1
|
Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015; 350:938-43. [DOI: 10.1126/science.aab1595] [Citation(s) in RCA: 1859] [Impact Index Per Article: 185.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
10 |
1859 |
2
|
Gao T, Yatani A, Dell'Acqua ML, Sako H, Green SA, Dascal N, Scott JD, Hosey MM. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997; 19:185-96. [PMID: 9247274 DOI: 10.1016/s0896-6273(00)80358-x] [Citation(s) in RCA: 376] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cardiac L-type Ca2+ channel is a textbook example of an ion channel regulated by protein phosphorylation; however, the molecular events that underlie its regulation remain unknown. Here, we report that in transiently transfected HEK293 cells expressing L-type channels, elevations in cAMP resulted in phosphorylation of the alpha1C and beta2a channel subunits and increases in channel activity. Channel phosphorylation and regulation were facilitated by submembrane targeting of protein kinase A (PKA), through association with an A-kinase anchoring protein called AKAP79. In transfected cells expressing a mutant AKAP79 that is unable to bind PKA, phosphorylation of the alpha1C subunit and regulation of channel activity were not observed. Furthermore, we have demonstrated that the association of an AKAP with PKA was required for beta-adrenergic receptor-mediated regulation of L-type channels in native cardiac myocytes, illustrating that the events observed in the heterologous expression system reflect those occurring in the native system. Mutation of Ser1928 to alanine in the C-terminus of the alpha1C subunit resulted in a complete loss of cAMP-mediated phosphorylation and a loss of channel regulation. Thus, the PKA-mediated regulation of L-type Ca2+ channels is critically dependent on a functional AKAP and phosphorylation of the alpha1C subunit at Ser1928.
Collapse
|
|
28 |
376 |
3
|
Sun S, Meng G, Zhang G, Gao T, Geng B, Zhang L, Zuo J. Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(03)00965-5] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
22 |
214 |
4
|
Gao T, Puri TS, Gerhardstein BL, Chien AJ, Green RD, Hosey MM. Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem 1997; 272:19401-7. [PMID: 9235939 DOI: 10.1074/jbc.272.31.19401] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The properties of cardiac L-type channels have been well characterized electrophysiologically, and many such studies have demonstrated that the channels are regulated by a cAMP-dependent pathway. However, the subunit composition of native cardiac L-type calcium channels has not been completely defined. Furthermore, a very important question exists regarding the status of the C-terminal domain of the pore-forming alpha1 subunit, as this domain has the potential to be the target of protein kinases but may be truncated as a result of post-translational processing. In the present studies, the alpha1C and beta2 subunits were identified by subunit-specific antibodies after partial purification from heart membranes, or immunoprecipitation from cardiac myocytes. Both the beta2 and the full-length alpha1C subunits were found to be expressed and co-localized in intact cardiac myocytes along T-tubule membranes. Using a quantitative antibody binding analysis, we demonstrated that the majority of the alpha1C subunits in intact cardiac myocytes appear to be full-length. In addition, we observed that adenylyl cyclase is localized in a pattern similar to the channel subunits in cardiac myocytes. Taken together, our results provide new insights into the structural basis for understanding the regulation of L-type calcium channels by a cAMP-mediated signaling pathway.
Collapse
|
|
28 |
148 |
5
|
Wang RE, Zhang Y, Cai J, Cai W, Gao T. Aptamer-based fluorescent biosensors. Curr Med Chem 2012; 18:4175-84. [PMID: 21838688 DOI: 10.2174/092986711797189637] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 01/24/2023]
Abstract
Selected from random pools of DNA or RNA molecules through systematic evolution of ligands by exponential enrichment (SELEX), aptamers can bind to target molecules with high affinity and specificity, which makes them ideal recognition elements in the development of biosensors. To date, aptamer-based biosensors have used a wide variety of detection techniques, which are briefly summarized in this article. The focus of this review is on the development of aptamer-based fluorescent biosensors, with emphasis on their design as well as properties such as sensitivity and specificity. These biosensors can be broadly divided into two categories: those using fluorescently-labeled aptamers and others that employ label-free aptamers. Within each category, they can be further divided into "signal-on" and "signal-off" sensors. A number of these aptamer-based fluorescent biosensors have shown promising results in biological samples such as urine and serum, suggesting their potential applications in biomedical research and disease diagnostics.
