1
|
Diensthuber RP, Bommer M, Gleichmann T, Möglich A. Full-length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators. Structure 2013; 21:1127-36. [PMID: 23746806 DOI: 10.1016/j.str.2013.04.024] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/15/2013] [Accepted: 04/30/2013] [Indexed: 11/28/2022]
Abstract
Two-component systems (TCSs), which comprise sensor histidine kinases (SHK) and response-regulator proteins, represent the predominant strategy by which prokaryotes sense and respond to a changing environment. Despite paramount biological importance, a dearth exists of intact SHK structures containing both sensor and effector modules. Here, we report the full-length crystal structure of the engineered, dimeric, blue-light-regulated SHK YF1 at 2.3 Å resolution, in which two N-terminal light-oxygen-voltage (LOV) photosensors are connected by a coiled coil to the C-terminal effector modules. A second coaxial coiled coil derived from the N-termini of the LOV photosensors and inserted between them crucially modulates light regulation: single mutations within this coiled coil attenuate or even invert the signal response of the TCS. Structural motifs identified in YF1 recur in signal receptors, and the underlying signaling principles and mechanisms may be widely shared between soluble and transmembrane, prokaryotic, and eukaryotic signal receptors of diverse biological activity.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
154 |
2
|
Deacon A, Gleichmann T, Kalb (Gilboa) AJ, Price H, Raftery J, Bradbrook G, Yariv J, Helliwell JR. The structure of concanavalin A and its bound solvent determined with small-molecule accuracy at 0.94 [Aring ]resolution. ACTA ACUST UNITED AC 1997. [DOI: 10.1039/a704140c] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
28 |
104 |
3
|
Abstract
The recently determined crystal structure of the PR65/A subunit of protein phosphatase 2A reveals the architecture of proteins containing HEAT repeats. The structural properties of this solenoid protein explain many functional characteristics and account for the involvement of solenoids as scaffold, anchoring and adaptor proteins.
Collapse
|
Review |
26 |
52 |
4
|
Mathes T, Ravensbergen J, Kloz M, Gleichmann T, Gallagher KD, Woitowich NC, St Peter R, Kovaleva SE, Stojković EA, Kennis JTM. Femto- to Microsecond Photodynamics of an Unusual Bacteriophytochrome. J Phys Chem Lett 2015; 6:239-43. [PMID: 26263456 DOI: 10.1021/jz502408n] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A bacteriophytochrome from Stigmatella aurantiaca is an unusual member of the bacteriophytochrome family that is devoid of hydrogen bonding to the carbonyl group of ring D of the biliverdin (BV) chromophore. The photodynamics of BV in SaBphP1 wild type and the single mutant T289H reintroducing hydrogen bonding to ring D show that the strength of this particular weak interaction determines excited-state lifetime, Lumi-R quantum yield, and spectral heterogeneity. In particular, excited-state decay is faster in the absence of hydrogen-bonding to ring D, with excited-state half-lives of 30 and 80 ps for wild type and the T289H mutant, respectively. Concomitantly, the Lumi-R quantum yield is two times higher in wild type as compared with the T289H mutant. Furthermore, the spectral heterogeneity in the wild type is significantly higher than that in the T289H mutant. By extending the observable time domain to 25 μs, we observe a new deactivation pathway from the Lumi-R intermediate in the 100 ns time domain that corresponds to a backflip of ring D to the original Pr 15Za isomeric state.
Collapse
|
|
10 |
38 |
5
|
Diensthuber RP, Engelhard C, Lemke N, Gleichmann T, Ohlendorf R, Bittl R, Möglich A. Biophysical, mutational, and functional investigation of the chromophore-binding pocket of light-oxygen-voltage photoreceptors. ACS Synth Biol 2014; 3:811-9. [PMID: 24926890 DOI: 10.1021/sb400205x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As light-regulated actuators, sensory photoreceptors underpin optogenetics and numerous applications in synthetic biology. Protein engineering has been applied to fine-tune the properties of photoreceptors and to generate novel actuators. For the blue-light-sensitive light-oxygen-voltage (LOV) photoreceptors, mutations near the flavin chromophore modulate response kinetics and the effective light responsiveness. To probe for potential, inadvertent effects on receptor activity, we introduced these mutations into the engineered LOV photoreceptor YF1 and determined their impact on light regulation. While several mutations severely impaired the dynamic range of the receptor (e.g., I39V, R63K, and N94A), residue substitutions in a second group were benign with little effect on regulation (e.g., V28T, N37C, and L82I). Electron paramagnetic resonance and absorption spectroscopy identified correlated effects for certain of the latter mutations on chromophore environment and response kinetics in YF1 and the LOV2 domain from Avena sativa phototropin 1. Carefully chosen mutations provide a powerful means to adjust the light-response function of photoreceptors as demanded for diverse applications.
