1
|
Kondej M, Wróbel TM, Silva AG, Stępnicki P, Koszła O, Kędzierska E, Bartyzel A, Biała G, Matosiuk D, Loza MI, Castro M, Kaczor AA. Synthesis, pharmacological and structural studies of 5-substituted-3-(1-arylmethyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles as multi-target ligands of aminergic GPCRs. Eur J Med Chem 2019; 180:673-689. [DOI: 10.1016/j.ejmech.2019.07.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023]
|
|
6 |
15 |
2
|
Wróbel TM, Kiełbus M, Kaczor AA, Kryštof V, Karczmarzyk Z, Wysocki W, Fruziński A, Król SK, Grabarska A, Stepulak A, Matosiuk D. Discovery of nitroaryl urea derivatives with antiproliferative properties. J Enzyme Inhib Med Chem 2015; 31:608-18. [PMID: 26114307 DOI: 10.3109/14756366.2015.1057716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A series of urea derivatives bearing nitroaryl moiety has been synthesized and assayed for their potential antiproliferative activities. Some of the tested compounds displayed activity in RK33 laryngeal cancer cells and TE671 rhabdomyosarcoma cells while being generally less toxic to healthy HSF human fibroblasts cells. One compound was demonstrated to be a moderate CDK2 inhibitor with IC50 = 14.3 µM. Its structure was solved by an X-ray crystallography and molecular modelling was performed to determine structure-activity relationship. Obtained compounds constitute novel structures and generally demonstrated greater cytotoxicity in comparison to cisplatin. This study offers new structural motifs with potential for further development.
Collapse
|
Journal Article |
10 |
13 |
3
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
|
Review |
2 |
13 |
4
|
Jastrzębski MK, Kaczor AA, Wróbel TM. Methods of Lysergic Acid Synthesis-The Key Ergot Alkaloid. Molecules 2022; 27:7322. [PMID: 36364148 PMCID: PMC9654825 DOI: 10.3390/molecules27217322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
Ergot is the spore form of the fungus Claviceps purpurea. Ergot alkaloids are indole compounds that are biosynthetically derived from L-tryptophan and represent the largest group of fungal nitrogen metabolites found in nature. The common part of ergot alkaloids is lysergic acid. This review shows the importance of lysergic acid as a representative of ergot alkaloids. The subject of ergot and its alkaloids is presented, with a particular focus on lysergic acid. All methods of total lysergic acid synthesis-through Woodward, Hendrickson, and Szantay intermediates and Heck coupling methods-are presented. The topic of biosynthesis is also discussed.
Collapse
|
Review |
3 |
9 |
5
|
Wróbel TM, Rogova O, Sharma K, Rojas Velazquez MN, Pandey AV, Jørgensen FS, Arendrup FS, Andersen KL, Björkling F. Synthesis and Structure–Activity Relationships of Novel Non-Steroidal CYP17A1 Inhibitors as Potential Prostate Cancer Agents. Biomolecules 2022; 12:biom12020165. [PMID: 35204665 PMCID: PMC8961587 DOI: 10.3390/biom12020165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Twenty new compounds, targeting CYP17A1, were synthesized, based on our previous work on a benzimidazole scaffold, and their biological activity evaluated. Inhibition of CYP17A1 is an important modality in the treatment of prostate cancer, which remains the most abundant cancer type in men. The biological assessment included CYP17A1 hydroxylase and lyase inhibition, CYP3A4 and P450 oxidoreductase (POR) inhibition, as well as antiproliferative activity in PC3 prostate cancer cells. The most potent compounds were selected for further analyses including in silico modeling. This combined effort resulted in a compound (comp 2, IC50 1.2 µM, in CYP17A1) with a potency comparable to abiraterone and selectivity towards the other targets tested. In addition, the data provided an understanding of the structure–activity relationship of this novel non-steroidal compound class.
Collapse
|
|
3 |
7 |
6
|
Wróbel TM, Kosikowska U, Kaczor AA, Andrzejczuk S, Karczmarzyk Z, Wysocki W, Urbańczyk-Lipkowska Z, Morawiak M, Matosiuk D. Synthesis, Structural Studies and Molecular Modelling of a Novel Imidazoline Derivative with Antifungal Activity. Molecules 2015; 20:14761-76. [PMID: 26287137 PMCID: PMC6332182 DOI: 10.3390/molecules200814761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/14/2015] [Accepted: 08/10/2015] [Indexed: 12/19/2022] Open
Abstract
Six novel imidazoline derivatives were synthesized and tested in antifungal assays. One of the compounds, N-cyclohexyl-2-imino-3-(4-nitrophenyl)imidazolidine-1-carboxamide showed moderate activity against several clinical strains of Candida albicans. Its structure was solved by X-ray crystallography and its mode of action was deduced using molecular modelling. It was found to be similar to that of fluconazole. The potential for further optimization including SAR of the compound is briefly discussed.
