1
|
Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, Ibbs M, Bliźniak R, Łuczewski Ł, Lamperska K. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci 2018; 14:910-919. [PMID: 30002710 PMCID: PMC6040128 DOI: 10.5114/aoms.2016.63743] [Citation(s) in RCA: 524] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
Cell culture is a widely used in vitro tool for improving our understanding of cell biology, tissue morphology, and mechanisms of diseases, drug action, protein production and the development of tissue engineering. Most research regarding cancer biology is based on experiments using two-dimensional (2D) cell cultures in vitro. However, 2D cultures have many limitations, such as the disturbance of interactions between the cellular and extracellular environments, changes in cell morphology, polarity, and method of division. These disadvantages led to the creation of models which are more closely able to mimic conditions in vivo. One such method is three-dimensional culture (3D). Optimisation of the culture conditions may allow for a better understanding of cancer biology and facilitate the study of biomarkers and targeting therapies. In this review, we compare 2D and 3D cultures in vitro as well as different versions of 3D cultures.
Collapse
|
research-article |
7 |
524 |
2
|
Lange N, Strother SC, Anderson JR, Nielsen FA, Holmes AP, Kolenda T, Savoy R, Hansen LK. Plurality and resemblance in fMRI data analysis. Neuroimage 1999; 10:282-303. [PMID: 10458943 DOI: 10.1006/nimg.1999.0472] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We apply nine analytic methods employed currently in imaging neuroscience to simulated and actual BOLD fMRI signals and compare their performances under each signal type. Starting with baseline time series generated by a resting subject during a null hypothesis study, we compare method performance with embedded focal activity in these series of three different types whose magnitudes and time courses are simple, convolved with spatially varying hemodynamic responses, and highly spatially interactive. We then apply these same nine methods to BOLD fMRI time series from contralateral primary motor cortex and ipsilateral cerebellum collected during a sequential finger opposition study. Paired comparisons of results across methods include a voxel-specific concordance correlation coefficient for reproducibility and a resemblance measure that accommodates spatial autocorrelation of differences in activity surfaces. Receiver-operating characteristic curves show considerable model differences in ranges less than 10% significance level (false positives) and greater than 80% power (true positives). Concordance and resemblance measures reveal significant differences between activity surfaces in both data sets. These measures can assist researchers by identifying groups of models producing similar and dissimilar results, and thereby help to validate, consolidate, and simplify reports of statistical findings. A pluralistic strategy for fMRI data analysis can uncover invariant and highly interactive relationships between local activity foci and serve as a basis for further discovery of organizational principles of the brain. Results also suggest that a pluralistic empirical strategy coupled formally with substantive prior knowledge can help to uncover new brain-behavior relationships that may remain hidden if only a single method is employed.
Collapse
|
|
26 |
104 |
3
|
Martinez BV, Dhahbi JM, Lopez YON, Lamperska K, Golusinski P, Luczewski L, Kolenda T, Atamna H, Spindler SR, Golusinski W, Masternak MM. Circulating small non-coding RNA signature in head and neck squamous cell carcinoma. Oncotarget 2015; 6:19246-63. [PMID: 26057471 PMCID: PMC4662488 DOI: 10.18632/oncotarget.4266] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 12/23/2022] Open
Abstract
The Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common human cancer, causing 350,000 individuals die worldwide each year. The overall prognosis in HNSCC patients has not significantly changed for the last decade. Complete understanding of the molecular mechanisms in HNSCC carcinogenesis could allow an earlier diagnosis and the use of more specific and effective therapies. In the present study we used deep sequencing to characterize small non-coding RNAs (sncRNAs) in serum from HNSCC patients and healthy donors. We identified, for the first time, a multi-marker signature of 3 major classes of circulating sncRNAs in HNSCC, revealing the presence of circulating novel and known miRNAs, and tRNA- and YRNA-derived small RNAs that were significantly deregulated in the sera of HNSCC patients compared to healthy controls. By implementing a triple-filtering approach we identified a subset of highly biologically relevant miRNA-mRNA interactions and we demonstrated that the same genes/pathways affected by somatic mutations in cancer are affected by changes in the abundance of miRNAs. Therefore, one important conclusion from our work is that during cancer development, there seems to be a convergence of oncogenic processes driven by somatic mutations and/or miRNA regulation affecting key cellular pathways.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
82 |
4
|
Guglas K, Bogaczyńska M, Kolenda T, Ryś M, Teresiak A, Bliźniak R, Łasińska I, Mackiewicz J, Lamperska K. lncRNA in HNSCC: challenges and potential. Contemp Oncol (Pozn) 2017; 21:259-266. [PMID: 29416430 PMCID: PMC5798417 DOI: 10.5114/wo.2017.72382] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 01/17/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cause of cancer mortality in the world. Some progress has been made in the therapy of HNSCC, however treatment remains unsatisfactory. Recent studies have shown that different types of long non-coding RNAs (lncRNAs) are dysregulated in HNSCC and correlate with tumor progression, lymph node metastasis, clinical stage and poor prognosis. lncRNAs are a class of functional RNA molecules that can not be translated into proteins but can modulate the activity of transcription factors or regulate changes in chromatin structure. The lncRNAs might have potential of biomarker in HNSCC diagnosis, prognosis, prediction and targeted treatment. In this review we describe the potential role of lncRNAs as new biomarkers and discuss their features including source of origin, extraction methods, stability, detection methods and data normalization and potential function as biomarkers in HNSCC.
Collapse
|
Review |
8 |
46 |
5
|
Kolenda T, Guglas K, Kopczyńska M, Sobocińska J, Teresiak A, Bliźniak R, Lamperska K. Good or not good: Role of miR-18a in cancer biology. Rep Pract Oncol Radiother 2020; 25:808-819. [PMID: 32884453 DOI: 10.1016/j.rpor.2020.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.