Collapse
|
Review |
13 |
144 |
6
|
Bünemann M, Gerhardstein BL, Gao T, Hosey MM. Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the beta(2) subunit. J Biol Chem 1999; 274:33851-4. [PMID: 10567342 DOI: 10.1074/jbc.274.48.33851] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of protein kinase A (PKA) through the beta-adrenergic receptor pathway is crucial for the positive regulation of cardiac L-type currents; however it is still unclear which phosphorylation events cause the robust regulation of channel function. In order to study whether or not the recently identified PKA phosphorylation sites on the beta(2) subunit are of functional significance, we coexpressed wild-type (WT) or mutant beta(2) subunits in tsA-201 cells together with an alpha(1C) subunit, alpha(1C)Delta1905, that lacked the C-terminal 265 amino acids, including the only identified PKA site at Ser-1928. This truncated alpha(1C) subunit was similar to the truncated alpha(1C) subunit isolated from cardiac tissue not only in size ( approximately 190 kDa), but also with respect to its failure to serve as a PKA substrate. In cells transfected with the WT beta(2) subunit, voltage-activated Ba(2+) currents were significantly increased when purified PKA was included in the patch pipette. Furthermore, mutations of Ser-478 and Ser-479 to Ala, but not Ser-459 to Ala, on the beta(2) subunit, completely abolished the PKA-induced increase of currents. The data indicate that the PKA-mediated stimulation of cardiac L-type Ca(2+) currents may be at least partially caused by phosphorylation of the beta(2) subunit at Ser-478 and Ser-479.
Collapse
|
|
26 |
141 |
7
|
Gao T, Estrecho E, Bliokh KY, Liew TCH, Fraser MD, Brodbeck S, Kamp M, Schneider C, Höfling S, Yamamoto Y, Nori F, Kivshar YS, Truscott AG, Dall RG, Ostrovskaya EA. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 2015; 526:554-8. [PMID: 26458102 DOI: 10.1038/nature15522] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 08/18/2015] [Indexed: 11/09/2022]
Abstract
Exciton-polaritons are hybrid light-matter quasiparticles formed by strongly interacting photons and excitons (electron-hole pairs) in semiconductor microcavities. They have emerged as a robust solid-state platform for next-generation optoelectronic applications as well as for fundamental studies of quantum many-body physics. Importantly, exciton-polaritons are a profoundly open (that is, non-Hermitian) quantum system, which requires constant pumping of energy and continuously decays, releasing coherent radiation. Thus, the exciton-polaritons always exist in a balanced potential landscape of gain and loss. However, the inherent non-Hermitian nature of this potential has so far been largely ignored in exciton-polariton physics. Here we demonstrate that non-Hermiticity dramatically modifies the structure of modes and spectral degeneracies in exciton-polariton systems, and, therefore, will affect their quantum transport, localization and dynamical properties. Using a spatially structured optical pump, we create a chaotic exciton-polariton billiard--a two-dimensional area enclosed by a curved potential barrier. Eigenmodes of this billiard exhibit multiple non-Hermitian spectral degeneracies, known as exceptional points. Such points can cause remarkable wave phenomena, such as unidirectional transport, anomalous lasing/absorption and chiral modes. By varying parameters of the billiard, we observe crossing and anti-crossing of energy levels and reveal the non-trivial topological modal structure exclusive to non-Hermitian systems. We also observe mode switching and a topological Berry phase for a parameter loop encircling the exceptional point. Our findings pave the way to studies of non-Hermitian quantum dynamics of exciton-polaritons, which may uncover novel operating principles for polariton-based devices.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
140 |
8
|
Liu J, Weiss HL, Rychahou P, Jackson LN, Evers BM, Gao T. Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 2008; 28:994-1004. [PMID: 19079341 PMCID: PMC2921630 DOI: 10.1038/onc.2008.450] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PHLPP (PH domain leucine-rich repeats protein phosphatase) represents a family of novel Ser/Thr protein phosphatases. Two highly related isoforms in this family, PHLPP1 and PHLPP2, have been identified to serve as negative regulators of Akt and protein kinase C by dephosphorylating the kinases directly. In this study, we examined the expression pattern of both PHLPP isoforms in colorectal cancer specimens and the adjacent normal mucosa using immunohistochemical staining. We found that the expression of PHLPP1 or PHLPP2 isoform was lost or decreased in 78 and 86% of tumor tissues, respectively. Stable overexpression of either PHLPP isoform in colon cancer cells decreased the rate of cell proliferation and sensitized the cells to growth inhibition induced by the phosphoinositide-3 kinase inhibitor, LY294002, whereas knockdown of either PHLPP isoform by shRNA promoted the proliferation of DLD1 cells. In addition, we demonstrated that the PHLPP-mediated growth inhibition in colon cancer cells was largely rescued by overexpression of a constitutively active Akt. Moreover, reexpression of either PHLPP isoform in HCT116 cells inhibited tumor growth in vivo. Taken together, our results strongly support a tumor suppressor role of PHLPP in colon cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
