disrupted maturation of ACC connectivity contributes to the development of depression. To integrate findings on typical development, we report results of a meta-analysis of diffusion imaging findings of typical adolescent development of the cingulum and anterior thalamic radiations, the tracts most relevant to ACC connectivity, and provide a critical review of the literature on ACC functional connectivity. Finally, we review the evidence for altered structural and functional connectivity in adolescents with depression. Although the evidence for our claim is persuasive, a more comprehensive understanding of the ACC's role depends upon future investigations with sophisticated modeling of networks, prospective and longitudinal designs, and examination of structure-function associations.
Collapse
|
Review |
9 |
82 |
15
|
Spencer RMC, Verstynen T, Brett M, Ivry R. Cerebellar activation during discrete and not continuous timed movements: an fMRI study. Neuroimage 2007; 36:378-87. [PMID: 17459731 PMCID: PMC1905817 DOI: 10.1016/j.neuroimage.2007.03.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 03/08/2007] [Accepted: 03/13/2007] [Indexed: 11/15/2022] Open
Abstract
Individuals with cerebellar lesions are impaired in the timing of repetitive movements that involve the concatenation of discrete events such as tapping a finger. In contrast, these individuals perform comparably to controls when producing continuous repetitive movements. Based on this, we have proposed that the cerebellum plays a key role in event timing-the representation of the temporal relationship between salient events related to the movement (e.g., flexion onset or contact with a response surface). In the current study, we used fMRI to examine cerebellar activity during discrete and continuous rhythmic movements. Participants produced rhythmic movements with the index finger either making smooth, continuous transitions between flexion and extension or with a pause inserted before each flexion phase making the movement discrete. Lateral regions in lobule VI, ipsilateral to the moving hand were activated in a similar manner for both conditions. However, activation in the superior vermis was significantly greater when the movements were discrete compared to when the movements were continuous. This pattern was not evident in cortical regions within the field of view, including M1 and SMA. The results are consistent with the hypothesis that subregions of the cerebellum are selectively engaged during tasks involving event timing.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
79 |
16
|
Verstynen TD, Badre D, Jarbo K, Schneider W. Microstructural organizational patterns in the human corticostriatal system. J Neurophysiol 2012; 107:2984-95. [PMID: 22378170 PMCID: PMC4073961 DOI: 10.1152/jn.00995.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/26/2012] [Indexed: 11/22/2022] Open
Abstract
The axons that project into the striatum are known to segregate according to macroscopic cortical systems; however, the within-region organization of these fibers has yet to be described in humans. We used in vivo fiber tractography, in neurologically healthy adults, to map white matter bundles that originate in different neocortical areas, navigate complex fiber crossings, and project into the striatum. As expected, these fibers were generally segregated according to cortical origin. Within a subset of pathways, a patched pattern of inputs was observed, consistent with previous ex vivo histological studies. In projections from the prefrontal cortex, we detected a topography in which fibers from rostral prefrontal areas projected mostly to rostral parts of the striatum and vice versa for inputs originating in caudal cortical areas. Importantly, within this prefrontal system there was also an asymmetry in the subset of divergent projections, with more fibers projecting in a posterior direction than anterior. This asymmetry of information projecting into the basal ganglia was predicted by previous network-level computational models. A rostral-caudal topography was also present at the local level in otherwise somatotopically organized fibers projecting from the motor cortex. This provides clear evidence that the longitudinal organization of input fields, observed at the macroscopic level across cortical systems, is also found at the microstructural scale at which information is segregated as it enters the human basal ganglia.
Collapse
|
research-article |
13 |
73 |
17
|
Abstract
Right handedness is one of the most prominent markers of human functional brain asymmetry. Deviation from this norm appears to be associated with certain developmental disorders. While many studies have dealt with the genetic contribution to the determination of handedness, few have examined whether environmental factors that are subtler than forced hand switching can modulate the development of handedness. In this study, we exposed rats to a novel environment for 3 min daily during their first 3 weeks of life and found that their paw preferences during both infancy and adulthood showed a leftward shift compared with the controls. This result suggests that 'handedness' can be modified by rather subtle early environmental manipulation. Since exposure to a novel environment does not involve a direct asymmetric activation of the sensory--motor system underlying paw-use, mechanisms beyond this paw-specific system must exist to mediate the observed modulation of 'handedness'.