Collapse
Key Words
- 5-FU, 5-fluorouracyl
- ACVR2A, activin A receptor type 2A
- AKT, AKT serine/threonine kinase
- AR, androgen receptor
- ATG7, autophagy related 7
- ATM, ATM serine/threonine kinase
- BAX, BCL2 associated Xapoptosis regulator
- BCL2, BCL2 apoptosis regulator
- BCL2L10, BCL2 like 10
- BDNF, brain derived neurotrophic factor
- BLCA, bladder urothelial carcinoma
- BRCA, breast cancer
- Biomarker
- Bp, base pair
- C-myc (MYCBP), MYC binding protein
- CASC2, cancer susceptibility 2
- CD133 (PROM1), prominin 1
- CDC42, cell division cycle 42
- CDKN1, Bcyclin dependent kinase inhibitor 1B
- COAD, colon adenocarcinoma
- Cancer
- Circulating miRNA
- DDR, DNA damage repair
- E2F family (E2F1, E2F2, E2F3), E2F transcription factors
- EBV, Epstein-Barr virus
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERBB (EGFR), epidermal growth factor receptor
- ESCA, esophageal carcinoma
- FENDRR, FOXF1 adjacent non-coding developmental regulatory RNA
- FER1L4, fer-1 like family member 4 (pseudogene)
- GAS5, growth arrest–specific 5
- HIF-1α (HIF1A), hypoxia inducible factor 1 subunit alpha
- HNRNPA1, heterogeneous nuclear ribonucleoprotein A1
- HNSC, head and neck squamous cell carcinoma
- HRR, homologous recombination-based DNA repair
- IFN-γ (IFNG), interferon gamma
- IGF1, insulin like growth factor 1
- IL6, interleukin 6
- IPMK, inositol phosphate multikinase
- KIRC, clear cell kidney carcinoma
- KIRP, kidney renal papillary cell carcinoma
- KRAS, KRAS proto-oncogene, GTPase
- LIHC, liver hepatocellular carcinoma
- LMP1, latent membrane protein 1
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Liquid biopsy
- MAPK, mitogen-activated protein kinase
- MCM7, minichromosome maintenance complex component 7
- MET, mesenchymal-to-epithelial transition
- MTOR, mechanistic target of rapamycin kinase
- N-myc (MYCN), MYCN proto-oncogene, bHLH transcription factor
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOTCH2, notch receptor 2
- Oncogene
- PAAD, pancreatic adenocarcinoma
- PERK (EIF2AK3), eukaryotic translation initiation factor 2 alpha kinase 3
- PI3K (PIK3CA), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
- PIAS3, protein inhibitor of activated STAT 3
- PRAD, prostate adenocarcinoma
- RISC, RNA-induced silencing complex
- SMAD2, SMAD family member 2
- SMG1, SMG1 nonsense mediated mRNA decay associated PI3K related kinase
- SNHG1, small nucleolar RNA host gene 1
- SOCS5, suppressor of cytokine signaling 5
- STAD, stomach adenocarcinoma
- STAT3, signal transducer and activator of transcription 3
- STK4, serine/threonine kinase 4
- Suppressor
- TCGA
- TCGA, The Cancer Genome Atlas
- TGF-β (TGFB1), transforming growth factor beta 1
- TGFBR2, transforming growth factor beta receptor 2
- THCA, papillary thyroid carcinoma
- TNM, Classification of Malignant Tumors: T - tumor / N - lymph nodes / M – metastasis
- TP53, tumor protein p53
- TP53TG1, TP53 target 1
- TRIAP1, p53-regulating inhibitor of apoptosis gene
- TSC1, TSC complex subunit 1
- UCA1, urothelial cancer associated 1
- UCEC, uterine corpus endometrial carcinoma
- UTR, untranslated region
- WDFY3-AS2, WDFY3 antisense RNA 2
- WEE1, WEE1 G2 checkpoint kinase
- WNT family, Wingless-type MMTV integration site family/Wnt family ligands
- ZEB1/ZEB2, zinc finger E-box binding homeobox 1 and 2
- ceRNA, competitive endogenous RNA
- cncRNA, protein coding and non-coding RNA
- lncRNA, long-non coding RNA
- miR-17-92a
- miR-18a
- miRNA
Collapse
|
Review |
5 |
42 |
6
|
Kolenda T, Guglas K, Kopczyńska M, Teresiak A, Bliźniak R, Mackiewicz A, Lamperska K, Mackiewicz J. Oncogenic Role of ZFAS1 lncRNA in Head and Neck Squamous Cell Carcinomas. Cells 2019; 8:cells8040366. [PMID: 31010087 PMCID: PMC6523746 DOI: 10.3390/cells8040366] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with high mortality. The identification of specific HNSCC biomarkers will increase treatment efficacy and limit the toxicity of current therapeutic strategies. Long non-coding RNAs (lncRNAs) are promising biomarkers. Accordingly, here we investigate the biological role of ZFAS1 and its potential as a biomarker in HNSCC. Methods: The expression level of ZFAS1 in HNSCC cell lines was analyzed using qRT-PCR. Based on the HNSCC TCGA data, the ZFAS1 expression profile, clinicopathological features, and expression of correlated genes were analyzed in patient tissue samples. The selected genes were classified according to their biological function using the PANTHER tool. The interaction between lncRNA:miRNA and miRNA:mRNA was tested using available online tools. All statistical analyses were accomplished using GraphPad Prism 5. Results: The expression of ZFAS1 was up-regulated in the metastatic FaDu cell line relative to the less aggressive SCC-25 and SCC-040 and dysplastic DOK cell lines. The TCGA data indicated an up-regulation of ZFAS1 in HNSCCs compared to normal tissue samples. The ZFAS1 levels typically differed depending on the cancer stage and T-stage. Patients with a lower expression of ZFAS1 presented a slightly longer disease-free survival and overall survival. The analysis of genes associated with ZFAS1, as well its targets, indicate that they are linked with crucial cellular processes. In the group of patients with low expression of ZFAS1, we detected the up-regulation of suppressors and down-regulation of genes associated with epithelial-to-mesenchymal transition (EMT) process, metastases, and cancer-initiating cells. Moreover, the negative correlation between ZFAS1 and its host gene, ZNFX1, was observed. The analysis of interactions indicated that ZFAS1 has a binding sequence for miR-150-5p. The expression of ZFAS1 and miR-150-5p is negatively correlated in HNSCC patients. miR-150-5p can regulate the 3′UTR of EIF4E mRNA. In the group of patients with high expression of ZFAS1 and low expression of miR-150-5p, we detected an up-regulation of EIF4E. Conclusions: In HNSCC, ZFAS1 displays oncogenic properties, regulates important processes associated with EMT, cancer-initiating cells, and metastases, and might affect patients’ clinical outcomes. ZFAS1 likely regulates the cell phenotype through miR-150-5p and its downstream targets. Following further validation, ZFAS1 might prove a new and valuable biomarker.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
38 |
7
|
Kolenda T, Guglas K, Ryś M, Bogaczyńska M, Teresiak A, Bliźniak R, Łasińska I, Mackiewicz J, Lamperska KM. Biological role of long non-coding RNA in head and neck cancers. Rep Pract Oncol Radiother 2017; 22:378-388. [PMID: 28794691 DOI: 10.1016/j.rpor.2017.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/26/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) are one of the worst prognosis cancers with high mortality of patients. The treatment strategy is primarily based on surgery and radiotherapy but chemotherapy is also used. Every year the knowledge concerning HNSCC biology is updated with new elements such as the recent discovered molecules - long non-coding RNAs. Long non-coding RNAs are involved in regulatory processes in the cells. It has been revealed that the expression levels of lncRNAs are disturbed in tumor cells what results in the acquisition of their specific phenotype. lncRNAs influence cell growth, cell cycle, cell phenotype, migration and invasion ability as well as apoptosis. Development of the lncRNA panel characteristic for HNSCC and validation of specific lncRNA functions are yet to be elucidated. In this work, we collected available data concerning lncRNAs in HNSCC and characterized their biological role. We believe that the tumor examination, in the context of lncRNA expression, may lead to understanding complex biology of the cancer and improve therapeutic methods in the future.
