1
|
Yoshino A, Hovda DA, Kawamata T, Katayama Y, Becker DP. Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res 1991; 561:106-19. [PMID: 1797338 DOI: 10.1016/0006-8993(91)90755-k] [Citation(s) in RCA: 438] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Following cerebral concussion, in which there is no evidence of direct morphological damage, cells are exposed to an increase in extracellular potassium as well as an accumulation of calcium. This concussion-induced ionic flux most likely alters the cellular energy demands thereby modifying metabolic processes. To investigate the metabolic changes after cerebral concussion, local cerebral metabolic rates for glucose (lCMRglc) utilizing [14C]2-deoxy-D-glucose were studied in rats (n = 98; 250-300 g) immediately, 30 min, 6 h, 1, 2, 3, 5 and 10 days following a unilateral frontoparietal fluid percussion (F-P) injury (3.7-4.3 atm). Compared to sham controls, animals exhibited bilateral hypermetabolism immediately following brain injury. However, this effect was more pronounced in structures ipsilateral to the site of F-P and was especially marked for the cerebral cortex (46.6-30.1% higher than control) and hippocampus (90.1-84.4% higher than control). By 30 min post-trauma many ipsilateral regions still showed evidence of hypermetabolism, although their lCMRglc had subsided. Beginning as early as 6 h following injury many regions within the ipsilateral cortex and hippocampus went into a state of metabolic depression (16.4-33.7% of control) which lasted for as long as 5 days. These results indicate that, although not mechanically damaged from the insult, cells exposed to concussive injury dramatically alter their metabolic functioning. This period of post-concussive metabolic dysfunction may delineate a period of time, following injury, during which cells are functionally compromised.
Collapse
|
|
34 |
438 |
2
|
McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG. Microglia in degenerative neurological disease. Glia 1993; 7:84-92. [PMID: 8423066 DOI: 10.1002/glia.440070114] [Citation(s) in RCA: 435] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Microglia express many leukocyte surface antigens which are upregulated in such chronic degenerative neurological diseases as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). These surface antigens include leukocyte common antigen, immunoglobulin Fc receptors, MHC class I and class II glycoproteins, beta 2-integrins, and the vitronectin receptor. Ligands for these receptors are also found. They include immunoglobulins, complement proteins of the classical pathway, T lymphocytes of the cytotoxic/suppressor and helper/inducer classes, and vitronectin. T lymphocytes marginate along capillary venules, with some penetrating into the tissue matrix. Immunoglobulins and complement proteins are synthesized locally in brain, although they may also come from the bloodstream if the blood-brain barrier is compromised. The membrane attack complex, which is formed from C5b-9, the terminal components of complement, has been identified in AD and multiple sclerosis brain tissue. In addition, proteins designed to defend against bystander lysis caused by the membrane attack complex, including protectin, C8 binding protein, clusterin, and vitronectin, are associated with damaged neuronal processes in AD. Autodestruction may play a prominent part in these 2 diseases.
Collapse
|
Review |
32 |
435 |
3
|
Kawamata T, Dietrich WD, Schallert T, Gotts JE, Cocke RR, Benowitz LI, Finklestein SP. Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci U S A 1997; 94:8179-84. [PMID: 9223335 PMCID: PMC21577 DOI: 10.1073/pnas.94.15.8179] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/1997] [Accepted: 05/27/1997] [Indexed: 02/04/2023] Open
Abstract
Focal cerebral infarction (stroke) due to unilateral occlusion of the middle cerebral artery in mature rats produces deficits in sensorimotor function of the contralateral limbs that recover partially over time. We found that biweekly intracisternal injection of basic fibroblast growth factor (bFGF; 0.5 microg/injection), a potent neurotrophic polypeptide, markedly enhanced recovery of sensorimotor function of the contralateral limbs during the first month after stroke without apparent adverse side effects. Immunostaining for growth-associated protein 43 (GAP-43), a molecular marker of axonal sprouting, showed a selective increase in GAP-43 immunoreactivity in the intact sensorimotor cortex contralateral to cerebral infarcts following bFGF treatment. These results show that bFGF treatment can enhance functional recovery after stroke, and that the mechanism may include stimulation of neuronal sprouting in the intact brain.
