1
|
Shegai TO, Haran G. Probing the Raman scattering tensors of individual molecules. J Phys Chem B 2007; 110:2459-61. [PMID: 16471839 DOI: 10.1021/jp055750f] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule experiments provide new views into the mechanisms behind surface-enhanced Raman scattering. It was shown previously that spectra of individual rhodamine 6G molecules adsorbed on silver nanocrystal aggregates present stronger fluctuations in two low-frequency bending modes, at 614 and 773 cm(-1). Here we use polarization spectroscopy to show that these bands are enhanced by a resonant process whose transition dipole is rotated by 15+/-10 degrees with respect to the molecular transition dipole. We also show that the polarization function remains stable over the whole time scale of a measurement, indicating that molecular reorientation with respect to the surface is unlikely. Together these findings provide further support to the involvement of a charge-transfer resonance in the enhancement of the low-frequency bands and allow us to suggest a model for the orientation of rhodamine 6G molecules at Raman hot spots.
Collapse
|
Letter |
18 |
57 |
2
|
Munkhbat B, Wróbel P, Antosiewicz TJ, Shegai TO. Optical Constants of Several Multilayer Transition Metal Dichalcogenides Measured by Spectroscopic Ellipsometry in the 300-1700 nm Range: High Index, Anisotropy, and Hyperbolicity. ACS PHOTONICS 2022; 9:2398-2407. [PMID: 35880067 PMCID: PMC9306003 DOI: 10.1021/acsphotonics.2c00433] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transition metal dichalcogenides (TMDs) attract significant attention due to their remarkable optical and excitonic properties. It was understood already in the 1960s and recently rediscovered that many TMDs possess a high refractive index and optical anisotropy, which make them attractive for nanophotonic applications. However, accurate analysis and predictions of nanooptical phenomena require knowledge of dielectric constants along both in- and out-of-plane directions and over a broad spectral range, information that is often inaccessible or incomplete. Here, we present an experimental study of optical constants from several exfoliated TMD multilayers obtained using spectroscopic ellipsometry in the broad range of 300-1700 nm. The specific materials studied include semiconducting WS2, WSe2, MoS2, MoSe2, and MoTe2, as well as in-plane anisotropic ReS2 and WTe2 and metallic TaS2, TaSe2, and NbSe2. The extracted parameters demonstrate a high index (n up to ∼4.84 for MoTe2), significant anisotropy (n ∥ - n ⊥ ≈ 1.54 for MoTe2), and low absorption in the near-infrared region. Moreover, metallic TMDs show potential for combined plasmonic-dielectric behavior and hyperbolicity, as their plasma frequency occurs at around ∼1000-1300 nm depending on the material. The knowledge of optical constants of these materials opens new experimental and computational possibilities for further development of all-TMD nanophotonics.
Collapse
|
research-article |
3 |
29 |
3
|
Stepanov AG, Alkaev MM, Shubin AA, Luzgin MV, Shegai TO, Jobic H. Dynamics of Isobutane inside Zeolite ZSM-5. A Study with Deuterium Solid-State NMR. J Phys Chem B 2002. [DOI: 10.1021/jp0145762] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
24 |
4
|
Stepanov AG, Shubin AA, Luzgin MV, Shegai TO, Jobic H. Dynamics of n-Hexane Inside Silicalite, As Studied by 2H NMR. J Phys Chem B 2003. [DOI: 10.1021/jp0300501] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
22 |
20 |
5
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
|
Review |
2 |
20 |
6
|
Stepanov AG, Shegai TO, Luzgin MV, Essayem N, Jobic H. Deuterium Solid-State NMR Study of the Dynamic Behavior of Deuterons and Water Molecules in Solid D3PW12O40. J Phys Chem B 2003. [DOI: 10.1021/jp030204c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
22 |
13 |
7
|
Stepanov AG, Shegai TO, Luzgin MV, Jobic H. Comparison of the dynamics of n-hexane in ZSM-5 and 5A zeolite structures. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2003; 12:57-61. [PMID: 15007680 DOI: 10.1140/epje/i2003-10037-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The translational and rotational dynamics of n-hexane adsorbed in ZSM-5 and 5A zeolites has been studied by neutron scattering and deuterium solid-state NMR, at various temperatures. The dynamics of n-hexane is quite different in the two zeolites. In the ZSM-5 structure, the molecule sits in channel segments, the energy barrier between adjacent adsorption sites is small and fast anisotropic motions are observed. In the 5A zeolite, the molecule is adsorbed in alpha-cages; the barrier between adjacent cages is larger so that the molecule spends a longer time exploring the volume of an alpha-cage, leading to a more isotropic motion. The diffusion coefficient of the molecule is reduced by more than 4 orders of magnitude in 5A zeolite compared with ZSM-5.