Collapse
|
Review |
8 |
35 |
8
|
Guglas K, Kołodziejczak I, Kolenda T, Kopczyńska M, Teresiak A, Sobocińska J, Bliźniak R, Lamperska K. YRNAs and YRNA-Derived Fragments as New Players in Cancer Research and Their Potential Role in Diagnostics. Int J Mol Sci 2020; 21:ijms21165682. [PMID: 32784396 PMCID: PMC7460810 DOI: 10.3390/ijms21165682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
YRNAs are a type of short, noncoding RNAs. A total of four different transcripts can be distinguished, which are YRNA1, YRNA3, YRNA4 and YRNA5. All YRNAs are relatively small, made up of about 100 nucleotides each. YRNAs are characterized by a stem-loop structure and each part of that structure carries a different function. YRNAs are transcribed in the nucleus by RNA polymerase III. Then, the YRNA molecule is bound to the polyuridine tail of the La protein responsible for both its nuclear retention and protection from degradation. They also bind to the Ro60 protein, making the molecule more stable. In turn, YRNA-derived small RNAs (YsRNAs) are a class of YRNAs produced in apoptotic cells as a result of YRNA degradation. This process is performed by caspase-3-dependent pathways that form two groups of YsRNAs, with lengths of either approximately 24 or 31 nucleotides. From all four YRNA transcripts, 75 well-described pseudogenes are generated as a result of the mutation. However, available data indicates the formation of up to 1000 pseudogenes. YRNAs and YRNA-derived small RNAs may play a role in carcinogenesis due to their altered expression in cancers and influence on cell proliferation and inflammation. Nevertheless, our knowledge is still limited, and more research is required. The main aim of this review is to describe the current state of knowledge about YRNAs, their function and contribution to carcinogenesis, as well as their potential role in cancer diagnostics. To confirm the promising potential of YRNAs and YRNA-derived fragments as biomarkers, their significant role in several tumor types was taken into consideration.
Collapse
|
Review |
5 |
26 |
9
|
Galus Ł, Michalak M, Lorenz M, Stoińska-Swiniarek R, Tusień Małecka D, Galus A, Kolenda T, Leporowska E, Mackiewicz J. Vitamin D supplementation increases objective response rate and prolongs progression-free time in patients with advanced melanoma undergoing anti-PD-1 therapy. Cancer 2023; 129:2047-2055. [PMID: 37089083 DOI: 10.1002/cncr.34718] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Vitamin D3 is a prohormone with pleiotropic effects, including modulating the functions of the immune system and may affect the effectiveness of anti-PD-1 treatment in patients with cancer. According to the literature, the potential mechanism of vitamin D's influence on the effectiveness of therapy is most likely related to the amount and activity of tumor-infiltrating lymphocytes. There are data showing the effect of vitamin D on cells regulating the activity of CD8 lymphocytes. METHODS A total of 200 patients with advanced melanoma were included in the study. All patients received anti-PD-1 immunotherapy (nivolumab or pembrolizumab) as first-line treatment. Serum vitamin D levels were measured in patients both before and every 12 weeks during treatment. Part of the group had vitamin D measured retrospectively from the preserved serum. The other part of the supplementation group was tested prospectively. RESULTS The response rate in the group with low vitamin D levels and not supplemented was 36.2%, whereas in the group with normal baseline levels or a normal level obtained with supplementation was 56.0% (p = .01). Moreover, progression-free survival in these groups was 5.75 and 11.25 months, respectively (p = .03). In terms of overall survival, there was also a difference in favor of the group with normal vitamin D levels (27 vs. 31.5 months, respectively; p = .39). CONCLUSIONS In our opinion, maintaining the vitamin D level within the normal range during anti-PD-1 immunotherapy in advanced melanoma patients should be a standard procedure allowing the improvement of treatment outcomes.