Collapse
|
research-article |
10 |
7 |
7
|
Gaiser BI, Danielsen M, Marcher-Rørsted E, Røpke Jørgensen K, Wróbel TM, Frykman M, Johansson H, Bräuner-Osborne H, Gloriam DE, Mathiesen JM, Sejer Pedersen D. Probing the Existence of a Metastable Binding Site at the β 2-Adrenergic Receptor with Homobivalent Bitopic Ligands. J Med Chem 2019; 62:7806-7839. [PMID: 31298548 DOI: 10.1021/acs.jmedchem.9b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we report the development of bitopic ligands aimed at targeting the orthosteric binding site (OBS) and a metastable binding site (MBS) within the same receptor unit. Previous molecular dynamics studies on ligand binding to the β2-adrenergic receptor (β2AR) suggested that ligands pause at transient, less-conserved MBSs. We envisioned that MBSs can be regarded as allosteric binding sites and targeted by homobivalent bitopic ligands linking two identical pharmacophores. Such ligands were designed based on docking of the antagonist (S)-alprenolol into the OBS and an MBS and synthesized. Pharmacological characterization revealed ligands with similar potency and affinity, slightly increased β2/β1AR-selectivity, and/or substantially slower β2AR off-rates compared to (S)-alprenolol. Truncated bitopic ligands suggested the major contribution of the metastable pharmacophore to be a hydrophobic interaction with the β2AR, while the linkers alone decreased the potency of the orthosteric fragment. Altogether, the study underlines the potential of targeting MBSs for improving the pharmacological profiles of ligands.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
7 |
8
|
Wróbel TM, Rogova O, Andersen KL, Yadav R, Brixius-Anderko S, Scott EE, Olsen L, Jørgensen FS, Björkling F. Discovery of Novel Non-Steroidal Cytochrome P450 17A1 Inhibitors as Potential Prostate Cancer Agents. Int J Mol Sci 2020; 21:ijms21144868. [PMID: 32660148 PMCID: PMC7402352 DOI: 10.3390/ijms21144868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The current study presents the design, synthesis, and evaluation of novel cytochrome P450 17A1 (CYP17A1) ligands. CYP17A1 is a key enzyme in the steroidogenic pathway that produces androgens among other steroids, and it is implicated in prostate cancer. The obtained compounds are potent enzyme inhibitors (sub µM) with antiproliferative activity in prostate cancer cell lines. The binding mode of these compounds is also discussed.
Collapse
|
Journal Article |
5 |
5 |
9
|
Kondej M, Wróbel TM, Targowska-Duda KM, Martínez AL, Koszła O, Stępnicki P, Zięba A, Paz A, Wronikowska-Denysiuk O, Loza MI, Castro M, Kaczor AA. Multi-target derivatives of D2AAK1 as potential antipsychotics - the effect of the substitution in the indole moiety. ChemMedChem 2022; 17:e202200238. [PMID: 35610178 DOI: 10.1002/cmdc.202200238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a complex disease which is best treated with multi-target drugs, such as atypical antipsychotics. Previously, using structure-based virtual screening we found a virtual hit D2AAK1 with nanomolar affinity to dopamine and serotonin receptors important in schizophrenia pharmacotherapy. As a part of optimization campaign of D2AAK1 we obtained its 17 derivatives also displaying a multi-target profile. Selected compounds were tested against off-targets in schizophrenia, i.e. histamine H 1 receptor and muscarinic M 1 receptor and did not display considerable affinity to these receptors. Two most promising compounds were subjected to behavioral studies. These compounds decreased amphetamine-induced hyperactivity in mice which indicates their antipsychotic potential. The compounds did not interfere with the memory consolidation in mice as determined in the passive avoidance test. The favorable pharmacological profile of the compounds was rationalized using molecular modeling.
