1
|
Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA. A safe operating space for humanity. Nature 2009; 461:472-5. [PMID: 19779433 DOI: 10.1038/461472a] [Citation(s) in RCA: 2210] [Impact Index Per Article: 138.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
Journal Article |
16 |
2210 |
2
|
Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA. A safe operating space for humanity. Nature 2009. [PMID: 19779433 DOI: 10.5751/es-03180-140232] [Citation(s) in RCA: 829] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
|
Historical Article |
16 |
829 |
3
|
Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J. Anticipating critical transitions. Science 2012; 338:344-8. [PMID: 23087241 DOI: 10.1126/science.1225244] [Citation(s) in RCA: 783] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tipping points in complex systems may imply risks of unwanted collapse, but also opportunities for positive change. Our capacity to navigate such risks and opportunities can be boosted by combining emerging insights from two unconnected fields of research. One line of work is revealing fundamental architectural features that may cause ecological networks, financial markets, and other complex systems to have tipping points. Another field of research is uncovering generic empirical indicators of the proximity to such critical thresholds. Although sudden shifts in complex systems will inevitably continue to surprise us, work at the crossroads of these emerging fields offers new approaches for anticipating critical transitions.
Collapse
|
Review |
13 |
783 |
4
|
Steffen W, Rockström J, Richardson K, Lenton TM, Folke C, Liverman D, Summerhayes CP, Barnosky AD, Cornell SE, Crucifix M, Donges JF, Fetzer I, Lade SJ, Scheffer M, Winkelmann R, Schellnhuber HJ. Trajectories of the Earth System in the Anthropocene. Proc Natl Acad Sci U S A 2018; 115:8252-8259. [PMID: 30082409 PMCID: PMC6099852 DOI: 10.1073/pnas.1810141115] [Citation(s) in RCA: 480] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a "Hothouse Earth" pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System-biosphere, climate, and societies-and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.
Collapse
|
research-article |
7 |
480 |
5
|
Armstrong McKay DI, Staal A, Abrams JF, Winkelmann R, Sakschewski B, Loriani S, Fetzer I, Cornell SE, Rockström J, Lenton TM. Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science 2022; 377:eabn7950. [PMID: 36074831 DOI: 10.1126/science.abn7950] [Citation(s) in RCA: 349] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Climate tipping points occur when change in a part of the climate system becomes self-perpetuating beyond a warming threshold, leading to substantial Earth system impacts. Synthesizing paleoclimate, observational, and model-based studies, we provide a revised shortlist of global "core" tipping elements and regional "impact" tipping elements and their temperature thresholds. Current global warming of ~1.1°C above preindustrial temperatures already lies within the lower end of some tipping point uncertainty ranges. Several tipping points may be triggered in the Paris Agreement range of 1.5 to <2°C global warming, with many more likely at the 2 to 3°C of warming expected on current policy trajectories. This strengthens the evidence base for urgent action to mitigate climate change and to develop improved tipping point risk assessment, early warning capability, and adaptation strategies.
Collapse
|
|
3 |
349 |
6
|
Goldblatt C, Lenton TM, Watson AJ. Bistability of atmospheric oxygen and the Great Oxidation. Nature 2006; 443:683-6. [PMID: 17036001 DOI: 10.1038/nature05169] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 08/14/2006] [Indexed: 11/09/2022]
Abstract
The history of the Earth has been characterized by a series of major transitions separated by long periods of relative stability. The largest chemical transition was the 'Great Oxidation', approximately 2.4 billion years ago, when atmospheric oxygen concentrations rose from less than 10(-5) of the present atmospheric level (PAL) to more than 0.01 PAL, and possibly to more than 0.1 PAL. This transition took place long after oxygenic photosynthesis is thought to have evolved, but the causes of this delay and of the Great Oxidation itself remain uncertain. Here we show that the origin of oxygenic photosynthesis gave rise to two simultaneously stable steady states for atmospheric oxygen. The existence of a low-oxygen (less than 10(-5) PAL) steady state explains how a reducing atmosphere persisted for at least 300 million years after the onset of oxygenic photosynthesis. The Great Oxidation can be understood as a switch to the high-oxygen (more than 5 x 10(-3) PAL) steady state. The bistability arises because ultraviolet shielding of the troposphere by ozone becomes effective once oxygen levels exceed 10(-5) PAL, causing a nonlinear increase in the lifetime of atmospheric oxygen. Our results indicate that the existence of oxygenic photosynthesis is not a sufficient condition for either an oxygen-rich atmosphere or the presence of an ozone layer, which has implications for detecting life on other planets using atmospheric analysis and for the evolution of multicellular life.