Collapse
|
research-article |
28 |
248 |
4
|
Hovda DA, Yoshino A, Kawamata T, Katayama Y, Becker DP. Diffuse prolonged depression of cerebral oxidative metabolism following concussive brain injury in the rat: a cytochrome oxidase histochemistry study. Brain Res 1991; 567:1-10. [PMID: 1667742 DOI: 10.1016/0006-8993(91)91429-5] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Utilizing a lateral fluid percussion injury as a model of cerebral concussion, rats were studied histochemically measuring the degree of cytochrome oxidase activity present within different structures at different times following injury. After concussion, the cerebral cortex ipsilateral to the site of injury exhibited a diffuse decrease in its level of chromotome oxidase (CO) activity beginning at as soon as one day and lasting for up to 10 days after the insult. The ipsilateral dorsal hippocampus also exhibited an injury-induced decrease in CO activity, however, it was not as severe as in the cortex. These results indicate that oxidative metabolism is depressed primarily within the cerebral cortex and hippocampus for several days following a cerebral concussion. We propose that this period of metabolic depression may delineate a period of time during which the injured brain is unable to function normally and thus would be vulnerable to a second insult.
Collapse
|
Comparative Study |
34 |
187 |
5
|
Kawamata T, Katayama Y, Hovda DA, Yoshino A, Becker DP. Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury. J Cereb Blood Flow Metab 1992; 12:12-24. [PMID: 1345756 DOI: 10.1038/jcbfm.1992.3] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immediately following concussive brain injury, cells exhibit an increase of energy demand represented by the activation of glucose utilization. We have proposed that this trauma-induced hypermetabolism reflects the effort of cells to restore normal ionic balance disrupted by massive ionic fluxes through transmitter-gated ion channels. In the present study, changes in local CMRglc following fluid-percussion concussive injury were determined using [14C]2-deoxy-D-glucose autoradiography, and the effects of in situ administration (via microdialysis) of excitatory amino acid (EAA) antagonists [kynurenic acid (KYN), 2-amino-5-phosphonovaleric acid (APV; 100 microM, 1 mM, and 10 mM), and 6-cyano-7-nitroquinoxaline-2,3-dine (CNQX; 300 microM, 1 mM, and 10 mM] on glucose utilization were investigated. Animals that did not receive dialysis showed a remarkable increase (up to 181% of normal control) in cortical glucose utilization following injury. In contrast, this high demand for glucose was reduced in areas infiltrated with KYN, APV, and CNQX. These results indicate that EAA-activated ion channels are involved in the posttraumatic increase in glucose utilization, reflecting the energy demand of cells required to drive pumping mechanisms against an ionic perturbation seen immediately following the concussive injury. The effects of KYN, APV, and CNQX suggest that although all subtypes of the glutamate receptor appear to be involved in this phenomenon, N-methyl-D-aspartate-activated channels may play a major role.
Collapse
|
|
33 |
183 |
6
|
Kawamata T, Katayama Y, Hovda DA, Yoshino A, Becker DP. Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res 1995; 674:196-204. [PMID: 7540925 DOI: 10.1016/0006-8993(94)01444-m] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During the first few minutes following traumatic brain injury, cells are exposed to an indiscriminate release of glutamate from nerve terminals resulting in a massive ionic flux (e.g., K+ efflux) via stimulation of excitatory amino acid (EAA)-coupled ion channels. The present study was undertaken to elucidate the causal relationship between these ionic shifts and lactate accumulation in the injured brain, by examining the effects of ouabain (an inhibitor of Na+/K+-ATPase), Ba2+ (an inhibitor or non-energy-dependent glial K+ uptake) and kynurenic acid (KYN; a broad-spectrum EAA antagonist) on lactate accumulation. Two microdialysis probes were placed bilaterally in the rat parietal cortex. One was perfused with a test drug (1.0 mM ouabain, 2.0 mM Ba2+ or 10 mM KYN) and the other with Ringer's solution (control) for 30 min prior to injury. Following a 2.2-2.7 atm fluid-percussion injury, lactate levels in the dialysate increased (up to 116.6% above baseline) for the first 16 min and returned to baseline levels within 20 min after injury. This lactate accumulation was attenuated by preinjury administration of ouabain and KYN and was prolonged by Ba2+ administration. These findings indicate that lactate accumulations following concussive brain injury is a result of increased glycolysis which supports ion-pumping mechanisms, thereby, restoring the ionic balance which was disrupted by stimulation of EAA-coupled ion channels.