Collapse
|
|
3 |
5 |
10
|
Bartuzi D, Wróbel TM, Kaczor AA, Matosiuk D. Tuning Down the Pain - An Overview of Allosteric Modulation of Opioid Receptors: Mechanisms of Modulation, Allosteric Sites, Modulator Syntheses. Curr Top Med Chem 2020; 20:2852-2865. [PMID: 32479245 DOI: 10.2174/1568026620666200601155451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/09/2023]
Abstract
Opioid signaling plays a central role in pain perception. As such, it remains the main target in the development of antinociceptive agents, despite serious side effects involved. In recent years, hopes for improved opioid painkillers are rising, together with our understanding of allosterism and biased signaling mechanisms. In this review, we focus on recently discovered allosteric modulators of opioid receptors, insights into phenomena underlying their action, as well as on how they extend our understanding of mechanisms of previously known compounds. A brief overlook of their synthesis is also presented.
Collapse
|
Review |
5 |
3 |
11
|
Koszła O, Sołek P, Woźniak S, Kędzierska E, Wróbel TM, Kondej M, Archała A, Stępnicki P, Biała G, Matosiuk D, Kaczor AA. The Antipsychotic D2AAK1 as a Memory Enhancer for Treatment of Mental and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E8849. [PMID: 33238370 PMCID: PMC7700684 DOI: 10.3390/ijms21228849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022] Open
Abstract
The treatment of memory impairments associated with the central nervous system diseases remains an unmet medical need with social and economic implications. Here we show, that a multi-target ligand of aminergic G protein-coupled receptors with antipsychotic activity in vivo (D2AAK1) stimulates neuron growth and survival and promotes neuron integrity. We focused on the multilevel evaluation of the D2AAK1-related effects on neurons in terms of behavioral, cellular, molecular, and biochemical features in vivo and in vitro, such as memory-related responses, locomotor activity, tissue sections analysis, metabolic activity, proliferation level, neurons morphology, and proteins level involved in intracellular signaling pathways. In silico studies indicate that activation of calcium/calmodulin-dependent protein kinase I (CaMKI) may underline some of the observed activities of the compound. Furthermore, the compound increases hippocampal neuron proliferation via the activation of neurotrophic factors and cooperating signals responsible for cell growth and proliferation. D2AAK1 improves memory and learning processes in mice after both acute and chronic administration. D2AAK1 also causes an increase in the number of hippocampal pyramidal neurons after chronic administration. Because of its neuroprotective properties and pro-cognitive activity in behavioral studies D2AAK1 has the potential for the treatment of memory disturbances in neurodegenerative and mental diseases.
Collapse
|
research-article |
5 |
3 |
12
|
Targowska-Duda KM, Maj M, Drączkowski P, Budzyńska B, Boguszewska-Czubara A, Wróbel TM, Laitinen T, Kaczmar P, Poso A, Kaczor AA. WaterMap guided structure-based virtual screening for acetylcholinesterase inhibitors. ChemMedChem 2022; 17:e202100721. [PMID: 35157366 DOI: 10.1002/cmdc.202100721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/11/2022] [Indexed: 11/11/2022]
Abstract
Structure-based virtual screening of the Enamine database of 1.7 million compounds followed by WaterMap calculations (a molecular dynamics simulation-based method) was applied to identify novel AChE inhibitors. The inhibitory potency of 29 selected compounds against electric eel (ee) AChE was determined using the Ellman's method. Three compounds were found active (success rate 10%). For the most potent compound (~40% of inhibition at 10 μM), 20 derivatives were discovered based on the Enamine similarity search. Finally, five compounds were found promising (IC 50 ranged from 6.3 µM to 17.5 µM) inhibitors of AChE. The performed similarity and fragment analysis confirmed significant structural novelty of novel AChE inhibitors. Toxicity/safety of selected compounds was determined in zebrafish model.
Collapse
|
|
3 |
1 |
13
|
Wróbel TM, Sharma K, Mannella I, Oliaro-Bosso S, Nieckarz P, Du Toit T, Voegel CD, Rojas Velazquez MN, Yakubu J, Matveeva A, Therkelsen S, Jørgensen FS, Pandey AV, Pippione AC, Lolli ML, Boschi D, Björkling F. Exploring the Potential of Sulfur Moieties in Compounds Inhibiting Steroidogenesis. Biomolecules 2023; 13:1349. [PMID: 37759751 PMCID: PMC10526780 DOI: 10.3390/biom13091349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
This study reports on the synthesis and evaluation of novel compounds replacing the nitrogen-containing heterocyclic ring on the chemical backbone structure of cytochrome P450 17α-hydroxylase/12,20-lyase (CYP17A1) inhibitors with a phenyl bearing a sulfur-based substituent. Initial screening revealed compounds with marked inhibition of CYP17A1 activity. The selectivity of compounds was thereafter determined against cytochrome P450 21-hydroxylase, cytochrome P450 3A4, and cytochrome P450 oxidoreductase. Additionally, the compounds showed weak inhibitory activity against aldo-keto reductase 1C3 (AKR1C3). The compounds' impact on steroid hormone levels was also assessed, with some notable modulatory effects observed. This work paves the way for developing more potent dual inhibitors specifically targeting CYP17A1 and AKR1C3.