Collapse
|
|
23 |
72 |
18
|
Verstynen TD, Lynch B, Miller DL, Voss MW, Prakash RS, Chaddock L, Basak C, Szabo A, Olson EA, Wojcicki TR, Fanning J, Gothe NP, McAuley E, Kramer AF, Erickson KI. Caudate Nucleus Volume Mediates the Link between Cardiorespiratory Fitness and Cognitive Flexibility in Older Adults. J Aging Res 2012; 2012:939285. [PMID: 22900181 PMCID: PMC3415086 DOI: 10.1155/2012/939285] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/03/2012] [Indexed: 01/08/2023] Open
Abstract
The basal ganglia play a central role in regulating the response selection abilities that are critical for mental flexibility. In neocortical areas, higher cardiorespiratory fitness levels are associated with increased gray matter volume, and these volumetric differences mediate enhanced cognitive performance in a variety of tasks. Here we examine whether cardiorespiratory fitness correlates with the volume of the subcortical nuclei that make up the basal ganglia and whether this relationship predicts cognitive flexibility in older adults. Structural MRI was used to determine the volume of the basal ganglia nuclei in a group of older, neurologically healthy individuals (mean age 66 years, N = 179). Measures of cardiorespiratory fitness (VO(2max)), cognitive flexibility (task switching), and attentional control (flanker task) were also collected. Higher fitness levels were correlated with higher accuracy rates in the Task Switching paradigm. In addition, the volume of the caudate nucleus, putamen, and globus pallidus positively correlated with Task Switching accuracy. Nested regression modeling revealed that caudate nucleus volume was a significant mediator of the relationship between cardiorespiratory fitness, and task switching performance. These findings indicate that higher cardiorespiratory fitness predicts better cognitive flexibility in older adults through greater grey matter volume in the dorsal striatum.
Collapse
|
research-article |
13 |
69 |
19
|
Verstynen TD, Weinstein A, Erickson KI, Sheu LK, Marsland AL, Gianaros PJ. Competing physiological pathways link individual differences in weight and abdominal adiposity to white matter microstructure. Neuroimage 2013; 79:129-37. [PMID: 23639257 DOI: 10.1016/j.neuroimage.2013.04.075] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/02/2013] [Accepted: 04/16/2013] [Indexed: 01/04/2023] Open
Abstract
Being overweight or obese is associated with reduced white matter integrity throughout the brain. It is not yet clear which physiological systems mediate the association between inter-individual variation in adiposity and white matter. We tested whether composite indicators of cardiovascular, lipid, glucose, and inflammatory factors would mediate the adiposity-related variation in white matter microstructure, measured with diffusion tensor imaging on a group of neurologically healthy adults (N=155). A composite factor representing adiposity (comprised of body mass index and waist circumference) was associated with smaller fractional anisotropy and greater radial diffusivity throughout the brain, a pattern previously linked to myelin structure changes in non-human animal models. A similar global negative association was found for factors representing inflammation and, to a lesser extent, glucose regulation. In contrast, factors for blood pressure and dyslipidemia had positive associations with white matter in isolated brain regions. Taken together, these competing influences on the diffusion signal were significant mediators linking adiposity to white matter and explained up to fifty-percent of the adiposity-white matter variance. These results provide the first evidence for contrasting physiological pathways, a globally distributed immunity-linked negative component and a more localized vascular-linked positive component, that associate adiposity to individual differences in the microstructure of white matter tracts in otherwise healthy adults.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
61 |
20
|
Verstynen T, Jarbo K, Pathak S, Schneider W. In vivo mapping of microstructural somatotopies in the human corticospinal pathways. J Neurophysiol 2010; 105:336-46. [PMID: 21068263 DOI: 10.1152/jn.00698.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human corticospinal pathway is organized in a body-centric (i.e., somatotopic) manner that begins in cortical cell bodies and is maintained in the axons as they project through the midbrain on their way to spinal motor neurons. The subcortical segment of this somatotopy has been described using histological methods on non-human primates but only coarsely validated from lesion studies in human patient populations. Using high definition fiber tracking (HDFT) techniques, we set out to provide the first in vivo quantitative description of the midbrain somatotopy of corticospinal fibers in humans. Multi-shell diffusion imaging and deterministic fiber tracking were used to map white matter bundles that originate in the neocortex, navigate complex fiber crossings, and project through the