Collapse
|
|
19 |
204 |
7
|
Huntingford C, Jones PD, Livina VN, Lenton TM, Cox PM. No increase in global temperature variability despite changing regional patterns. Nature 2013; 500:327-30. [DOI: 10.1038/nature12310] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/17/2013] [Indexed: 11/09/2022]
|
|
12 |
168 |
8
|
Bathiany S, Dakos V, Scheffer M, Lenton TM. Climate models predict increasing temperature variability in poor countries. SCIENCE ADVANCES 2018; 4:eaar5809. [PMID: 29732409 PMCID: PMC5931768 DOI: 10.1126/sciadv.aar5809] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/16/2018] [Indexed: 05/18/2023]
Abstract
Extreme events such as heat waves are among the most challenging aspects of climate change for societies. We show that climate models consistently project increases in temperature variability in tropical countries over the coming decades, with the Amazon as a particular hotspot of concern. During the season with maximum insolation, temperature variability increases by ~15% per degree of global warming in Amazonia and Southern Africa and by up to 10%°C-1 in the Sahel, India, and Southeast Asia. Mechanisms include drying soils and shifts in atmospheric structure. Outside the tropics, temperature variability is projected to decrease on average because of a reduced meridional temperature gradient and sea-ice loss. The countries that have contributed least to climate change, and are most vulnerable to extreme events, are projected to experience the strongest increase in variability. These changes would therefore amplify the inequality associated with the impacts of a changing climate.
Collapse
|
research-article |
7 |
131 |
9
|
Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO, Pearce-Kelly P, Sheppard CRC, Spalding M, Stafford-Smith MG, Rogers AD. The coral reef crisis: the critical importance of<350 ppm CO2. MARINE POLLUTION BULLETIN 2009; 58:1428-36. [PMID: 19782832 DOI: 10.1016/j.marpolbul.2009.09.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Temperature-induced mass coral bleaching causing mortality on a wide geographic scale started when atmospheric CO(2) levels exceeded approximately 320 ppm. When CO(2) levels reached approximately 340 ppm, sporadic but highly destructive mass bleaching occurred in most reefs world-wide, often associated with El Niño events. Recovery was dependent on the vulnerability of individual reef areas and on the reef's previous history and resilience. At today's level of approximately 387 ppm, allowing a lag-time of 10 years for sea temperatures to respond, most reefs world-wide are committed to an irreversible decline. Mass bleaching will in future become annual, departing from the 4 to 7 years return-time of El Niño events. Bleaching will be exacerbated by the effects of degraded water-quality and increased severe weather events. In addition, the progressive onset of ocean acidification will cause reduction of coral growth and retardation of the growth of high magnesium calcite-secreting coralline algae. If CO(2) levels are allowed to reach 450 ppm (due to occur by 2030-2040 at the current rates), reefs will be in rapid and terminal decline world-wide from multiple synergies arising from mass bleaching, ocean acidification, and other environmental impacts. Damage to shallow reef communities will become extensive with consequent reduction of biodiversity followed by extinctions. Reefs will cease to be large-scale nursery grounds for fish and will cease to have most of their current value to humanity. There will be knock-on effects to ecosystems associated with reefs, and to other pelagic and benthic ecosystems. Should CO(2) levels reach 600 ppm reefs will be eroding geological structures with populations of surviving biota restricted to refuges. Domino effects will follow, affecting many other marine ecosystems. This is likely to have been the path of great mass extinctions of the past, adding to the case that anthropogenic CO(2) emissions could trigger the Earth's sixth mass extinction.