127 |
9
|
Gao T, Chien AJ, Hosey MM. Complexes of the alpha1C and beta subunits generate the necessary signal for membrane targeting of class C L-type calcium channels. J Biol Chem 1999; 274:2137-44. [PMID: 9890976 DOI: 10.1074/jbc.274.4.2137] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we investigated the role of channel subunits in the membrane targeting of voltage-dependent L-type calcium channel complexes. We co-expressed the calcium channel pore-forming alpha1C subunit with different accessory beta subunits in HEK-tsA201 cells and examined the subcellular localization of the channel subunits by immunohistochemistry using confocal microscopy and whole-cell radioligand binding studies. While the pore-forming alpha1C subunit exhibited perinuclear staining when expressed alone, and several of the wild-type and mutant beta subunits also exhibited intracellular staining, co-expression of the alpha1C subunit with either the wild-type beta2a subunit, a palmitoylation-deficient beta2a(C3S/C4S) mutant or three other nonpalmitoylated beta isoforms (beta1b, beta3, and beta4 subunits) resulted in the redistribution of both the alpha1C and beta subunits into clusters along the cell surface. Furthermore, the redistribution of calcium channel complexes to the plasma membrane was observed when alpha1C was co-expressed with an N- and C-terminal truncated mutant beta2a containing only the central conserved regions. However, when the alpha1C subunit was co-expressed with an alpha1 beta interaction-deficient mutant, beta2aBID-, we did not observe formation of the channels at the plasma membrane. In addition, an Src homology 3 motif mutant of beta2a that was unable to interact with the alpha1C subunit also failed to target channel complexes to the plasma membrane. Interestingly, co-expression of the pore-forming alpha1C subunit with the largely peripheral accessory alpha2 delta subunit was ineffective in recruiting alpha1C to the plasma membrane, while co-distribution of all three subunits was observed when beta2a was co-expressed with the alpha1C and alpha2 delta subunits. Taken together, our results suggested that the signal necessary for correct plasma membrane targeting of the class C L-type calcium channel complexes is generated as a result of a functional interaction between the alpha1 and beta subunits.
Collapse
|
|
26 |
107 |
10
|
Gao T, Cuadra AE, Ma H, Bunemann M, Gerhardstein BL, Cheng T, Eick RT, Hosey MM. C-terminal fragments of the alpha 1C (CaV1.2) subunit associate with and regulate L-type calcium channels containing C-terminal-truncated alpha 1C subunits. J Biol Chem 2001; 276:21089-97. [PMID: 11274161 DOI: 10.1074/jbc.m008000200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-type Ca(2+) channels in native tissues have been found to contain a pore-forming alpha(1) subunit that is often truncated at the C terminus. However, the C terminus contains many important domains that regulate channel function. To test the hypothesis that C-terminal fragments may associate with and regulate C-terminal-truncated alpha(1C) (Ca(V)1.2) subunits, we performed electrophysiological and biochemical experiments. In tsA201 cells expressing either wild type or C-terminal-truncated alpha(1C) subunits in combination with a beta(2a) subunit, truncation of the alpha(1C) subunit by as little as 147 amino acids led to a 10-15-fold increase in currents compared with those obtained from control, full-length alpha(1C) subunits. Dialysis of cells expressing the truncated alpha(1C) subunits with C-terminal fragments applied through the patch pipette reconstituted the inhibition of the channels seen with full-length alpha(1C) subunits. In addition, C-terminal deletion mutants containing a tethered C terminus also exhibited the C-terminal-induced inhibition. Immunoprecipitation assays demonstrated the association of the C-terminal fragments with truncated alpha(1C) subunits. In addition, glutathione S-transferase pull-down assays demonstrated that the C-terminal inhibitory fragment could associate with at least two domains within the C terminus. The results support the hypothesis the C- terminal fragments of the alpha(1C) subunit can associate with C-terminal-truncated alpha(1C) subunits and inhibit the currents through L-type Ca(2+) channels.