midbrain. These fiber bundles were segmented into premotor (dorsal premotor, ventral premotor, and supplementary motor area) and primary motor sections based on the cortical origin of each fiber streamline. With HDFT, we were able to reveal several unique corticospinal patterns, including the cortical origins of ventral premotor fibers and small (∼ 1-2 mm) shifts in the midbrain location of premotor versus primary motor cortex fibers. More importantly, within the relatively small diameter of the pyramidal tracts (∼ 5 mm), we were able to map and quantify the direction of the corticospinal somatotopy. These results show how an HDFT approach to white matter mapping provides the first in vivo, quantitative mapping of subcortical corticospinal topographies at resolutions previously only available with postmortem histological techniques.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
58 |
21
|
Bansal K, Garcia JO, Tompson SH, Verstynen T, Vettel JM, Muldoon SF. Cognitive chimera states in human brain networks. SCIENCE ADVANCES 2019; 5:eaau8535. [PMID: 30949576 PMCID: PMC6447382 DOI: 10.1126/sciadv.aau8535] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/13/2019] [Indexed: 05/10/2023]
Abstract
The human brain is a complex dynamical system, and how cognition emerges from spatiotemporal patterns of regional brain activity remains an open question. As different regions dynamically interact to perform cognitive tasks, variable patterns of partial synchrony can be observed, forming chimera states. We propose that the spatial patterning of these states plays a fundamental role in the cognitive organization of the brain and present a cognitively informed, chimera-based framework to explore how large-scale brain architecture affects brain dynamics and function. Using personalized brain network models, we systematically study how regional brain stimulation produces different patterns of synchronization across predefined cognitive systems. We analyze these emergent patterns within our framework to understand the impact of subject-specific and region-specific structural variability on brain dynamics. Our results suggest a classification of cognitive systems into four groups with differing levels of subject and regional variability that reflect their different functional roles.
Collapse
|
research-article |
6 |
56 |
22
|
Dunovan K, Lynch B, Molesworth T, Verstynen T. Competing basal ganglia pathways determine the difference between stopping and deciding not to go. eLife 2015; 4:e08723. [PMID: 26402462 PMCID: PMC4686424 DOI: 10.7554/elife.08723] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/23/2015] [Indexed: 11/20/2022] Open
Abstract
The architecture of corticobasal ganglia pathways allows for many routes to inhibit a planned action: the hyperdirect pathway performs fast action cancellation and the indirect pathway competitively constrains execution signals from the direct pathway. We present a novel model, principled off of basal ganglia circuitry, that differentiates control dynamics of reactive stopping from intrinsic no-go decisions. Using a nested diffusion model, we show how reactive braking depends on the state of an execution process. In contrast, no-go decisions are best captured by a failure of the execution process to reach the decision threshold due to increasing constraints on the drift rate. This model accounts for both behavioral and functional MRI (fMRI) responses during inhibitory control tasks better than alternative models. The advantage of this framework is that it allows for incorporating the effects of context in reactive and proactive control into a single unifying parameter, while distinguishing action cancellation from no-go decisions. DOI:http://dx.doi.org/10.7554/eLife.08723.001 Imagine you are playing baseball. You can decide not to swing the bat at the incoming ball if you see that it is a wild pitch that will be way outside the strike zone; this is known as reactive control. Alternatively, you may decide not to move because you were coached never to swing at the first pitch (proactive control). It is thought that the brain processes these signals separately with reactive control being a quick way to put the brakes on a planned movement and proactive control being a more specific suppression of unwanted actions. However, some researchers have argued that real-life “inhibitory” control decisions are more likely to be made using a combination of both reactive and proactive signals. In primates, reactive and proactive signals are both processed by a region of the brain called the basal ganglia. However, it is not clear whether these signals pass through the same set of nerve cells, or whether they use separate sets of cells that run in parallel. Dunovan et al. studied how these signals are processed in the human basal ganglia using a combination of experiments and computational models. The model assumes that reactive and proactive signals are carried by two pathways that are initially separate but eventually converge in the basal ganglia. If these