Collapse
|
|
2 |
24 |
10
|
Lamperska KM, Kozlowski P, Kolenda T, Teresiak A, Blizniak R, Przybyla W, Masternak MM, Golusinski P, Golusinski W. Unpredictable changes of selected miRNA in expression profile of HNSCC. Cancer Biomark 2016; 16:55-64. [PMID: 26484611 DOI: 10.3233/cbm-150540] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The necessity of prediction and treatment outcome improvement of HNSCC needs to find new biomarkers. miRNAs seem to be good candidate for that. OBJECTIVE Analysis of selected 5 miRNAs (let-7d, miR-18a, miR-21, miR-205 and miR-375) as potential biomarkers that allows to distinguish tumor and healthy tissue taken from HNSCC patients. METHODS Tumor and normal epithelial tissues were obtained from 75 HNSCC patients to analyze selected miRNAs. RESULTS Analysis indicated significant increase of miR-21 and miR-205 in tumor when compared with healthy tissue (p= 0.0069 and p= 0.0029, respectively). There was a significant correlation between let-7d and miR-18a. let-7d was down-regulated in 34.67% cases, miR-18a in 29.33%, miR-21 in 20%, miR-205 in 30.67% and miR-375 in 52% cases. At the same time over-expression of let-7d was detected in 18.67% cases, miR-18a in 22.67%, miR-21 in 48%, miR-205 in 41.33% and miR-375 in 52% cases. There was no correlation between miRNA expression and clinical data and the course of illness. CONCLUSION Our study indicated that miR-21 and miR-205 can be used to analyze the clarity of surgical margins and that concomitant changes in the expression of let-7 and miR-18a in tumor tissues might represent important future markers indicating the biology of HNSCC. These observations will help with developing personalization for HNSCC patients' treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
23 |
11
|
Zhi X, Lamperska K, Golusinski P, Schork NJ, Luczewski L, Kolenda T, Golusinski W, Masternak MM. Gene expression analysis of head and neck squamous cell carcinoma survival and recurrence. Oncotarget 2016; 6:547-55. [PMID: 25575813 PMCID: PMC4381614 DOI: 10.18632/oncotarget.2772] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/15/2014] [Indexed: 11/25/2022] Open
Abstract
The squamous cell carcinomas represent about 90 % of all head and neck cancers, ranking the sixth most common human cancer. Approximately 450,000 of new cases of head and neck squamous cell carcinoma (HNSCC) are diagnosed every year. Unfortunately, because of diagnosis at the advanced stages and early metastasis to the lymph nodes, the HNSCC is associated with very high death rate. Identification of signature biomarkers and molecularly targeted therapies could provide more effective and specific cancer treatment, prevent recurrence, and increase survival rate. We used paired tumor and adjacent normal tissue samples to screen with RT² Profiler™ PCR Array Human Cancer PathwayFinderTM . Total of 20 up-regulated genes and two down-regulated genes were screened out. Out of 22 genes, 12 genes were subsequently validated to be significantly altered in the HNSCC; the samples were from all 41 patients. Five year survival and recurrence selected genes that could represent the biomarkers of survival and recurrence of the disease. We believe that comprehensive understanding of the unique genetic characteristics of HNSCC could provide novel diagnostic biomarkers and meet the requirement for molecular-targeted therapy for the HNSCC.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
19 |
12
|
Kozłowska J, Kolenda T, Poter P, Sobocińska J, Guglas K, Stasiak M, Bliźniak R, Teresiak A, Lamperska K. Long Intergenic Non-Coding RNAs in HNSCC: From "Junk DNA" to Important Prognostic Factor. Cancers (Basel) 2021; 13:2949. [PMID: 34204634 PMCID: PMC8231241 DOI: 10.3390/cancers13122949] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma is one of the most common and fatal cancers worldwide. Even a multimodal approach consisting of standard chemo- and radiotherapy along with surgical resection is only effective in approximately 50% of the cases. The rest of the patients develop a relapse of the disease and acquire resistance to treatment. Especially this group of individuals needs novel, personalized, targeted therapy. The first step to discovering such solutions is to investigate the tumor microenvironment, thus understanding the role and mechanism of the function of coding and non-coding sequences of the human genome. In recent years, RNA molecules gained great interest when the complex character of their impact on our biology allowed them to come out of the shadows of the "junk DNA" label. Furthermore, long non-coding RNAs (lncRNA), specifically the intergenic subgroup (lincRNA), are one of the most aberrantly expressed in several malignancies, which makes them particularly promising future diagnostic biomarkers and therapeutic targets. This review contains characteristics of known and validated lincRNAs in HNSCC, such as XIST, MALAT, HOTAIR, HOTTIP, lincRNA-p21, LINC02487, LINC02195, LINC00668, LINC00519, LINC00511, LINC00460, LINC00312, and LINC00052, with a description of their prognostic abilities. Even though much work remains to be done, lincRNAs are important factors in cancer biology that will become valuable biomarkers of tumor stage, outcome prognosis, and contribution to personalized medicine.
Collapse
|
Review |
4 |
17 |
13
|
Kolenda T, Ryś M, Guglas K, Teresiak A, Bliźniak R, Mackiewicz J, Lamperska K. Quantification of long non-coding RNAs using qRT-PCR: comparison of different cDNA synthesis methods and RNA stability. Arch Med Sci 2021; 17:1006-1015. [PMID: 34336028 PMCID: PMC8314425 DOI: 10.5114/aoms.2019.82639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/29/2018] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Long non-coding RNAs (lncRNAs), a class of regulatory RNA molecules, are over 200 nucleotides long and could be used as a new potential biomarker, but their detection methods such as qRT-PCR are still not validated, and the influence of RNA degradation on lncRNA quantification is not clear. In this study, commercially available cDNA synthesis kits were tested and the influence of RNA degradation was compared. MATERIAL AND METHODS Total RNA from FaDu cells was isolated and high quality RNA and highly degraded RNA samples were used. Reverse transcription was performed using three different commercially available kits and quantifications were performed using lncRNA Primer Plate and SYBR Green I Master by LightCycler 96. qRT-PCR was performed using three different cDNA samples and results are presented as the mean Ct values. A p-value < 0.05 was considered to be significant. RESULTS Lower lncRNA Ct values (61/90; 67.78%) after qRT-PCR quantification were observed for cDNA synthesized using random hexamer primers preceded by polyA-tailing and adaptor-anchoring steps. It was observed that 9/90 (10.00%) lncRNAs were not detectable using different cDNA synthesis methods. For 75/90 (83%) lncRNAs, RNA degradation weakly influenced lncRNA Ct values and no differences were observed between high quality RNA and degraded samples. Seventy percent of examined lncRNAs showed significantly different Ct values depending on RNA degradation. CONCLUSIONS cDNA synthesis kits with random hexamer primers preceded by polyA-tailing and adaptor-anchoring steps allows enhancement of lncRNA quantification specificity and sensitivity. In most cases degradation of RNA samples does not affect lncRNA quantification because these molecules have good stability.