Collapse
|
|
22 |
7 |
8
|
Canales A, Kotov O, Shegai TO. Perfect Absorption and Strong Coupling in Supported MoS 2 Multilayers. ACS NANO 2023; 17:3401-3411. [PMID: 36799766 PMCID: PMC9979649 DOI: 10.1021/acsnano.2c08947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Perfect absorption and strong coupling are two highly sought-after regimes of light-matter interactions. Both regimes have been studied as separate phenomena in excitonic 2D materials, particularly in MoS2. However, the structures used to reach these regimes often require intricate nanofabrication. Here, we demonstrate the occurrence of perfect absorption and strong coupling in thin MoS2 multilayers supported by a glass substrate. We measure reflection spectra of mechanically exfoliated MoS2 flakes at various angles beyond the light-line via Fourier plane imaging and spectroscopy and find that absorption in MoS2 monolayers increases up to 74% at the C-exciton by illuminating at the critical angle. Perfect absorption is achieved for ultrathin MoS2 flakes (4-8 layers) with a notable angle and frequency sensitivity to the exact number of layers. By calculating zeros and poles of the scattering matrix in the complex frequency plane, we identify perfect absorption (zeros) and strong coupling (poles) conditions for thin (<10 layers) and thick (>10 layers) limits. Our findings reveal rich physics of light-matter interactions in bare MoS2 flakes, which could be useful for nanophotonic and light harvesting applications.
Collapse
|
research-article |
2 |
5 |
9
|
Canales A, Karmstrand T, Baranov DG, Antosiewicz TJ, Shegai TO. Polaritonic linewidth asymmetry in the strong and ultrastrong coupling regime. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4073-4086. [PMID: 39635646 PMCID: PMC11501566 DOI: 10.1515/nanoph-2023-0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/30/2023] [Indexed: 12/07/2024]
Abstract
The intriguing properties of polaritons resulting from strong and ultrastrong light-matter coupling have been extensively investigated. However, most research has focused on spectroscopic characteristics of polaritons, such as their eigenfrequencies and Rabi splitting. Here, we study the decay rates of a plasmon-microcavity system in the strong and ultrastrong coupling regimes experimentally and numerically. We use a classical scattering matrix approach, approximating our plasmonic system with an effective Lorentz model, to obtain the decay rates through the imaginary part of the complex quasinormal mode eigenfrequencies. Our classical model automatically includes all the interaction terms necessary to account for ultrastrong coupling without dealing with the rotating-wave approximation and the diamagnetic term. We find an asymmetry in polaritonic decay rates, which deviate from the expected average of the uncoupled system's decay rates at zero detuning. Although this phenomenon has been previously observed in exciton-polaritons and attributed to their disorder, we observe it even in our homogeneous system. As the coupling strength of the plasmon-microcavity system increases, the asymmetry also increases and can become so significant that the lower (upper) polariton decay rate reduction (increase) goes beyond the uncoupled decay rates, γ - < γ 0,c < γ +. Furthermore, our findings demonstrate that polaritonic linewidth asymmetry is a generic phenomenon that persists even in the case of bulk polaritons.
Collapse
|
research-article |
2 |
|
10
|
Canales A, Kotov OV, Küçüköz B, Shegai TO. Self-Hybridized Vibrational-Mie Polaritons in Water Droplets. PHYSICAL REVIEW LETTERS 2024; 132:193804. [PMID: 38804922 DOI: 10.1103/physrevlett.132.193804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/05/2024] [Indexed: 05/29/2024]
Abstract
We study the self-hybridization between Mie modes supported by water droplets with stretching and bending vibrations in water molecules. Droplets with radii >2.7 μm are found to be polaritonic on the onset of the ultrastrong light-matter coupling regime. Similarly, the effect is observed in larger deuterated water droplets at lower frequencies. Our results indicate that polaritonic states are ubiquitous and occur in water droplets in mists, fogs, and clouds. This finding may have implications not only for polaritonic physics but also for aerosol and atmospheric sciences.