pathways converge, then proactive control signals should complement reactive decisions to “apply the brakes”. For example, if reactive signals suggest that the ball may not come over the home plate, the fact that it is also the first pitch would make it easier for the brain to decide not to swing the bat. Dunovan et al. tested this model by asking human volunteers to complete two tasks where the decision to respond to a stimulus is made proactively using prior knowledge, or reactively using an explicit stop cue. The experiments also used a technique called functional magnetic resonance imaging (fMRI) to measure the activity in the basal ganglia of each volunteer. Simulations from the model were able to predict the observed patterns of behavior and brain activity in several regions that are key to inhibitory control, including the output of the basal ganglia. These findings provide a possible mechanism for how reactive and proactive control may interact in the brain. Because of the limitations in imaging the human brain, the next step will be to test whether the model is able to predict the behavior of individual nerve cells in the brains of other animals. DOI:http://dx.doi.org/10.7554/eLife.08723.002
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
53 |
23
|
Verstynen T, Tierney R, Urbanski T, Tang A. Neonatal novelty exposure modulates hippocampal volumetric asymmetry in the rat. Neuroreport 2001; 12:3019-22. [PMID: 11568629 DOI: 10.1097/00001756-200110080-00008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Early life environmental manipulations have been shown to affect hippocampal-dependent learning, hippocampal volume and cerebral lateralization. In this study, we investigated the effects of neonatal stimulation on hippocampal volumetric asymmetry. Long-Evans hooded rats were exposed to a novel non-home environment 3 min daily for the first 3 weeks of life. Histological measures of the left and right hippocampus were made at 8 months of age. We found that neonatal novelty exposure resulted in a long-lasting change in hippocampal volumetric asymmetry. Specifically, this brief and transient early life stimulation increased the right hippocampal volumetric dominance at mid-adulthood.
Collapse
|
|
24 |
50 |
24
|
Gianaros PJ, Sheu LK, Uyar F, Koushik J, Jennings JR, Wager TD, Singh A, Verstynen TD. A Brain Phenotype for Stressor-Evoked Blood Pressure Reactivity. J Am Heart Assoc 2017; 6:JAHA.117.006053. [PMID: 28835356 PMCID: PMC5634271 DOI: 10.1161/jaha.117.006053] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Individuals who exhibit large‐magnitude blood pressure (BP) reactions to acute psychological stressors are at risk for hypertension and premature death by cardiovascular disease. This study tested whether a multivariate pattern of stressor‐evoked brain activity could reliably predict individual differences in BP reactivity, providing novel evidence for a candidate neurophysiological source of stress‐related cardiovascular risk. Methods and Results Community‐dwelling adults (N=310; 30–51 years; 153 women) underwent functional magnetic resonance imaging with concurrent BP monitoring while completing a standardized battery of stressor tasks. Across individuals, the battery evoked an increase systolic and diastolic BP relative to a nonstressor baseline period (M ∆systolic BP/∆diastolic BP=4.3/1.9 mm Hg [95% confidence interval=3.7–5.0/1.4–2.3 mm Hg]). Using cross‐validation and machine learning approaches, including dimensionality reduction and linear shrinkage models, a multivariate pattern of stressor‐evoked functional magnetic resonance imaging activity was identified in a training subsample (N=206). This multivariate pattern reliably predicted both systolic BP (r=0.32; P<0.005) and diastolic BP (r=0.25; P<0.01) reactivity in an independent subsample used for testing and replication (N=104). Brain areas encompassed by the pattern that were strongly predictive included those implicated in psychological stressor processing and cardiovascular responding through autonomic pathways, including the medial prefrontal cortex, anterior cingulate cortex, and insula. Conclusions A novel multivariate pattern of stressor‐evoked brain activity may comprise a phenotype that partly accounts for individual differences in BP reactivity, a stress‐related cardiovascular risk factor.
Collapse
|
Journal Article |
8 |
47 |
25
|
Erickson KI, Creswell JD, Verstynen TD, Gianaros PJ. Health Neuroscience: Defining a New Field. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2014; 23:446-453. [PMID: 25844028 DOI: 10.1177/0963721414549350] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Health neuroscience is a new field that is at the interface of health psychology and neuroscience. It is concerned with the interplay between the brain and physical health over the lifespan. This review provides a conceptual introduction to health neuroscience, focusing on its major themes, representative studies, methodologies, and future directions.
Collapse
|
Journal Article |
11 |
44 |