Collapse
|
research-article |
4 |
16 |
14
|
Kolenda T, Guglas K, Baranowski D, Sobocińska J, Kopczyńska M, Teresiak A, Bliźniak R, Lamperska K. cfRNAs as biomarkers in oncology - still experimental or applied tool for personalized medicine already? Rep Pract Oncol Radiother 2020; 25:783-792. [PMID: 32904167 PMCID: PMC7451588 DOI: 10.1016/j.rpor.2020.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, the challenges of contemporary oncology are focused mainly on the development of personalized medicine and precise treatment, which could be achieved through the use of molecular biomarkers. One of the biological molecules with great potential are circulating free RNAs (cfRNAs) which are present in various types of body fluids, such as blood, serum, plasma, and saliva. Also, different types of cfRNA particles can be distinguished depending on their length and function: microRNA (miRNA), PIWI-interacting RNA (piRNA), tRNA-derived RNA fragments (tRFs), circular RNA (circRNA), long non-coding RNA (lncRNA), and messenger RNA (mRNA). Moreover, cfRNAs occur in various forms: as a free molecule alone, in membrane vesicles, such as exosomes, or in complexes with proteins and lipids. One of the modern approaches for monitoring patient's condition is a "liquid biopsy" that provides a non-invasive and easily available source of circulating RNAs. Both the presence of specific cfRNA types as well as their concentration are dependent on many factors including cancer type or even reaction to treatment. Despite the possibility of using circulating free RNAs as biomarkers, there is still a lack of validated diagnostic panels, defined protocols for sampling, storing as well as detection methods. In this work we examine different types of cfRNAs, evaluate them as possible biomarkers, and analyze methods of their detection. We believe that further research on cfRNA and defining diagnostic panels could lead to better and faster cancer identification and improve treatment monitoring.
Collapse
|
Review |
5 |
15 |
15
|
Koteluk O, Bielicka A, Lemańska Ż, Jóźwiak K, Klawiter W, Mackiewicz A, Kazimierczak U, Kolenda T. The Landscape of Transmembrane Protein Family Members in Head and Neck Cancers: Their Biological Role and Diagnostic Utility. Cancers (Basel) 2021; 13:cancers13194737. [PMID: 34638224 PMCID: PMC8507526 DOI: 10.3390/cancers13194737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Transmembrane proteins (TMEM) are a large group of integral membrane proteins whose molecular and biological functions are not fully understood. It is known that some of them are involved in tumor formation and metastasis. Here, we performed a panel of TCGA data analyses to investigate the role of different TMEM genes in head and neck squamous cell carcinoma (HNSCC) and define their potential as biomarkers. Based on changes in the expression levels in HNSCC tumors, we selected four TMEM genes: ANO1, TMEM156, TMEM173, and TMEM213 and associated them with patient survival. We also demonstrated that the expression of those TMEMs highly correlates with the enrichment of genes involved in numerous biological processes, especially metastasis formation and immune response. Thus, we propose ANO1, TMEM156, TMEM173, and TMEM213 as new biomarkers and potential targets for personalized therapy of HNSCC. Abstract Background: Transmembrane proteins (TMEM) constitute a large family of proteins spanning the entirety of the lipid bilayer. However, there is still a lack of knowledge about their function or mechanism of action. In this study, we analyzed the expression of selected TMEM genes in patients with head and neck squamous cell carcinoma (HNSCC) to learn their role in tumor formation and metastasis. Materials and Methods: Using TCGA data, we analyzed the expression levels of different TMEMs in both normal and tumor samples and compared those two groups depending on clinical-pathological parameters. We selected four TMEMs whose expression was highly correlated with patient survival status and subjected them to further analysis. The pathway analysis using REACTOME and the gene set enrichment analysis (GSEA) were performed to evaluate the association of those TMEMs with genes involved in hallmarks of cancer as well as in oncogenic and immune-related pathways. In addition, the fractions of different immune cell subpopulations depending on TMEM expression were estimated in analyzed patients. The results for selected TMEMs were validated using GEO data. All analyses were performed using the R package, Statistica, and Graphpad Prism. Results: We demonstrated that 73% of the analyzed TMEMs were dysregulated in HNSCC and depended on tumor localization, smoking, alcohol consumption, or HPV infection. The expression levels of ANO1, TMEM156, TMEM173, and TMEM213 correlated with patient survival. The four TMEMs were also upregulated in HPV-positive patients. The elevated expression of those TMEMs correlated with the enrichment of genes involved in cancer-related processes, including immune response. Specifically, overexpression of TMEM156 and TMEM173 was associated with immune cell mobilization and better survival rates, while the elevated ANO1 expression was linked with metastasis formation and worse survival. Conclusions: In this work, we performed a panel of in silico analyses to discover the role of TMEMs in head and neck squamous cell carcinoma. We found that ANO1, TMEM156, TMEM173, and TMEM213 correlated with clinical status and immune responses in HNSCC patients, pointing them as biomarkers for a better prognosis and treatment. This is the first study describing such the role of TMEMs in HNSCC. Future clinical trials should confirm the potential of those genes as targets for personalized therapy of HNSCC.
Collapse
|
|
4 |
15 |
16
|
Kolenda T, Przybyła W, Kapałczyńska M, Teresiak A, Zajączkowska M, Bliźniak R, Lamperska KM. Tumor microenvironment - Unknown niche with powerful therapeutic potential. Rep Pract Oncol Radiother 2018; 23:143-153. [PMID: 29760589 PMCID: PMC5948324 DOI: 10.1016/j.rpor.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 11/20/2017] [Accepted: 01/20/2018] [Indexed: 12/25/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are in a group of cancers that are the most resistant to treatment. The survival rate of HNSCC patients has been still very low since last 20 years. The existence of relationship between oncogenic and surrounding cells is probably the reason for a poor response to treatment. Fibroblasts are an important element of tumor stroma which increases tumor cells ability to proliferate. Another highly resistance, tumorigenic and metastatic cell population in tumor microenvironment are cancer initiating cells (CICs). The population of cancer initiating cells can be found regardless of differentiation status of cancer and they seem to be crucial for HNSCC development. In this review, we describe the current state of knowledge about HNSCC biological and physiological tumor microenvironment.