Collapse
|
|
24 |
102 |
11
|
Gao T, Marcelli M, McPhaul MJ. Transcriptional activation and transient expression of the human androgen receptor. J Steroid Biochem Mol Biol 1996; 59:9-20. [PMID: 9009233 DOI: 10.1016/s0960-0760(96)00097-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of cDNAs containing deletions within the open-reading frame of the human androgen receptor (AR) were constructed and transiently expressed in CV1 cells to investigate the effects of these alterations on the level of expression of the protein and on its capacity to activate a model reporter gene (MMTV-luciferase). The levels of AR expression were assayed using immunoblots made using an antibody directed at an epitope (amino acids 1-21) preserved in all of the deletions. Treatment of the transfected cells with androgen increased the level of normal or mutant AR approximately five-fold in all constructs in which the hormone-binding domain was intact. This finding indicates that an intact hormone-binding domain is necessary and sufficient for the androgen-dependent increase in AR levels. Contraction of expansion or the glutamine repeat or deletion of the glycine repeat in the amino terminus diminished the capacity of the mutant ARs to activate the MMTV luciferase gene. The presence of a large-scale deletion within the amino terminus (amino acid residues 96-483), abolished receptor function, and two smaller deletions (bounded by residues 80-93 and 245-485) within the amino terminus substantially impaired receptor function. As previously described, deletion of the hormone-binding domain (amino acids 708-917) resulted in a constitutively active receptor. Unexpectedly, the large-scale deletion within the amino terminus (amino acids 96-483), in combination with deletion of the carboxy terminus also produced a constitutively active receptor that was almost as active as ligand-activated normal AR. None of the alterations in AR function could be explained by changes in the level of AR expression and the function of some mutant receptors was even more defective when the relative levels of mutant ARs expressed was considered. These findings imply that interaction of the sequences within the amino- and carboxy-terminal portions of the AR, or proteins that interact with these segments, is critical for regulation of transcription by the AR.
Collapse
|
|
29 |
101 |
12
|
Gerhardstein BL, Gao T, Bünemann M, Puri TS, Adair A, Ma H, Hosey MM. Proteolytic processing of the C terminus of the alpha(1C) subunit of L-type calcium channels and the role of a proline-rich domain in membrane tethering of proteolytic fragments. J Biol Chem 2000; 275:8556-63. [PMID: 10722694 DOI: 10.1074/jbc.275.12.8556] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although most L-type calcium channel alpha(1C) subunits isolated from heart or brain are approximately 190-kDa proteins that lack approximately 50 kDa of the C terminus, the C-terminal domain is present in intact cells. To test the hypothesis that the C terminus is processed but remains functionally associated with the channels, expressed, full-length alpha(1C) subunits were cleaved in vitro by chymotrypsin to generate a 190-kDa C-terminal truncated protein and C-terminal fragments of 30-56 kDa. These hydrophilic C-terminal fragments remained membrane-associated. A C-terminal proline-rich domain (PRD) was identified as the mediator of membrane association. The alpha(1C) PRD bound to SH3 domains in Src, Lyn, Hck, and the channel beta(2) subunit. Mutant alpha(1C) subunits lacking either approximately 50 kDa of the C terminus or the PRD produced increased barium currents through the channels, demonstrating that these domains participate in the previously described (Wei, X., Neely, a., Lacerda, A. E. Olcese, r., Stefani, E., Perez-Reyes, E., and Birnbaumer, L. (1994) J. Biol. Chem. 269, 1635-1640) inhibition of channel function by the C terminus.
Collapse
|
|
25 |
94 |
13
|
Sonnenburg ED, Gao T, Newton AC. The phosphoinositide-dependent kinase, PDK-1, phosphorylates conventional protein kinase C isozymes by a mechanism that is independent of phosphoinositide 3-kinase. J Biol Chem 2001; 276:45289-97. [PMID: 11579098 DOI: 10.1074/jbc.m107416200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation by the phosphoinositide-dependent kinase, PDK-1, is required for the activation of diverse members of the AGC family of protein kinases, including the protein kinase C (PKC) isozymes. Here we explore the subcellular location of the PDK-1-mediated phosphorylation of conventional PKCs, and we address whether this phosphorylation is regulated by phosphoinositide 3-kinase. Pulse-chase experiments reveal that newly synthesized endogenous PKC alpha is primarily phosphorylated in the membrane fraction of COS-7 cells, where it is processed to a species that is phosphorylated at the activation loop and at two carboxyl-terminal positions. This "mature" species is then released into the cytosol. Deletion of the plekstrin homology domain of PDK-1 results in a 4-fold increase in the rate of processing of PKC indicating an autoinhibitory role for this domain. Autoinhibition by the plekstrin homology domain is not relieved by binding 3'-phosphoinositides; PKC is phosphorylated at a similar rate in serum-treated cells and serum-starved cells treated with the phosphoinositide 3-kinase inhibitors, LY294002 and wortmannin. Under the same conditions, the PDK-1-catalyzed phosphorylation of another substrate, Akt/protein kinase B, is abolished by these inhibitors. Our data are consistent with a model in which PDK-1 phosphorylates newly synthesized PKC by a mechanism that is independent of 3'-phosphoinositides.