Collapse
|
|
16 |
126 |
10
|
Rockström J, Gupta J, Qin D, Lade SJ, Abrams JF, Andersen LS, Armstrong McKay DI, Bai X, Bala G, Bunn SE, Ciobanu D, DeClerck F, Ebi K, Gifford L, Gordon C, Hasan S, Kanie N, Lenton TM, Loriani S, Liverman DM, Mohamed A, Nakicenovic N, Obura D, Ospina D, Prodani K, Rammelt C, Sakschewski B, Scholtens J, Stewart-Koster B, Tharammal T, van Vuuren D, Verburg PH, Winkelmann R, Zimm C, Bennett EM, Bringezu S, Broadgate W, Green PA, Huang L, Jacobson L, Ndehedehe C, Pedde S, Rocha J, Scheffer M, Schulte-Uebbing L, de Vries W, Xiao C, Xu C, Xu X, Zafra-Calvo N, Zhang X. Safe and just Earth system boundaries. Nature 2023; 619:102-111. [PMID: 37258676 PMCID: PMC10322705 DOI: 10.1038/s41586-023-06083-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 04/14/2023] [Indexed: 06/02/2023]
Abstract
The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.
Collapse
|
|
2 |
112 |
11
|
Daines SJ, Mills BJW, Lenton TM. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat Commun 2017; 8:14379. [PMID: 28148950 PMCID: PMC5296660 DOI: 10.1038/ncomms14379] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/21/2016] [Indexed: 11/08/2022] Open
Abstract
It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2∼0.1 PAL (present atmospheric level), but that stability is lost at pO2<0.01 PAL. Within these limits, the carbonate carbon isotope (δ13C) record becomes insensitive to changes in organic carbon burial rate, due to counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event.
Collapse
|
research-article |
8 |
97 |
12
|
Turner MG, Calder WJ, Cumming GS, Hughes TP, Jentsch A, LaDeau SL, Lenton TM, Shuman BN, Turetsky MR, Ratajczak Z, Williams JW, Williams AP, Carpenter SR. Climate change, ecosystems and abrupt change: science priorities. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190105. [PMID: 31983326 PMCID: PMC7017767 DOI: 10.1098/rstb.2019.0105] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 11/12/2022] Open
Abstract
Ecologists have long studied patterns, directions and tempos of change, but there is a pressing need to extend current understanding to empirical observations of abrupt changes as climate warming accelerates. Abrupt changes in ecological systems (ACES)-changes that are fast in time or fast relative to their drivers-are ubiquitous and increasing in frequency. Powerful theoretical frameworks exist, yet applications in real-world landscapes to detect, explain and anticipate ACES have lagged. We highlight five insights emerging from empirical studies of ACES across diverse ecosystems: (i) ecological systems show ACES in some dimensions but not others; (ii) climate extremes may be more important than mean climate in generating ACES; (iii) interactions among multiple drivers often produce ACES; (iv) contingencies, such as ecological memory, frequency and sequence of disturbances, and spatial context are important; and (v) tipping points are often (but not always) associated with ACES. We suggest research priorities to advance understanding of ACES in the face of climate change. Progress in understanding ACES requires strong integration of scientific approaches (theory, observations, experiments and process-based models) and high-quality empirical data drawn from a diverse array of ecosystems. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.
Collapse
|
Review |
5 |
97 |
13
|
Lenton TM, Livina VN, Dakos V, van Nes EH, Scheffer M. Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:1185-204. [PMID: 22291229 PMCID: PMC3261433 DOI: 10.1098/rsta.2011.0304] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We address whether robust early warning signals can, in principle, be provided before a climate tipping point is reached, focusing on methods that seek to detect critical slowing down as a precursor of bifurcation. As a test bed, six previously analysed datasets are reconsidered, three palaeoclimate records approaching abrupt transitions at the end of the last ice age and three models of varying complexity forced through a collapse of the Atlantic thermohaline circulation. Approaches based on examining the lag-1 autocorrelation function or on detrended fluctuation analysis are applied together and compared. The effects of aggregating the data, detrending method, sliding window length and filtering bandwidth are examined. Robust indicators of critical slowing down are found prior to the abrupt warming event at the end of the Younger Dryas, but the indicators are less clear prior to the Bølling-Allerød warming, or glacial termination in Antarctica. Early warnings of thermohaline circulation collapse can be masked by inter-annual variability driven by atmospheric dynamics. However, rapidly decaying modes can be successfully filtered out by using a long bandwidth or by aggregating data. The two methods have complementary strengths and weaknesses and we recommend applying them together to improve the robustness of early warnings.
Collapse
|
research-article |
13 |
96 |
14
|
Abstract
Evidence indicates that the Earth self-regulates at a state that is tolerated by life, but why should the organisms that leave the most descendants be the ones that contribute to regulating their planetary environment? The evolving Gaia theory focuses on the feedback mechanisms, stemming from naturally selected traits of organisms, that could generate such self-regulation.