Collapse
|
Review |
7 |
14 |
17
|
Kolenda T, Rutkowski P, Michalak M, Kozak K, Guglas K, Ryś M, Galus Ł, Woźniak S, Ługowska I, Gos A, Teresiak A, Mackiewicz A, Lamperska K, Mackiewicz J. Plasma lncRNA expression profile as a prognostic tool in BRAF-mutant metastatic melanoma patients treated with BRAF inhibitor. Oncotarget 2019; 10:3879-3893. [PMID: 31231466 PMCID: PMC6570476 DOI: 10.18632/oncotarget.26989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNA) are dysregulated in many cancer types. Abnormal baseline levels of these lncRNAs display diagnostic and prognostic potential in cancer patients. The aim of this study was to evaluate the prognostic value of plasma lncRNAs in BRAF-mutant advanced melanoma patients treated with a BRAF inhibitor. Total RNA was isolated from plasma samples collected from 58 advanced BRAF-mutant melanoma patients and 15 healthy donors. The expression levels of 90 lncRNAs were estimated using the LncProfiler qPCR Array Kit (SBI) and LightCycler 96 (Roche). LncRNA expression levels correlated with responses to the BRAF inhibitor (vemurafenib) treatment. The patients were stratified into three groups based on their lncRNA levels with various lncRNA expressions (low, medium, and high). A Cox proportional hazards regression model was used to determine the lncRNAs that were significantly associated with both progression-free and overall survivals (PFS and OS, respectively) in patients receiving vemurafenib. The expression level of 12 lncRNAs was down-regulated, while five lncRNAs were up-regulated in melanoma patients compared to healthy donors. Kaplan-Meier analysis showed that upregulation or downregulation of 11 and 16 different lncRNAs were associated with longer median PFS and OS, respectively. Further analysis demonstrated that the baseline lncRNAs for IGF2AS, anti-Peg11, MEG3, Zeb2NAT are independent prognostic factors in BRAF-mutant advanced melanoma patients treated with vemurafenib. Evaluation of plasma lncRNAs expression level for advanced melanoma diagnosis and prognosis evaluation appears to be a safe and valuable method; however, this method requires further validation in larger cohorts and randomized trials.
Collapse
|
Journal Article |
6 |
14 |
18
|
Sobocińska J, Kolenda T, Teresiak A, Badziąg-Leśniak N, Kopczyńska M, Guglas K, Przybyła A, Filas V, Bogajewska-Ryłko E, Lamperska K, Mackiewicz A. Diagnostics of Mutations in MMR/ EPCAM Genes and Their Role in the Treatment and Care of Patients with Lynch Syndrome. Diagnostics (Basel) 2020; 10:diagnostics10100786. [PMID: 33027913 PMCID: PMC7600989 DOI: 10.3390/diagnostics10100786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer (HNPCC), is a disorder caused by an autosomal dominant heterozygous germline mutation in one of the DNA mismatch repair (MMR) genes. Individuals with LS are at an increased risk of developing colorectal and extracolonic cancers, such as endometrial, small bowel, or ovarian. In this review, the mutations involved with LS and their diagnostic methods are described and compared, as are their current uses in clinical decision making. Nowadays, LS diagnosis is based on a review of family medical history, and when necessary, microsatellite instability (MSI) or/and immunohistochemistry (IHC) analyses should be performed. In the case of a lack of MMR protein expression (dMMR) or MSI-H (MSI-High) detection in tumor tissue, molecular genetic testing can be undertaken. More and more genetic testing for LS is based mainly on next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification (MLPA), which provide better and quicker information about the molecular profile of patients as well as individuals at risk. Testing based on these two methods should be the standard and commonly used. The identification of individuals with mutations provides opportunities for the detection of cancer at an early stage as well as the introduction of proper, more effective treatment, which will result in increased patient survival and reduced costs of medical care.
Collapse
|
Review |
5 |
12 |
19
|
Guglas K, Kolenda T, Teresiak A, Kopczyńska M, Łasińska I, Mackiewicz J, Mackiewicz A, Lamperska K. lncRNA Expression after Irradiation and Chemoexposure of HNSCC Cell Lines. Noncoding RNA 2018; 4:ncrna4040033. [PMID: 30441874 PMCID: PMC6315432 DOI: 10.3390/ncrna4040033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cause of cancer mortality in the world. To improve the quality of diagnostics and patients' treatment, new and effective biomarkers are needed. Recent studies have shown that the expression level of different types of long non-coding RNAs (lncRNAs) is dysregulated in HNSCC and correlates with many biological processes. In this study, the response of lncRNAs in HNSCC cell lines after exposure to irradiation and cytotoxic drugs was examined. The SCC-040, SCC-25, FaDu, and Cal27 cell lines were treated with different radiation doses as well as exposed to cisplatin and doxorubicin. The expression changes of lncRNAs after exposure to these agents were checked by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Target prediction was performed using available online tools and classified into specific biological processes and cellular pathways. The results indicated that the irradiation, as well as chemoexposure, causes changes in lncRNA expression and the effect depends on the cell line, type of agents as well as their dose. After irradiation using the dose of 5 Gy significant dysregulation of 4 lncRNAs, 10 Gy-5 lncRNAs, and 20 Gy-3 lncRNAs, respectively, were observed in all cell lines. Only lncRNAs Zfhx2as was down-regulated in all cell lines independently of the dose used. After cisplatin exposure, 14 lncRNAs showed lower and only two higher expressions. Doxorubicin resulted in lower expressions of eight and increased four of lncRNAs. Common effects of cytotoxic drugs were observed in the case of antiPEG11, BACE1AS, PCGEM1, and ST7OT. Analysis of the predicted targets for dysregulated lncRNAs indicated that they are involved in important biological processes, regulating cellular pathways connected with direct response to irradiation or chemoexposure, cellular phenotype, cancer initiating cells, and angiogenesis. Both irradiation and chemoexposure caused specific changes in lncRNAs expression. However, the common effect is potentially important for cellular response to the stress and survival. Further study will show if lncRNAs are useful tools in patients' treatment monitoring.