Collapse
|
|
24 |
92 |
14
|
Chien AJ, Gao T, Perez-Reyes E, Hosey MM. Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the beta2a subunit. J Biol Chem 1998; 273:23590-7. [PMID: 9722599 DOI: 10.1074/jbc.273.36.23590] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we report that palmitoylation was a critical determinant of the subcellular localization of the rat beta2a subunit of voltage-dependent calcium channels. Immunohistochemical staining of transfected cells revealed that a palmitoylation-deficient beta2a subunit exhibited a diffuse intracellular staining pattern, in contrast to the plasma membrane distribution seen with the wild-type beta2a subunit. Unexpectedly, mutations in regions distal to the palmitoylation sites at Cys3 and Cys4 affected palmitoylation of the beta2a protein. Mutations in an src homology 3 motif of the beta2a subunit affected both palmitoylation and subcellular localization of the beta2a protein. A mutation in the beta interaction domain, which disrupted interactions between the expressed alpha1 and beta subunits, also resulted in a decreased palmitoylation and diffuse intracellular localization of the beta2a protein. Studies of chimeric proteins revealed that the 16-amino acid N terminus of the beta2a subunit was sufficient to confer palmitoylation to the nonpalmitoylated beta1b and beta3 isoforms. However, palmitoylation of chimeric beta subunits was by itself insufficient to restore the plasma membrane localization observed with the wild-type beta2a protein. Treatment of transfected cells with brefeldin A increased the amount of palmitic acid incorporated in the beta2a protein, suggesting that palmitoylation of beta2a occurs during or shortly after protein synthesis. Two other beta2 variants, the rabbit beta2a and beta2b, which lack the palmitoylation sties at Cys3 and Cys4, exhibited a diffuse intracellular staining pattern and were not palmitoylated.
Collapse
|
Comparative Study |
27 |
91 |
15
|
Tosi G, Christmann G, Berloff N, Tsotsis P, Gao T, Hatzopoulos Z, Savvidis P, Baumberg J. Geometrically locked vortex lattices in semiconductor quantum fluids. Nat Commun 2012; 3:1243. [DOI: 10.1038/ncomms2255] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/05/2012] [Indexed: 11/09/2022] Open
|
|
13 |
91 |
16
|
Meyers MB, Puri TS, Chien AJ, Gao T, Hsu PH, Hosey MM, Fishman GI. Sorcin associates with the pore-forming subunit of voltage-dependent L-type Ca2+ channels. J Biol Chem 1998; 273:18930-5. [PMID: 9668070 DOI: 10.1074/jbc.273.30.18930] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular Ca2+ release in muscle is governed by functional communication between the voltage-dependent L-type Ca2+ channel and the intracellular Ca2+ release channel by processes that are incompletely understood. We previously showed that sorcin binds to cardiac Ca2+ release channel/ryanodine receptors and decreases channel open probability in planar lipid bilayers. In addition, we showed that sorcin antibody immunoprecipitates ryanodine receptors from metabolically labeled cardiac myocytes along with a second protein having a molecular weight similar to that of the alpha1 subunit of cardiac L-type Ca2+ channels. We now demonstrate that sorcin biochemically associates with cardiac and skeletal muscle L-type Ca2+ channels specifically within the cytoplasmically oriented C-terminal region of the alpha1 subunits, providing evidence that the second protein recovered by sorcin antibody from cardiac myocytes was the 240-kDa L-type Ca2+ channel alpha1 subunit. Anti-sorcin antibody immunoprecipitated full-length alpha1 subunits from cardiac myocytes, C2C12 myotubes, and transfected non-muscle cells expressing alpha1 subunits. In contrast, the anti-sorcin antibody did not immunoprecipitate C-terminal truncated forms of alpha1 subunits that were detected in myotubes. Recombinant sorcin bound to cardiac and skeletal HIS6-tagged alpha1 C termini immobilized on Ni2+ resin. Additionally, anti-sorcin antibody immunoprecipitated C-terminal fragments of the cardiac alpha1 subunit exogenously expressed in mammalian cells. The results identified a putative sorcin binding domain within the C terminus of the alpha1 subunit. These observations, along with the demonstration that sorcin accumulated substantially during physiological maturation of the excitation-contraction coupling apparatus in developing postnatal rat heart and differentiating C2C12 muscle cells, suggest that sorcin may mediate interchannel communication during excitation-contraction coupling in heart and skeletal muscle.