Collapse
|
|
27 |
86 |
15
|
Ripple WJ, Wolf C, Newsome TM, Gregg JW, Lenton TM, Palomo I, Eikelboom JAJ, Law BE, Huq S, Duffy PB, Rockström J. World Scientists’ Warning of a Climate Emergency 2021. Bioscience 2021. [DOI: 10.1093/biosci/biab079] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
4 |
72 |
16
|
Daines SJ, Clark JR, Lenton TM. Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N : P ratio. Ecol Lett 2014; 17:414-25. [DOI: 10.1111/ele.12239] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/01/2013] [Accepted: 11/27/2013] [Indexed: 11/28/2022]
|
|
11 |
72 |
17
|
Lenton TM, Williams HT. On the origin of planetary-scale tipping points. Trends Ecol Evol 2013; 28:380-2. [DOI: 10.1016/j.tree.2013.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/02/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
|
|
12 |
58 |
18
|
Harper AB, Powell T, Cox PM, House J, Huntingford C, Lenton TM, Sitch S, Burke E, Chadburn SE, Collins WJ, Comyn-Platt E, Daioglou V, Doelman JC, Hayman G, Robertson E, van Vuuren D, Wiltshire A, Webber CP, Bastos A, Boysen L, Ciais P, Devaraju N, Jain AK, Krause A, Poulter B, Shu S. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat Commun 2018; 9:2938. [PMID: 30087330 PMCID: PMC6081380 DOI: 10.1038/s41467-018-05340-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/25/2018] [Indexed: 12/02/2022] Open
Abstract
Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2 removal strategies. Here we show that additional land-use change to meet a 1.5 °C climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2 removal than BECCS. Land-based mitigation for meeting the Paris climate target must consider the carbon cycle impacts of land-use change. Here the authors show that when bioenergy crops replace high carbon content ecosystems, forest-based mitigation could be more effective for CO2 removal than bioenergy crops with carbon capture and storage.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
56 |
19
|
Williams HTP, Lenton TM. Artificial selection of simulated microbial ecosystems. Proc Natl Acad Sci U S A 2007; 104:8918-23. [PMID: 17517642 PMCID: PMC1885603 DOI: 10.1073/pnas.0610038104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent work with microbial communities has demonstrated an adaptive response to artificial selection at the level of the ecosystem. The reasons for this response and the level at which adaptation occurs are unclear: does selection act implicitly on traits of individual species, or are higher-level traits genuinely being selected? If the ecosystem response is just the additive combination of the responses of the constituent species, then the ecosystem response could be predicted a priori, and the ecosystem-level selection process is superfluous. However, if the ecosystem response results from ecological interactions among species, then selection at a higher level is necessary. Here we perform artificial ecosystem selection experiments on an individual-based evolutionary simulation model of microbial ecology and observe a similar response to that seen with real ecosystems. We demonstrate that a significant fraction of artificially selected ecosystem responses cannot be accounted for by implicit lower-level selection of a single type of organism within the community, and that interactions among different types of organism contribute significantly to the response in the majority of cases. However, when the ecological problem posed by the artificial ecosystem selection process can be easily solved by a single dominant species, it often is.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
54 |
20
|
|
|
21 |
51 |
21
|
Lenton TM, Lovelock JE. Daisyworld is Darwinian: constraints on adaptation are important for planetary self-regulation. J Theor Biol 2000; 206:109-14. [PMID: 10968941 DOI: 10.1006/jtbi.2000.2105] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Daisyworld model demonstrates that self-regulation of the global environment can emerge from competition amongst types of life altering their local environment in different ways. Robertson & Robinson (1998. J. theor. Biol.195, 129-134) presented what they describe as a "Darwinian Daisyworld" in which the ability of organisms to adapt their internal physiology in response to environmental change undermines their ability to regulate their environment. They assume that there are no bounds on the environmental conditions that organisms can adapt to and that equal growth rates can potentially be achieved under any conditions. If adaptation could respond sufficiently rapidly to changes in the environment, this would eliminate any need for the environment to be regulated in the first place, because all possible states of the environment would be equally tolerable to life. However, the thermodynamics, chemistry and structure of living organisms set bounds on the range of environmental conditions that can be adapted to. As these bounds are approached, environmental conditions limit growth rate, and adaptations necessary for survival can also cost energy. Here we take account of such constraints and find that environmental regulation is recovered in the Daisyworld model. Hence, we suggest that constraints are an important part of a self-regulating planetary system.