Collapse
|
|
11 |
28 |
6
|
Chayen NE, Boggon TJ, Cassetta A, Deacon A, Gleichmann T, Habash J, Harrop SJ, Helliwell JR, Nieh YP, Peterson MR, Raftery J, Snell EH, Hädener A, Niemann AC, Siddons DP, Stojanoff V, Thompson AW, Ursby T, Wulff M. Trends and challenges in experimental macromolecular crystallography. Q Rev Biophys 1996; 29:227-78. [PMID: 8968112 DOI: 10.1017/s0033583500005837] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Macromolecular X-ray crystallography underpins the vigorous field of structural molecular biology having yielded many protein, nucleic acid and virus structures in fine detail. The understanding of the recognition by these macromolecules, as receptors, of their cognate ligands involves the detailed study of the structural chemistry of their molecular interactions. Also these structural details underpin the rational design of novel inhibitors in modern drug discovery in the pharmaceutical industry. Moreover, from such structures the functional details can be inferred, such as the biological chemistry of enzyme reactivity. There is then a vast number and range of types of biological macromolecules that potentially could be studied. The completion of the protein primary sequencing of the yeast genome, and the human genome sequencing project comprising some 105proteins that is underway, raises expectations for equivalent three dimensional structural databases.
Collapse
|
Review |
29 |
27 |
7
|
Gleichmann T, Diensthuber RP, Möglich A. Charting the signal trajectory in a light-oxygen-voltage photoreceptor by random mutagenesis and covariance analysis. J Biol Chem 2013; 288:29345-55. [PMID: 24003219 DOI: 10.1074/jbc.m113.506139] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modular signal receptors empower organisms to process environmental stimuli into adequate physiological responses. At the molecular level, a sensor module receives signals and processes the inherent information into changes of biological activity of an effector module. To better understand the molecular bases underpinning these processes, we analyzed signal reception and processing in the dimeric light-oxygen-voltage (LOV) blue light receptor YF1 that serves as a paradigm for the widespread Per-ARNT-Sim (PAS) signal receptors. Random mutagenesis identifies numerous YF1 variants in which biological activity is retained but where light regulation is abolished or inverted. One group of variants carries mutations within the LOV photosensor that disrupt proper coupling of the flavin-nucleotide chromophore to the protein scaffold. Another larger group bears mutations that cluster at the dyad interface and disrupt signal transmission to two coaxial coiled-coils that connect to the effector. Sequence covariation implies wide conservation of structural and mechanistic motifs, as also borne out by comparison to several PAS domains in which mutations leading to disruption of signal transduction consistently map to confined regions broadly equivalent to those identified in YF1. Not only do these data provide insight into general mechanisms of signal transduction, but also they establish concrete means for customized reprogramming of signal receptors.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
26 |
8
|
Riba J, Gleichmann T, Zimmermann S, Zengerle R, Koltay P. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing. Sci Rep 2016; 6:32837. [PMID: 27596612 PMCID: PMC5011771 DOI: 10.1038/srep32837] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/16/2016] [Indexed: 01/11/2023] Open
Abstract
The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
18 |
9
|
Gutzweiler L, Gleichmann T, Tanguy L, Koltay P, Zengerle R, Riegger L. Open microfluidic gel electrophoresis: Rapid and low cost separation and analysis of DNA at the nanoliter scale. Electrophoresis 2017; 38:1764-1770. [DOI: 10.1002/elps.201700001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022]
|
|
8 |
17 |
10
|
Dietler J, Gelfert R, Kaiser J, Borin V, Renzl C, Pilsl S, Ranzani AT, García de Fuentes A, Gleichmann T, Diensthuber RP, Weyand M, Mayer G, Schapiro I, Möglich A. Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine. Nat Commun 2022; 13:2618. [PMID: 35552382 PMCID: PMC9098866 DOI: 10.1038/s41467-022-30252-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/22/2022] [Indexed: 11/12/2022] Open
Abstract
In nature as in biotechnology, light-oxygen-voltage photoreceptors perceive blue light to elicit spatiotemporally defined cellular responses. Photon absorption drives thioadduct formation between a conserved cysteine and the flavin chromophore. An equally conserved, proximal glutamine processes the resultant flavin protonation into downstream hydrogen-bond rearrangements. Here, we report that this glutamine, long deemed essential, is generally dispensable. In its absence, several light-oxygen-voltage receptors invariably retained productive, if often attenuated, signaling responses. Structures of a light-oxygen-voltage paradigm at around 1 Å resolution revealed highly similar light-induced conformational changes, irrespective of whether the glutamine is present. Naturally occurring, glutamine-deficient light-oxygen-voltage receptors likely serve as bona fide photoreceptors, as we showcase for a diguanylate cyclase. We propose that without the glutamine, water molecules transiently approach the chromophore and thus propagate flavin protonation downstream. Signaling without glutamine appears intrinsic to light-oxygen-voltage receptors, which pertains to biotechnological applications and suggests evolutionary descendance from redox-active flavoproteins. Light-oxygen-voltage (LOV) photoreceptors perceive blue light to elicit spatio-temporally defined cellular responses, and their signalling process has been extensively characterized. Here the authors report that the light signal is still transduced in the absence of a conserved Gln residue, thought to be key.
Collapse
|
|
3 |
16 |
11
|
Gleichmann T, Deacon A, Trapani S, Helliwell JR. The solvent structure of concanavalin A analaysed at 2 Å and then 0.94 Å resolution. Acta Crystallogr A 1996. [DOI: 10.1107/s0108767396090137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
|
29 |
|