Collapse
|
research-article |
2 |
1 |
14
|
Zięba A, Bartuzi D, Stępnicki P, Matosiuk D, Wróbel TM, Laitinen T, Castro M, Kaczor AA. Discovery and in vitro Evaluation of Novel Serotonin 5-HT 2A Receptor Ligands Identified Through Virtual Screening. ChemMedChem 2024; 19:e202400080. [PMID: 38619283 DOI: 10.1002/cmdc.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
The 5-HT2A receptor is a molecular target of high pharmacological importance. Ligands of this protein, particularly atypical antipsychotics, are useful in the treatment of numerous mental disorders, including schizophrenia and major depressive disorder. Structure-based virtual screening using a 5-HT2A receptor complex was performed to identify novel ligands for the 5-HT2A receptor, serving as potential antidepressants. From the Enamine screening library, containing over 4 million compounds, 48 molecules were selected for subsequent experimental validation. These compounds were tested against the 5-HT2A receptor in radioligand binding assays. From the tested batch, six molecules were identified as ligands of the main molecular target and were forwarded to a more detailed in vitro profiling. This included radioligand binding assays at 5-HT1A, 5-HT7, and D2 receptors and functional studies at 5-HT2A receptors. These compounds were confirmed to show a binding affinity for at least one of the targets tested in vitro. The success rate for the inactive template-based screening reached 17 %, while it was 9 % for the active template-based screening. Similarity and fragment analysis indicated the structural novelty of the identified compounds. Pharmacokinetics for these molecules was determined using in silico approaches.
Collapse
|
|
1 |
|
15
|
Kaczor AA, Wróbel TM, Bartuzi D. Allosteric Modulators of Dopamine D 2 Receptors for Fine-Tuning of Dopaminergic Neurotransmission in CNS Diseases: Overview, Pharmacology, Structural Aspects and Synthesis. Molecules 2022; 28:molecules28010178. [PMID: 36615372 PMCID: PMC9822192 DOI: 10.3390/molecules28010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays a hot topic in medicinal chemistry. Allosteric modulators, i.e., compounds which bind in a receptor site topologically distinct from orthosteric sites, exhibit a number of advantages. They are more selective, safer and display a ceiling effect which prevents overdosing. Allosteric modulators of dopamine D2 receptor are potential drugs against a number of psychiatric and neurological diseases, such as schizophrenia and Parkinson's disease. In this review, an insightful summary of current research on D2 receptor modulators is presented, ranging from their pharmacology and structural aspects of ligand-receptor interactions to their synthesis.
Collapse
|
review-article |
3 |
|
16
|
Stępnicki P, Wośko S, Bartyzel A, Zięba A, Bartuzi D, Szałaj K, Wróbel TM, Fornal E, Carlsson J, Kędzierska E, Poleszak E, Castro M, Kaczor AA. Development and Characterization of Novel Selective, Non-Basic Dopamine D 2 Receptor Antagonists for the Treatment of Schizophrenia. Molecules 2023; 28:molecules28104211. [PMID: 37241951 DOI: 10.3390/molecules28104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The dopamine D2 receptor, which belongs to the family of G protein-coupled receptors (GPCR), is an important and well-validated drug target in the field of medicinal chemistry due to its wide distribution, particularly in the central nervous system, and involvement in the pathomechanism of many disorders thereof. Schizophrenia is one of the most frequent diseases associated with disorders in dopaminergic neurotransmission, and in which the D2 receptor is the main target for the drugs used. In this work, we aimed at discovering new selective D2 receptor antagonists with potential antipsychotic activity. Twenty-three compounds were synthesized, based on the scaffold represented by the D2AAK2 compound, which was discovered by our group. This compound is an interesting example of a D2 receptor ligand because of its non-classical binding to this target. Radioligand binding assays and SAR analysis indicated structural modifications of D2AAK2 that are possible to maintain its activity. These findings were further rationalized using molecular modeling. Three active derivatives were identified as D2 receptor antagonists in cAMP signaling assays, and the selected most active compound 17 was subjected to X-ray studies to investigate its stable conformation in the solid state. Finally, effects of 17 assessed in animal models confirmed its antipsychotic activity in vivo.