Collapse
|
|
30 |
153 |
7
|
Omote K, Kawamata T, Kawamata M, Namiki A. Formalin-induced release of excitatory amino acids in the skin of the rat hindpaw. Brain Res 1998; 787:161-4. [PMID: 9518591 DOI: 10.1016/s0006-8993(97)01568-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Application of glutamate to skin evokes pain-related behaviors [S.M. Carlton, G.L. Hargett, R.E. Coggeshall, Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin, Neurosci. Lett., 197 (1995) 25-28; D.L. Jackson, C.B. Graff, J.D. Richardson, K.M. Hargreaves, Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats, Eur. J. Pharmacol., 284 (1995) 321-325.] and peripherally-administered glutamate antagonists can prevent the nociception produced by inflammation [E.M. Davidson, R.E. Coggeshall, S.M. Carlton, Peripheral NMDA and non-NMDA glutamate receptors contribute to nociceptive behaviors in the rat formalin test, NeuroReport, 8 (1997) 941-946; Jackson et al., 1995.] In this study, the concentrations of glutamate and aspartate in the plantar of the rat hindpaws were measured before and after the subcutaneous administration of formalin. Increases in glutamate and aspartate concentrations were observed on the ipsilateral side, but not on the contralateral side, to the injection. This shows that nociception and inflammation caused by formalin injection induces the release of peripheral glutamate and aspartate, which would contribute to nociception and inflammatory pain.
Collapse
|
|
27 |
149 |
8
|
Katayama Y, Kawamata T, Tamura T, Hovda DA, Becker DP, Tsubokawa T. Calcium-dependent glutamate release concomitant with massive potassium flux during cerebral ischemia in vivo. Brain Res 1991; 558:136-40. [PMID: 1682012 DOI: 10.1016/0006-8993(91)90730-j] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The changes in extracellular glutamate ([Glu]e) and potassium ([K+]e) in the rat hippocampus during cerebral ischemia were determined simultaneously by microdialysis in vivo. Biphasic increases in [Glu]e, i.e. an earlier rapid increase concomitant with an abrupt increase in [K+]e followed by a later slow increase, were observed. Dialysis with Ca(2+)-free perfusate containing Co2+ blocked the earlier rapid increase completely but the later slow increase only partially. These findings suggest that Ca(2+)-dependent exocytotic release from the presynaptic nerve terminals is involved predominantly in the earlier rapid increase in [Glu]d. The later slow increase in [Glu]d may be due in part to a breakdown of membrane function resulting from several causes, including a loss of the electrogenic component of the glutamate gradients across the plasma membrane, and a loss of function of the glutamate uptake system.
Collapse
|
|
34 |
148 |
9
|
Abstract
The immunohistochemical distribution of clusterin (SP40,40, SGP-2) was determined in Alzheimer disease (AD) and normal human brain tissue and compared with the distributions of vitronectin, protectin and the complement membrane attack complex (MAC). Antibodies to all four proteins showed staining of dystrophic neurites and neuropil threads in AD tissue, and residual serum in normal tissue, but only antibodies to clusterin and vitronectin strongly stained amyloid deposits in senile plaques. The clusterin antibody also showed punctate staining of some normal appearing AD pyramidal neurons, and very scattered staining of intracellular neurofibrillary tangles. Clusterin, vitronectin and protectin are all believed to inhibit membrane insertion by the MAC, and these data are consistent with upregulation of all three proteins in response to MAC formation in AD, and with a neuronal origin of clusterin.