Collapse
|
|
25 |
46 |
22
|
van de Velde S, Mills BJW, Meysman FJR, Lenton TM, Poulton SW. Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing. Nat Commun 2018; 9:2554. [PMID: 29967319 PMCID: PMC6028391 DOI: 10.1038/s41467-018-04973-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 06/08/2018] [Indexed: 11/09/2022] Open
Abstract
The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. Here we integrate the evolution of bioturbation into the COPSE model of global biogeochemical cycling, and compare quantitative model predictions to multiple geochemical proxies. Our results suggest that the advent of shallow burrowing in the early Cambrian contributed to a global low-oxygen state, which prevailed for ~100 million years. This impact of bioturbation on global biogeochemistry likely affected animal evolution through expanded ocean anoxia, high atmospheric CO2 levels and global warming. The extent to which the onset of bioturbation affected global biogeochemistry during the Palaeozoic remains unclear. Here, the authors integrate bioturbation into the COPSE model, compare output with geochemical proxies, and suggest shallow burrowing contributed to a global low oxygen state during the early Cambrian.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
41 |
23
|
Mock T, Daines SJ, Geider R, Collins S, Metodiev M, Millar AJ, Moulton V, Lenton TM. Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes. GLOBAL CHANGE BIOLOGY 2016; 22:61-75. [PMID: 25988950 PMCID: PMC4949645 DOI: 10.1111/gcb.12983] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 05/17/2023]
Abstract
The advent of genomic-, transcriptomic- and proteomic-based approaches has revolutionized our ability to describe marine microbial communities, including biogeography, metabolic potential and diversity, mechanisms of adaptation, and phylogeny and evolutionary history. New interdisciplinary approaches are needed to move from this descriptive level to improved quantitative, process-level understanding of the roles of marine microbes in biogeochemical cycles and of the impact of environmental change on the marine microbial ecosystem. Linking studies at levels from the genome to the organism, to ecological strategies and organism and ecosystem response, requires new modelling approaches. Key to this will be a fundamental shift in modelling scale that represents micro-organisms from the level of their macromolecular components. This will enable contact with omics data sets and allow acclimation and adaptive response at the phenotype level (i.e. traits) to be simulated as a combination of fitness maximization and evolutionary constraints. This way forward will build on ecological approaches that identify key organism traits and systems biology approaches that integrate traditional physiological measurements with new insights from omics. It will rely on developing an improved understanding of ecophysiology to understand quantitatively environmental controls on microbial growth strategies. It will also incorporate results from experimental evolution studies in the representation of adaptation. The resulting ecosystem-level models can then evaluate our level of understanding of controls on ecosystem structure and function, highlight major gaps in understanding and help prioritize areas for future research programs. Ultimately, this grand synthesis should improve predictive capability of the ecosystem response to multiple environmental drivers.
Collapse
|
Review |
9 |
37 |
24
|
Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET. Ocean acidification and the Permo-Triassic mass extinction. Science 2015; 348:229-32. [PMID: 25859043 DOI: 10.1126/science.aaa0193] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
35 |
25
|
Abstract
We define the Gaia system of life and its environment on Earth, review the status of the Gaia theory, introduce potentially relevant concepts from complexity theory, then try to apply them to Gaia. We consider whether Gaia is a complex adaptive system (CAS) in terms of its behaviour and suggest that the system is self-organizing but does not reside in a critical state. Gaia has supported abundant life for most of the last 3.8 Gyr. Large perturbations have occasionally suppressed life but the system has always recovered without losing the capacity for large-scale free energy capture and recycling of essential elements. To illustrate how complexity theory can help us understand the emergence of planetary-scale order, we present a simple cellular automata (CA) model of the imaginary planet Daisyworld. This exhibits emergent self-regulation as a consequence of feedback coupling between life and its environment. Local spatial interaction, which was absent from the original model, can destabilize the system by generating bifurcation regimes. Variation and natural selection tend to remove this instability. With mutation in the model system, it exhibits self-organizing adaptive behaviour in its response to forcing. We close by suggesting how artificial life ('Alife') techniques may enable more comprehensive feasibility tests of Gaia.
Collapse
|
research-article |
23 |
28 |