Collapse
|
|
2 |
|
17
|
Wróbel TM, Bartuzi D, Kaczor AA. Secondary Binding Site of CYP17A1 in Enhanced Sampling Simulations. J Chem Inf Model 2024; 64:7679-7686. [PMID: 39325660 PMCID: PMC11480979 DOI: 10.1021/acs.jcim.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Androgens like testosterone and dihydrotestosterone play a key role in prostate cancer progression, making the enzyme CYP17A1, essential for androgen synthesis, a crucial therapeutic target. Recent studies have revealed electron density at the substrate entry channel, suggesting the presence of a secondary binding site. In this study, we calculated the binding free energy landscape of known ligands at this site using Funnel Metadynamics. Our results characterize this binding site and indicate that nonheme-interacting ligands could effectively bind to CYP17A1, providing a novel approach to the design of CYP17A1 inhibitors.
Collapse
|
research-article |
1 |
|
18
|
Stępnicki P, Wronikowska-Denysiuk O, Zięba A, Targowska-Duda KM, Bartyzel A, Wróbel MZ, Wróbel TM, Szałaj K, Chodkowski A, Mirecka K, Budzyńska B, Fornal E, Turło J, Castro M, Kaczor AA. Novel multi-target ligands of dopamine and serotonin receptors for the treatment of schizophrenia based on indazole and piperazine scaffolds-synthesis, biological activity, and structural evaluation. J Enzyme Inhib Med Chem 2023; 38:2209828. [PMID: 37184096 DOI: 10.1080/14756366.2023.2209828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Schizophrenia is a chronic mental disorder that is not satisfactorily treated with available antipsychotics. The presented study focuses on the search for new antipsychotics by optimising the compound D2AAK3, a multi-target ligand of G-protein-coupled receptors (GPCRs), in particular D2, 5-HT1A, and 5-HT2A receptors. Such receptor profile may be beneficial for the treatment of schizophrenia. Compounds 1-16 were designed, synthesised, and subjected to further evaluation. Their affinities for the above-mentioned receptors were assessed in radioligand binding assays and efficacy towards them in functional assays. Compounds 1 and 10, selected based on their receptor profile, were subjected to in vivo tests to evaluate their antipsychotic activity, and effect on memory and anxiety processes. Molecular modelling was performed to investigate the interactions of the studied compounds with D2, 5-HT1A, and 5-HT2A receptors on the molecular level. Finally, X-ray study was conducted for compound 1, which revealed its stable conformation in the solid state.
Collapse
|
|
2 |
|
19
|
Stępnicki P, Targowska-Duda KM, Martínez AL, Zięba A, Wronikowska-Denysiuk O, Wróbel MZ, Bartyzel A, Trzpil A, Wróbel TM, Chodkowski A, Mirecka K, Karcz T, Szczepańska K, Loza MI, Budzyńska B, Turło J, Handzlik J, Fornal E, Poleszak E, Castro M, Kaczor AA. Discovery of novel arylpiperazine-based DA/5-HT modulators as potential antipsychotic agents – Design, synthesis, structural studies and pharmacological profiling. Eur J Med Chem 2023; 252:115285. [PMID: 37027998 DOI: 10.1016/j.ejmech.2023.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Schizophrenia is a mental disorder with a complex pathomechanism involving many neurotransmitter systems. Among the currently used antipsychotics, classical drugs acting as dopamine D2 receptor antagonists, and drugs of a newer generation, the so-called atypical antipsychotics, can be distinguished. The latter are characterized by a multi-target profile of action, affecting, apart from the D2 receptor, also serotonin receptors, in particular 5-HT2A and 5-HT1A. Such profile of action is considered superior in terms of both efficacy in treating symptoms and safety. In the search for new potential antipsychotics of such atypical receptor profile, an attempt was made to optimize the arylpiperazine based virtual hit, D2AAK3, which in previous studies displayed an affinity for D2, 5-HT1A and 5-HT2A receptors, and showed antipsychotic activity in vivo. In this work, we present the design of D2AAK3 derivatives (1-17), their synthesis, and structural and pharmacological evaluation. The obtained compounds show affinities for the receptors of interest and their efficacy as antagonists/agonists towards them was confirmed in functional assays. For the selected compound 11, detailed structural studies were carried out using molecular modeling and X-ray methods. Additionally, ADMET parameters and in vivo antipsychotic activity, as well as influence on memory and anxiety processes were evaluated in mice, which indicated good therapeutic potential and safety profile of the studied compound.