Collapse
|
|
33 |
148 |
10
|
Kawamata T, Alexis NE, Dietrich WD, Finklestein SP. Intracisternal basic fibroblast growth factor (bFGF) enhances behavioral recovery following focal cerebral infarction in the rat. J Cereb Blood Flow Metab 1996; 16:542-7. [PMID: 8964792 DOI: 10.1097/00004647-199607000-00003] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Basic fibroblast growth factor (bFGF) is a potent neurotrophic agent that promotes neuronal survival and outgrowth. Previous studies have shown that bFGF, administered intraventricularly or intravenously before or within hours after ischemia, reduces infarct size and neurological deficits in models of focal cerebral ischemia in rats. In the current study, we tested the hypothesis that bFGF, administered at later time points after ischemia, might improve behavioral recovery without affecting infarct size. Mature Sprague-Dawley rats received bFGF (1 microgram/injection) or vehicle by biweekly intracisternal injection for 4 weeks, starting at 1 day following permanent proximal middle cerebral artery (MCA) occlusion. Animals were examined every other day using four different behavioral tests to assess sensorimotor and reflex function. At 4 weeks after ischemia, there was no difference in infarct volume between bFGF- and vehicle-treated animals. There was, however, an enhancement in the rate and degree of behavioral recovery among bFGF-treated animals, as measured by all four tests. There were no apparent side effects of bFGF treatment, except that bFGF-treated animals tended to recover body weight more slowly than did vehicle-treated animals following stroke. The mechanisms of enhancement of behavioral recovery by bFGF require further study, but may include protection against retrograde neuronal death and/or stimulation of neuronal sprouting.
Collapse
|
|
29 |
134 |
11
|
Pate BD, Kawamata T, Yamada T, McGeer EG, Hewitt KA, Snow BJ, Ruth TJ, Calne DB. Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices. Ann Neurol 1993; 34:331-8. [PMID: 8363350 DOI: 10.1002/ana.410340306] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Striatal 18F-6-fluorodopa (FD) uptake constants were measured by positron emission tomography in (1) normal cynomolgus monkeys and (2) a series of cynomolgus and rhesus monkeys that had received intracarotid infusions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). After the animals were killed, the number and average size of dopaminergic neurons in the substantia nigra pars compacta were measured. Striatal levels of dopamine and its metabolites, and the striatal activities of the dopaminergic synthetic enzymes, were also determined. The striatal FD uptake constants showed highly significant positive correlations with both number and size of dopaminergic neurons, indicating atrophy of surviving neurons in MPTP-treated animals. The uptake constants also showed significant positive correlations with striatal levels of dopamine, total catecholamines, and the activities of the synthetic enzymes. Both histochemical and biochemical data on tyrosine hydroxylase suggested some contralateral enzyme loss in these MPTP-treated monkeys, as well as decreased enzyme activity in surviving neurons on the lesioned side. However, residual enzyme activities were apparently not rate limiting to striatal FD uptake. It is concluded that PET-FD measurements by positron emission tomography provide a good index of the integrity of the nigrostriatal pathway.
Collapse
|
|
32 |
132 |
12
|
Shigemori Y, Katayama Y, Mori T, Maeda T, Kawamata T. Matrix metalloproteinase-9 is associated with blood-brain barrier opening and brain edema formation after cortical contusion in rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 96:130-3. [PMID: 16671440 DOI: 10.1007/3-211-30714-1_29] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are associated with blood-brain opening and may be involved in the pathophysiology of acute brain injury. Previous research demonstrated that knockout mice deficient in MMP-9 subjected to transient focal cerebral ischemia had reduced blood-brain barrier (BBB) disruption and attenuated cerebral infarction. In this study, we examined MMP-9 up-regulation, BBB disruption, and brain edema formation after cortical impact injury in rats. Cortical contusion was induced by controlled cortical impact. Animals were sacrificed at intervals after injury. MMP up-regulation was assessed by gelatin zymography, and BBB integrity was evaluated using Evans blue dye with a spectrophotometric assay. Brain water content was measured by comparing wet and dry weights of each hemisphere as an indicator of brain edema. Zymograms showed elevated MMP-9 as early as at 3 hours after injury, reaching a maximum at 18 hours. Peak levels of BBB disruption occurred 6 hours after injury. Brain edema became progressively more severe, peaking 24 hours after injury. Compared to control group, treatment with MMP-inhibitor GM6001 significantly reduced BBB disruption 6 hours and brain water content (85.9 +/- 0.5% vs. 82.6 +/- 0.3%; p < 0.05) 24 hours after injury. These findings suggest that MMP-9 may contribute to BBB disturbance and subsequent brain edema after traumatic brain injury.