Collapse
|
Journal Article |
7 |
11 |
20
|
Łasińska I, Kolenda T, Teresiak A, Lamperska KM, Galus Ł, Mackiewicz J. Immunotherapy in Patients with Recurrent and Metastatic Squamous Cell Carcinoma of the Head and Neck. Anticancer Agents Med Chem 2019; 19:290-303. [PMID: 30198439 DOI: 10.2174/1871520618666180910092356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/09/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the most common malignant cancer occurring in the head and neck area, approximately 90% of the cases. Even in the cases of primary radical treatment (surgical, concomitant chemoradiotherapy or radiotherapy alone), subsequent local recurrence or distant metastases are often observed. In patients with recurrent disease who are unable to receive radical treatment, the results of palliative chemotherapy are not satisfactory. In this review, we summarized the standard treatment options, current development of new drugs and future perspectives in the treatment of patients with recurrent locally advanced and/or metastatic HNSCC. METHODS PubMed databases with words 'head and neck cancer treatment', 'immunotherapy in head and neck cancer treatment' were searched and yielded 186512 and 2249 papers respectively. We selected the most cited articles and reports presenting new immunotherapy agents and drug combinations in HNSCC. RESULTS Recently, two new agents been approved in the treatment of recurrent locally advanced and/or metastatic HNSCC. These are immune-checkpoint inhibitors targeting PD1 (nivolumab and pembrolizumab) which are the most active drugs in the second line treatment of advanced HNSCC. Still, the first line 'golden standard' is the chemotherapy regimen (cisplatin, 5-fluorouracyl) combined with cetuximab. Many phase 3 studies are currently ongoing, evaluating the efficacy of combinational treatment-anti-CTLA4 with anti-PD1 or anti-PDL1. Very encouraging results have been shown in early phase studies evaluating the combination of immunecheckpoint inhibitors with tumor microenvironment immunosuppressive inhibitors. CONCLUSION Despite the huge progress in the systemic treatment of patients with recurrent locally advanced and/or metastatic HNSCC, the disease at this stage remains incurable. Undoubtedly, further research in the field of biomarkers for effective immunotherapy is needed in order to select a group of patients whose will benefit from this therapy, as the treatment is still ineffective in most patients.
Collapse
|
Review |
6 |
11 |
21
|
Kolenda T, Guglas K, Teresiak A, Bliźniak R, Lamperska K. Low let-7d and high miR-205 expression levels positively influence HNSCC patient outcome. J Biomed Sci 2019; 26:17. [PMID: 30755200 PMCID: PMC6373017 DOI: 10.1186/s12929-019-0511-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/04/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction Head and neck squamous carcinoma (HNSCC) is one of the most invasive types of cancer with high mortality. A previous study has indicated that low levels of let-7d and miR-205 in HNSCC patients are correlated with poor survival. Let-7d and miR-205 are tumor suppressors and regulators of epithelial-to-mesenchymal transition (EMT). However, it is unclear if let-7d and miR-205 together influence cancer cells. Aim To determine if let-7d and miR-205 expression levels influence HNSCC patient outcome. Methods The TCGA expression data for let-7d, miR-205 and their targets as well as clinical data were downloaded from cBioPortal and starBase v2.0 for 307 patients. The expression levels of let-7d and miR-205 were verified according to clinicopathological parameters. The let-7d and miR-205 high- and low-expression groups as well as disease-free survival (DFS), overall survival (OS) and expression levels of genes related to EMT, cancer stem cells, metastasis, cell cycle, drug response and irradiation response were investigated. Results Let-7d and miR-205 were frequently upregulated in HNSCC compared to normal samples, and ROC analysis showed high discrimination ability for let-7d and miR-205 (area 0.7369 and 0.7739, respectively; p < 0.0001). Differences between expression levels of let-7d or miR-205 and grade, angiolymphatic invasion, perineural invasion and alcohol consumption were indicated. No differences were observed in N-stage, tumor localization, gender or patient age. Patients with lower let-7d levels and higher miR-205 levels had significantly better OS (p = 0.0325) than patients with higher let-7d levels and lower miR-205 levels. In the low let-7d level and high miR-205 level group, a lower percentage of more advanced cancers was observed. The analysis of genes related to EMT, cancer stem cells, metastasis, cell cycle, drug response and irradiation response revealed a distinct phenotype of analyzed groups. Conclusions The present findings indicated that let-7d down-regulation and miR-205 overexpression create a unique cell phenotype with different behavior compared to cells with upregulated let-7d and down-regulated miR-205. Thus, let-7d and miR-205 are good candidates for new HNSCC biomarkers.
Collapse
|
Journal Article |
6 |
11 |
22
|
Guglas K, Kolenda T, Stasiak M, Kopczyńska M, Teresiak A, Ibbs M, Bliźniak R, Lamperska K. YRNAs: New Insights and Potential Novel Approach in Head and Neck Squamous Cell Carcinoma. Cells 2020; 9:cells9051281. [PMID: 32455790 PMCID: PMC7290662 DOI: 10.3390/cells9051281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
YRNAs are a class of non-coding RNAs that are components of the Ro60 ribonucleoprotein particle and are essential for initiation of DNA replication. Ro60 ribonucleoprotein particle is a target of autoimmune antibodies in patients suffering from systemic lupus erythematosus and Sjögren’s syndrome. Deregulation of YRNAs has been confirmed in many cancer types, but not in head and neck squamous cell carcinoma (HNSCC). The main aim of this study was to determine the biological role of YRNAs in HNSCC, the expression of YRNAs, and their usefulness as potential HNSCC biomarkers. Using quantitative reverse transcriptase (qRT)-PCR, the expression of YRNAs was measured in HNSCC cell lines, 20 matched cancer tissues, and 70 FFPETs (Formaline-Fixed Paraffin-Embedded Tissue) from HNSCC patients. Using TCGA (The Cancer Genome Atlas) data, an analysis of the expression levels of selected genes, and clinical-pathological parameters was performed. The expression of low and high YRNA1 expressed groups were analysed using gene set enrichment analysis (GSEA). YRNA1 and YRNA5 are significantly downregulated in HNSCC cell lines. YRNA1 was found to be significantly downregulated in patients’ tumour sample. YRNAs were significantly upregulated in T4 stage. YRNA1 showed the highest sensitivity, allowing to distinguish healthy from cancer tissue. An analysis of TCGA data revealed that expression of YRNA1 was significantly altered in the human papilloma virus (HPV) infection status. Patients with medium or high expression of YRNA1 showed better survival outcomes. It was noted that genes correlated with YRNA1 were associated with various processes occurring during cancerogenesis. The GSEA analysis showed high expression enrichment in eight vital processes for cancer development. YRNA1 influence patients’ survival and could be used as an HNSCC biomarker. YRNA1 seems to be a good potential biomarker for HNSCC, however, more studies must be performed and these observations should be verified using an in vitro model.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