Collapse
|
|
27 |
88 |
17
|
Li X, Stevens PD, Yang H, Gulhati P, Wang W, Evers BM, Gao T. The deubiquitination enzyme USP46 functions as a tumor suppressor by controlling PHLPP-dependent attenuation of Akt signaling in colon cancer. Oncogene 2012; 32:471-8. [PMID: 22391563 PMCID: PMC3371166 DOI: 10.1038/onc.2012.66] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PHLPP is a family of Ser/Thr protein phosphatases that serve as tumor suppressors by negatively regulating Akt. Our recent studies have demonstrated that the ubiquitin proteasome pathway plays an important role in the downregulation of PHLPP in colorectal cancer. In this study, we show that the deubiquitinase USP46 stabilizes the expression of both PHLPP isoforms by reducing the rate of PHLPP degradation. USP46 binds to PHLPP and directly removes the polyubiquitin chains from PHLPP in vitro and in cells. Increased USP46 expression correlates with decreased ubiquitination and upregulation of PHLPP proteins in colon cancer cells, whereas knockdown of USP46 has the opposite effect. Functionally, USP46-mediated stabilization of PHLPP and the subsequent inhibition of Akt result in a decrease in cell proliferation and tumorigenesis of colon cancer cells in vivo. Moreover, reduced USP46 protein level is found associated with poor PHLPP expression in colorectal cancer patient specimens. Taken together, these results indentify a tumor suppressor role of USP46 in promoting PHLPP expression and inhibiting Akt signaling in colon cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
84 |
18
|
Gao T, Aro HT, Ylänen H, Vuorio E. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials 2001; 22:1475-83. [PMID: 11374446 DOI: 10.1016/s0142-9612(00)00288-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A chemical exchange of the silica gel layer forming on the surface of bioactive glasses is thought to be the principal reaction for bone-bioactive glass bonding. The contribution of biological molecules on cell-bioactive glass interaction is largely unknown. To further analyze the mechanisms involved in efficient bone bonding to bioactive glass, Saos-2 osteoblastic cells with proven osteogenic phenotype were cultured for 4, 7 and 14 days on two bioactive glasses with different Si contents. Culture plates and dishes made of bioactive (BAG, 53 % SiO2), biocompatible (BCG, 58% SiO2) and control (GO) glasses were extensively conditioned with phosphate buffer and DMEM medium before seeding the cells. Northern hybridization was used for analysis of mRNA levels of collagen type I (Col-I), alkaline phosphatase (ALP) and bone morphogenetic protein-2 (BMP-2). A significant increase was observed in Col-I mRNA levels in cells grown on the two bioactive glasses when compared with those grown on controls at 4 and 7 days (p < 0.04). The mRNA level for ALP in the cultures of bioactive glasses-made plates and dishes was also increased over control at 7 days (p < 0.02) and remained this way between BAG and G0 at 14 days. Striking differences in BMP-2 mRNA levels existed between BAG and G0 plates and dishes at 7 days (p < 0.05). BMP-2 mRNA level in BAG group was higher than in BCG group at 4, 7 and 14 days, but without statistical significance. Saos-2 osteoblastic cells with strong ALP staining were mostly seen on BAG plates under a light microscope. In confocal microscopy, a bright FITC-stained F-actin ring was present in the cytoplasm of cells grown on BAG dish, demonstrating an active functional status. Stimulation of the expression of BMP-2 and other bone mRNAs by bioactive glasses in osteoblastic cells suggests biological involvement of bone related growth factors, peptides and cytokines in bone-bioactive glass bonding.