Collapse
|
|
19 |
122 |
13
|
Kawamata T, Takeshita M, Kubo O, Izawa M, Kagawa M, Takakura K. Management of intracranial hemorrhage associated with anticoagulant therapy. SURGICAL NEUROLOGY 1995; 44:438-42; discussion 443. [PMID: 8629228 DOI: 10.1016/0090-3019(95)00249-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Intracranial hemorrhage may be a particularly devastating complication of anticoagulant therapy. Very few accounts have reported data on the duration of anticoagulant discontinuation following intracranial hemorrhage or the intensity of anticoagulation during treatment for it, although we must adequately manage such a complication. METHODS We analyzed the management of warfarin-related intracranial hemorrhages in 27 patients with cardiac diseases. We evaluated the degree of anticoagulation using the thrombotest. Anticoagulants were stopped as soon as the diagnosis of intracranial hemorrhage was established by computed tomographic scan. RESULTS Mechanical valve prosthesis patients, who required intensive long-term anticoagulant therapy, constituted the majority of our series (74.1%). Intraoperative hemostasis was brought under control despite low thrombotest values (13%-68%) at the time of surgery except for the acute subdural hematoma (SDH) patients with cerebral contusion. Early resumption of anticoagulant therapy (within 3 days) did not cause intracranial rebleeding in any operative patient. All the chronic SDH patients and some of the subcortical hematoma patients had a good outcome. All three patients with acute SDH and contusion, however, had a fatal outcome because of intracranial rebleeding within a short period of time or ineffective intraoperative hemostasis. CONCLUSIONS The patients with anticoagulant-related intracranial hemorrhage may undergo surgery with thrombotest values approximately between 20% and 60%, and anticoagulants can be resumed after an interval of 3 days. Aggressive surgery should particularly be performed in patients with anticoagulation-related chronic SDH or subcortical hemorrhage, as in the cases of anticoagulant-unrelated intracranial hemorrhage.
Collapse
|
|
30 |
105 |
14
|
Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H. Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol 1990; 80:419-25. [PMID: 2239154 DOI: 10.1007/bf00307697] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monoamine oxidase (MAO) histochemistry has been performed in brains from patients with dementia of Alzheimer type (DAT) and aged controls. Conspicuous MAO-positive cell clusters were frequently observed in the amygdala, hippocampus, and insular cortex in the brains of DAT. Double staining with glial fibrillary acidic protein immunohistochemistry revealed that the cluster-forming MAO-positive cells were astrocytes. Using Bielschowsky's method, Congo red and thioflavin S counterstaining, this astrocytic mass was shown to be associated with senile plaques. By the enzyme inhibition experiment, MAO activity in senile plaques was revealed to be of type B. The present results clearly indicate that MAO-B activity is expressed in fibrillary astrocytes in or around senile plaques, suggesting that these astrocytes metabolize exogenous amines in senile plaques.