8 |
23
|
Grzechowiak I, Graś J, Szymańska D, Biernacka M, Guglas K, Poter P, Mackiewicz A, Kolenda T. The Oncogenic Roles of PTTG1 and PTTG2 Genes and Pseudogene PTTG3P in Head and Neck Squamous Cell Carcinomas. Diagnostics (Basel) 2020; 10:diagnostics10080606. [PMID: 32824814 PMCID: PMC7459614 DOI: 10.3390/diagnostics10080606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Head and neck squamous cell carcinomas are a group of heterogeneous diseases that occur in the mouth, pharynx and larynx and are characterized by poor prognosis. A low overall survival rate leads to a need to develop biomarkers for early head and neck squamous cell carcinomas detection, accurate prognosis and appropriate selection of therapy. Therefore, in this paper, we investigate the biological role of the PTTG3P pseudogene and associated genes PTTG1 and PTTG2 and their potential use as biomarkers. Methods: Based on TCGA data and the UALCAN database, PTTG3P, PTTG1 and PTTG2 expression profiles and clinicopathological features with TP53 gene status as well as expression levels of correlated genes were analyzed in patients’ tissue samples. The selected genes were classified according to their biological function using the PANTHER tool. Gene Set Enrichment Analysis software was used for functional enrichment analysis. All statistical analyses were performed using GraphPad Prism 5. Results: In head and neck squamous cell carcinomas, significant up-regulation of the PTTG3P pseudogene, PTTG1 and PTTG2 genes’ expression between normal and cancer samples were observed. Moreover, the expression of PTTG3P, PTTG1 and PTTG2 depends on the type of mutation in TP53 gene, and they correlate with genes from p53 pathway. PTTG3P expression was significantly correlated with PTTG1 as well as PTTG2, as was PTTG1 expression with PTTG2. Significant differences between expression levels of PTTG3P, PTTG1 and PTTG2 in head and neck squamous cell carcinomas patients were also observed in clinicopathological contexts. The contexts taken into consideration included: T-stage for PTTG3P; grade for PTTG3, PTTG1 and PTTG2; perineural invasion and lymph node neck dissection for PTTG1 and HPV p16 status for PTTG3P, PTTG1 and PTTG2. A significantly longer disease-free survival for patients with low expressions of PTTG3P and PTTG2, as compared to high expression groups, was also observed. Gene Set Enrichment Analysis indicated that the PTTG3 high-expressing group of patients have the most deregulated genes connected with DNA repair, oxidative phosphorylation and peroxisome pathways. For PTTG1, altered genes are from DNA repair groups, Myc targets, E2F targets and oxidative phosphorylation pathways, while for PTTG2, changes in E2F targets, G2M checkpoints and oxidative phosphorylation pathways are indicated. Conclusions: PTTG3P and PTTG2 can be used as a prognostic biomarker in head and neck squamous cell carcinomas diagnostics. Moreover, patients with high expressions of PTTG3P, PTTG1 or PTTG2 have worse outcomes due to upregulation of oncogenic pathways and more aggressive phenotypes.
Collapse
|
Journal Article |
5 |
6 |
24
|
Kolenda T, Paszkowska A, Braska A, Kozłowska-Masłoń J, Guglas K, Poter P, Wojtczak P, Bliźniak R, Lamperska K, Teresiak A. Host gene and its guest: short story about relation of long-noncoding MIR31HG transcript and microRNA miR-31. Rep Pract Oncol Radiother 2023; 28:114-134. [PMID: 37122913 PMCID: PMC10132190 DOI: 10.5603/rpor.a2023.0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 05/02/2023] Open
Abstract
Epigenetics is the changes in a cellular phenotype without changes in the genotype. This term is not limited only to the modification of chromatin and DNA but also relates to some RNAs, like non-coding RNAs (ncRNAs), both short and long RNAs (lncRNAs) acting as molecular modifiers. Mobile RNAs, as a free form or encapsulated in exosomes, can regulate neighboring cells or be placed in distant locations. It underlines the vast capacity of ncRNAs as epigenetic elements of transmission information and message of life. One of the amazing phenomena is long non-coding microRNA-host-genes (lnc-MIRHGs) whose processed transcripts function as lncRNAs and also as short RNAs named microRNAs (miRNAs). MIR31HG functions as a modulator of important biological and cellular processes including cell proliferation, apoptosis, cell cycle regulation, EMT process, metastasis, angiogenesis, hypoxia, senescence, and inflammation. However, in most cases, the role of MIR31HG is documented only by one study and there is a lack of exact description of molecular pathways implicated in these processes, and for some of them, such as response to irradiation, no studies have been done. In this review, MIR31HG, as an example of lnc-MIRHGs, was described in the context of its known function and its potential uses as a biomarker in oncology.
Collapse
|
Review |
2 |
5 |
25
|
Kozłowska J, Kozioł K, Stasiak M, Obacz J, Guglas K, Poter P, Mackiewicz A, Kolenda T. The role of NEAT1 lncRNA in squamous cell carcinoma of the head and neck is still difficult to define. Contemp Oncol (Pozn) 2020; 24:96-105. [PMID: 32774134 PMCID: PMC7403767 DOI: 10.5114/wo.2020.97635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Nuclear paraspeckle assembly transcript 1 (NEAT1) is considered an oncogene in various cancers, but the role in head and neck squamous cell carcinomas (HNSCC) is not clear. MATERIAL AND METHODS Expression of NEAT1 in HNSCC patients' samples and cell lines was analysed using qRT-PCR. The TCGA expression data of NEAT1 were analysed depending on the clinicopathological parameters and tumour localisation. Correlation and gene set enrichment analysis (GSEA) were conducted, and the results were analysed using the REACTOME and GeneMANIA tools. All statistical analyses were carried out using GraphPad Prism 5 and Statistica 13. RESULTS The NEAT1 was up-regulated in some patients' samples and HNSCC cell lines. Moreover, TCGA data analysis indicated that the expression of NEAT1 was up-regulated in tumour tissue in most of the analysed TCGA cancers, including HNSCC. There were no significant differences in levels of NEAT1 between various tumour localisations. Overall survival of individuals with high expression of NEAT1 was slightly longer than in the low-expression group (p = 0.0553). Analysis of genes that positively and negatively correlated with NEAT1 indicated that they are involved in mRNA metabolism and cellular transport. Moreover, the GSEA revealed that in patients with low NEAT1, the most up-regulated genes were in clusters associated with the cAMP-dependent pathway, the MYC pathway, unfolded protein response, the MTORC1 signalling pathway, oxidative phosphorylation, and DNA repair. CONCLUSIONS Patients with low expression of NEAT1 display worse overall survival, presumably due to up-regulation of certain oncogenic signalling pathways that are important for cancerogenesis.
Collapse
|
research-article |
5 |
5 |