Collapse
|
Research Support, Non-U.S. Gov't |
24 |
80 |
19
|
Gao T, Toker A, Newton AC. The carboxyl terminus of protein kinase c provides a switch to regulate its interaction with the phosphoinositide-dependent kinase, PDK-1. J Biol Chem 2001; 276:19588-96. [PMID: 11376011 DOI: 10.1074/jbc.m101357200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of protein kinase C family members depends on two tightly coupled phosphorylation mechanisms: phosphorylation of the activation loop by the phosphoinositide-dependent kinase, PDK-1, followed by autophosphorylation at two positions in the COOH terminus, the turn motif, and the hydrophobic motif. Here we address the molecular mechanisms underlying the regulation of protein kinase C betaII by PDK-1. Co-immunoprecipitation studies reveal that PDK-1 associates preferentially with its substrate, unphosphorylated protein kinase C, by a direct mechanism. The exposed COOH terminus of protein kinase C provides the primary interaction site for PDK-1, with co-expression of constructs of the carboxyl terminus effectively disrupting the interaction in vivo. Disruption of this interaction promotes the autophosphorylation of protein kinase C, suggesting that the binding of PDK-1 to the carboxyl terminus protects it from autophosphorylation. Studies with constructs of the COOH terminus reveal that the intrinsic affinity of PDK-1 for phosphorylated COOH terminus is over an order of magnitude greater than that for unphosphorylated COOH terminus, contrasting with the finding that PDK-1 does not bind phosphorylated protein kinase C effectively. However, effective binding of the phosphorylated species can be induced by the activated conformation of protein kinase C. This suggests that the carboxyl terminus becomes masked following autophosphorylation, a process that can be reversed by the conformational changes accompanying activation. Our data suggest a model in which PDK-1 provides two points of regulation of protein kinase C: 1) phosphorylation of the activation loop, which is regulated by the intrinsic activity of PDK-1, and 2) phosphorylation of the carboxyl terminus, which is regulated by the release of PDK-1 to allow autophosphorylation.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
77 |
20
|
Zhao K, Ping W, Li Q, Hao S, Zhao L, Gao T, Zhou D. Aspergillus niger var. taxi, a new species variant of taxol-producing fungus isolated from Taxus cuspidata in China. J Appl Microbiol 2009; 107:1202-7. [DOI: 10.1111/j.1365-2672.2009.04305.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
16 |
72 |
21
|
Abstract
Glycoprotein 96 (gp96), a member of the heat-shock protein family, can elicit priming of antigen-specfic cytotoxic T lymphocytes, when bound to antigenic viral or tumour peptides. We used direct peptide isolation from purified gp96 and microsequencing to show that a virus-specific peptide is bound to gp96 derived from liver tissues of patients with hepatitis B virus (HBV)-induced hepatocellular carcinoma. This virus-specific peptide has potential for engineering tumour vaccines against hepatocellular carcinoma and chronic HBV infection.
Collapse
|
Letter |
24 |
61 |
22
|
Gao T, Bunemann M, Gerhardstein BL, Ma H, Hosey MM. Role of the C terminus of the alpha 1C (CaV1.2) subunit in membrane targeting of cardiac L-type calcium channels. J Biol Chem 2000; 275:25436-44. [PMID: 10816591 DOI: 10.1074/jbc.m003465200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that formation of a complex between L-type calcium (Ca(2+)) channel alpha(1C) (Ca(V)1.2) and beta subunits was necessary to target the channels to the plasma membrane when expressed in tsA201 cells. In the present study, we identified a region in the C terminus of the alpha(1C) subunit that was required for membrane targeting. Using a series of C-terminal deletion mutants of the alpha(1C) subunit, a domain consisting of amino acid residues 1623-1666 ("targeting domain") in the C terminus of the alpha(1C) subunit has been identified to be important for correct targeting of L-type Ca(2+) channel complexes to the plasma membrane. Although cells expressing the wild-type alpha(1C) and beta(2a) subunits exhibited punctate clusters of channel complexes along the plasma membrane with little intracellular staining, co-expression of deletion mutants of the alpha(1C) subunit that lack the targeting domain with the beta(2a) subunit resulted in an intracellular localization of the channels. In addition, three other regions in the C terminus of the alpha(1C) subunit that were downstream of residues 1623-1666 were found to contribute to membrane targeting of the L-type channels. Deletion of these domains in the alpha(1C) subunit resulted in a reduction of plasma membrane-localized channels, and a concomitant increase in channels localized intracellularly. Taken together, these results have demonstrated that a targeting domain in the C terminus of the alpha(1C) subunit was required for proper plasma membrane localization of the L-type Ca(2+) channels.
Collapse
|
|
25 |
60 |
23
|
Uludag H, Kousinioris N, Gao T, Kantoci D. Bisphosphonate conjugation to proteins as a means to impart bone affinity. Biotechnol Prog 2000; 16:258-67. [PMID: 10753453 DOI: 10.1021/bp990154m] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Growth factors are endogenous proteins capable of stimulating new bone formation, but their clinical benefit for systemic stimulation of bone mass has not been demonstrated. The critical challenge is to deliver a significant dose of the proteins to bone after intravenous injection. This challenge may be overcome by derivatizing proteins with ligands that exhibit a high bone affinity (e.g., bisphosphonates). To demonstrate the feasibility of this approach, 1-amino-1,1-diphosphonate methane (aminoBP) was conjugated to a model protein, albumin. The conjugation was performed by (1) converting the amino group of aminoBP to a thiol group using 2-iminothiolane, (2) derivatizing the albumin amino groups with a thiol-reactive sulfosuccinimidyl-4-(N-maleimidomethyl)-1-cyclohexane carboxylate, and (3) reacting the derivatized albumin with thiolated aminoBP. Typically, 1-4 aminoBP molecules per albumin were obtained. The conjugated albumin exhibited a high affinity to hydroxyapatite that was proportional to the extent of conjugation. The conjugates were shown to exhibit a high affinity to bone matrix in vitro in a serum-containing medium. Once bound to bone matrix, the conjugates were found to desorb more slowly than the unmodified albumin, especially from bone whose organic matrix was removed by ashing. In conclusion, conjugation of bisphosphonates to albumin was shown to impart a high bone affinity to the protein, and such conjugates can be potentially targeted to bone.