Collapse
|
|
2 |
|
20
|
Wróbel TM, Grudzińska A, Yakubu J, du Toit T, Sharma K, Harrington JC, Björkling F, Jørgensen FS, Pandey AV. Pyridine indole hybrids as novel potent CYP17A1 inhibitors. J Enzyme Inhib Med Chem 2025; 40:2463014. [PMID: 39950830 PMCID: PMC11834790 DOI: 10.1080/14756366.2025.2463014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent malignancies affecting men worldwide, and androgen deprivation therapy (ADT) is a primary treatment approach. CYP17A1 inhibitors like abiraterone target the steroidogenic pathway to reduce androgen levels, but their clinical efficacy is limited by drug resistance and adverse effects. This study reports the synthesis and evaluation of novel CYP17A1 inhibitors derived from a previously identified hit compound. Several analogs were synthesised, including an unexpected di-cyano derivative, which demonstrated increased potency against CYP17A1 compared to abiraterone. Biological assays revealed that these compounds significantly inhibited CYP17A1 enzymatic activity and altered steroid biosynthesis. Among the newly synthesised inhibitors, compound 11 showed the highest potency (IC50 = 4 nM) and the related compound 14 presented a template for further development. A combined docking and molecular dynamics approach was used to identify the possible target binding modes of the compounds.
Collapse
|
research-article |
1 |
|
21
|
Kaczor AA, Wojtunik-Kulesza K, Wróbel TM, Matosiuk D, Pitucha M. 5-Methoxy-1-methyl-2-{[4-(2-hydroxyphenyl)piperazin-1-yl]methyl}-1Hindole (KAD22) with Antioxidant Activity. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210119121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Compound KAD22 (5-methoxy-1-methyl-2-[4-(2-hydroxyphenyl)piperazin-1-yl]methyl-1H-indole) was designed as a potential dopamine D2 receptor agonist with antioxidant activity for possible treatment of Parkinson’s disease.
The compound was obtained from 5-methoxy-1-methyl-1H-indole-2-carbaldehyde and 2-(piperazin-1-yl)phenol. KAD22
showed no affinity to dopamine D2 receptor but it is a potent antioxidant. Experimental and computational structural studies
(conformational analysis, HOMO and LUMO orbitals, electrostatic potential map, non-covalent interaction plot, spectral
properties, ligand-receptor interactions) of KAD22 were performed to address its biological activity.
Collapse
|
|
3 |
|
22
|
Gaiser BI, Danielsen M, Xu X, Røpke Jørgensen K, Fronik P, Märcher-Rørsted E, Wróbel TM, Liu X, Mosolff Mathiesen J, Sejer Pedersen D. Bitopic Ligands Support the Presence of a Metastable Binding Site at the β 2 Adrenergic Receptor. J Med Chem 2024; 67:11053-11068. [PMID: 38952152 DOI: 10.1021/acs.jmedchem.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Metastable binding sites (MBS) have been observed in a multitude of molecular dynamics simulations and can be considered low affinity allosteric binding sites (ABS) that function as stepping stones as the ligand moves toward the orthosteric binding site (OBS). Herein, we show that MBS can be utilized as ABS in ligand design, resulting in ligands with improved binding kinetics. Four homobivalent bitopic ligands (1-4) were designed by molecular docking of (S)-alprenolol ((S)-ALP) in the cocrystal structure of the β2 adrenergic receptor (β2AR) bound to the antagonist ALP. Ligand 4 displayed a potency and affinity similar to (S)-ALP, but with a >4-fold increase in residence time. The proposed binding mode was confirmed by X-ray crystallography of ligand 4 in complex with the β2AR. This ligand design principle can find applications beyond the β2AR and G protein-coupled receptors (GPCRs) as a general approach for improving the pharmacological profile of orthosteric ligands by targeting the OBS and an MBS simultaneously.
Collapse
|
|
1 |
|