Collapse
|
|
1 |
|
11
|
Küçüköz B, Kotov OV, Canales A, Polyakov AY, Agrawal AV, Antosiewicz TJ, Shegai TO. Quantum trapping and rotational self-alignment in triangular Casimir microcavities. SCIENCE ADVANCES 2024; 10:eadn1825. [PMID: 38657070 PMCID: PMC11042733 DOI: 10.1126/sciadv.adn1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Casimir torque, a rotational motion driven by zero-point energy minimization, is a problem that attracts notable research interest. Recently, it has been realized using liquid crystal phases and natural anisotropic substrates. However, for natural materials, substantial torque occurs only at van der Waals distances of ~10 nm. Here, we use Casimir self-assembly with triangular gold nanostructures for rotational self-alignment at truly Casimir distances (100 to 200 nm separation). The interplay of repulsive electrostatic and attractive Casimir potentials forms a stable quantum trap, giving rise to a tunable Fabry-Pérot microcavity. This cavity self-aligns both laterally and rotationally to maximize area overlap between templated and floating flakes. The rotational self-alignment is sensitive to the equilibrium distance between the two triangles and their area, offering possibilities for active control via electrostatic screening manipulation. Our self-assembled Casimir microcavities present a versatile and tunable platform for nanophotonic, polaritonic, and optomechanical applications.
Collapse
|
research-article |
1 |
|
12
|
Hoque MA, Polyakov AY, Munkhbat B, Iordanidou K, Agrawal AV, Yankovich AB, Mallik SK, Zhao B, Mitra R, Kalaboukhov A, Olsson E, Kubatkin S, Wiktor J, Avila SL, Shegai TO, Dash SP. Ultranarrow Semiconductor WS 2 Nanoribbon Field-Effect Transistors. NANO LETTERS 2025; 25:1750-1757. [PMID: 39846459 PMCID: PMC11803707 DOI: 10.1021/acs.nanolett.4c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Semiconducting transition metal dichalcogenides (TMDs) have attracted significant attention for their potential to develop high-performance, energy-efficient, and nanoscale electronic devices. Despite notable advancements in scaling down the gate and channel length of TMD field-effect transistors (FETs), the fabrication of sub-30 nm narrow channels and devices with atomic-scale edge control still poses challenges. Here, we demonstrate a crystallography-controlled nanostructuring technique to fabricate ultranarrow tungsten disulfide (WS2) nanoribbons as small as sub-10 nm in width. The WS2 nanoribbon junctions having different widths display diodic current-voltage characteristics, providing a way to create and tune nanoscale device properties by controlling the size of the structures. The transport properties of the nanoribbon FETs are primarily governed by narrow channel effects, where the mobility in the narrow channels is limited by edge scattering. Our findings on nanoribbon devices hold potential for developing future-generation nanometer-scale van der Waals semiconductor-based devices and circuits.
Collapse
|
rapid-communication |
1 |
|
13
|
Maciel-Escudero C, Yankovich AB, Munkhbat B, Baranov DG, Hillenbrand R, Olsson E, Aizpurua J, Shegai TO. Probing optical anapoles with fast electron beams. Nat Commun 2023; 14:8478. [PMID: 38123545 PMCID: PMC10733292 DOI: 10.1038/s41467-023-43813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Optical anapoles are intriguing charge-current distributions characterized by a strong suppression of electromagnetic radiation. They originate from the destructive interference of the radiation produced by electric and toroidal multipoles. Although anapoles in dielectric structures have been probed and mapped with a combination of near- and far-field optical techniques, their excitation using fast electron beams has not been explored so far. Here, we theoretically and experimentally analyze the excitation of optical anapoles in tungsten disulfide (WS2) nanodisks using Electron Energy Loss Spectroscopy (EELS) in Scanning Transmission Electron Microscopy (STEM). We observe prominent dips in the electron energy loss spectra and associate them with the excitation of optical anapoles and anapole-exciton hybrids. We are able to map the anapoles excited in the WS2 nanodisks with subnanometer resolution and find that their excitation can be controlled by placing the electron beam at different positions on the nanodisk. Considering current research on the anapole phenomenon, we envision EELS in STEM to become a useful tool for accessing optical anapoles appearing in a variety of dielectric nanoresonators.
Collapse
|
research-article |
2 |
|