Collapse
|
|
25 |
56 |
24
|
Uludag H, Norrie B, Kousinioris N, Gao T. Engineering temperature-sensitive poly(N-isopropylacrylamide) polymers as carriers of therapeutic proteins. Biotechnol Bioeng 2001; 73:510-21. [PMID: 11344456 DOI: 10.1002/bit.1086] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was carried out to engineer N-isopropylacrylamide (NiPAM) polymers that contain protein-reactive N-acryloxysuccinimide (NASI) and hydrophobic alkylmethacrylates (AMAs). These thermoreversible, protein-conjugating polymers hold potential for retention of therapeutic proteins at an application site where tissue regeneration is desired. The lower critical solution temperatures (LCST) of the polymers were effectively controlled by the AMA mole content. The AMAs with longer side-chains were more effective in lowering the LCST. Polymers without NASI exhibited a stable LCST in phosphate buffer and in serum over a 10-day study period. The LCST of polymers containing NASI was found to increase over time in phosphate buffer, but not in serum-containing medium. The LCST increase in phosphate buffer was proportional to the AMA content. The feasibility of localizing a therapeutic protein, recombinant human bone morphogenetic protein-2 (rhBMP-2), to a site of application was explored in a rat intramuscular injection model. The results indicated that polymers capable of conjugating to rhBMP-2 were most effective in localizing the protein irrespective of the LCST (13-25 degrees C). For polymers with no NASI groups, a lower LCST resulted in a better rhBMP-2 localization. We conclude that thermosensitive polymers can be engineered for delivery of therapeutic proteins to improve their therapeutic efficacy.
Collapse
|
|
24 |
55 |
25
|
Shen J, Wang J, Zhao B, Hou J, Gao T, Xin W. Effects of EGb 761 on nitric oxide and oxygen free radicals, myocardial damage and arrhythmia in ischemia-reperfusion injury in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1406:228-36. [PMID: 9630646 DOI: 10.1016/s0925-4439(98)00007-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cardioprotective effects of EGb 761 on the release of nitric oxide (NO), the concentration of serum thiobarbituric acid reaction substance (TBARS), the activity of creatine kinase (CK) and the incidence of ventricular arrhythmias were investigated in myocardial ischemia-reperfusion injury in vivo. Using sodium nitrite (NaNO2) as standard source of nitric oxide (NO), we compared the correlation coefficients of the three measuring methods used currently in the determination of NOFe2+(DETC)2 complex with that of the measuring method suggested in this study. The result showed that measuring the whole height of three splitting signals is the best linear correlation to the concentration of NO comparing with other methods in this system. Using this method, we observed the effects of EGb 761 on NOFe2+(DETC)2 complex in myocardial ischemia-reperfusion injury in vivo. The hearts of the Wistar rats were subjected to 30 min of ischemia and 10 min of reperfusion in vivo. Different doses of EGb 761 (25, 50, 100, 200 mg/kg i.p.), superoxide dismutase (SOD, 10(4) U/kg), l-arginine (50 mg/kg i.p.) and nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine (NNA, 50 mg/kg i.p.) were administered to the ischemia-reperfusion rats. EGb 761 under the dose of 100 mg/kg increased the signal intensity of NOFe2+(DETC)2 complex, while EGb 761 at 200 mg/kg showed an effect of decreasing the signal intensity of NOFe2+(DETC)2 complex. EGb 761 inhibited the formation of TBARS, the release of CK, and mitigated the incidence of ventricular arrhythmias in a dose dependent way. Both l-arginine and SOD increased the signal intensity of NOFe2+(DETC)2 complex and inhibited the formation of TBARS, the leakage of CK and the incidence of ventricular arrhythmia. NNA not only had no protective effects on myocardial injury, but also increased the incidence of reperfusion-induced arrhythmia. In conclusion, EGb 761 has cardiovascular protective effects by means of adjusting the level of NO and inhibiting oxygen free radicals induced lipid peroxidation in myocardial ischemia-reperfusion injury in vivo.
Collapse
|
|
27 |
53 |