Collapse
|
|
35 |
105 |
15
|
Mori T, Katayama Y, Kawamata T, Hirayama T. Improved efficiency of hypervolemic therapy with inhibition of natriuresis by fludrocortisone in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 1999; 91:947-52. [PMID: 10584839 DOI: 10.3171/jns.1999.91.6.0947] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECT To reduce the risk of ischemic complications in patients with subarachnoid hemorrhage (SAH), hypervolemic therapy is generally advocated. However, such conventional treatment cannot always ensure the maintenance of an effective intravascular volume expansion, because excessive natriuresis and osmotic diuresis occur after SAH. In this prospective study the authors examined the effects of inhibition of natriuresis with fludrocortisone acetate on intravascular volume expansion during hypervolemic therapy. METHODS Thirty patients with SAH were randomized and divided into two groups: controls (Group 1, 15 patients) and patients treated with 0.3 mg/day of fludrocortisone (Group 2, 15 patients). In all patients sodium and fluid intake levels were in excess of maintenance requirements in an attempt to maintain a positive water balance and a central venous pressure (CVP) of 8 to 12 cm H2O. The mean sodium and water intake levels for 14 days after SAH were significantly reduced by fludrocortisone in Group 2 (487+/-34.52 mEq/day and 5159.2+/-249.29 ml/day, respectively; p<0.01) compared with Group 1 (634.2+/-42.86 mEq/day and 6611.7+/-365.67 ml/day). Fludrocortisone significantly reduced the urinary sodium excretion (p<0.01) and urine volume (p<0.01) in parallel, and effectively prevented a negative shift in the sodium as well as water balance (p<0.01). The serum sodium level tended to decrease in Group 1, reaching 135 mEq/L on average, but not in Group 2 (p<0.01). Hyponatremia in Group 1 was always observed at the optimal range of CVP values. A decrease in serum potassium level within the range of 2.8 to 3.5 mEq/L was transiently noted in 11 patients (73.3%) of Group 2, but was easily corrected. Possible side effects of fludrocortisone, such as pulmonary edema, were not encountered. CONCLUSIONS Intravascular volume expansion in the presence of excessive natriuresis requires a large sodium and water intake and is often associated with hyponatremia. Inhibition of natriuresis with fludrocortisone can effectively reduce the sodium and water intake required for hypervolemia and prevent hyponatremia at the same time.
Collapse
|
Clinical Trial |
26 |
100 |
16
|
Nakai M, Kawamata T, Taniguchi T, Maeda K, Tanaka C. Expression of apolipoprotein E mRNA in rat microglia. Neurosci Lett 1996; 211:41-4. [PMID: 8809843 DOI: 10.1016/0304-3940(96)12716-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Apolipoprotein E (apoE) is a major risk factor for Alzheimer disease (AD), which is the most common cause of progressive dementing illness. ApoE has been postulated to be synthesized by astrocytes and taken up by microglia and neuronal cells. However, it remains unknown whether apoE is also produced by microglia in the brain. We analyzed apoE mRNA expression of microglia using a rat primary culture system. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed expression of apoE mRNA in cultured rat microglia. By RT-in situ-PCR, microglia showed positive staining for the PCR product of apoE mRNA. These results indicated that apoE was biosynthesized in rat microglia. We suggest that microglia might be one of the sources of apoE in the brain, and that apoE synthesized in microglia might be closely related to the pathogenesis of AD.
Collapse
|
|
29 |
97 |
17
|
Akiyama H, Kawamata T, Yamada T, Tooyama I, Ishii T, McGeer PL. Expression of intercellular adhesion molecule (ICAM)-1 by a subset of astrocytes in Alzheimer disease and some other degenerative neurological disorders. Acta Neuropathol 1993; 85:628-34. [PMID: 8337942 DOI: 10.1007/bf00334673] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) was localized immunohistochemically in postmortem brain tissue of Alzheimer's disease (AD), progressive supranuclear palsy, amyotrophic lateral sclerosis, Pick's disease, and controls. In controls, only capillaries were stained for ICAM-1. In affected areas of neurologically diseased brains, a subset of reactive astrocytes was also strongly stained. In addition, there were irregular, diffuse patches of positive staining in the tissue matrix. In AD, many of these patches had dense cores which corresponded with senile plaques. Double immunostaining for glial fibrillary acidic protein and ICAM-1 indicated that some reactive astrocytes at the periphery of senile plaques were positive for ICAM-1. Within such plaques, microglial aggregates were stained intensely for leukocyte function-associated antigen-1 (LFA-1), the adhesion molecule for ICAM-1. The LFA-1/ICAM-1 system appears to play an important role in the interaction of astrocytes and microglia in several neurological diseases.
Collapse
|
|
32 |
96 |
18
|
Niiyama Y, Kawamata T, Yamamoto J, Omote K, Namiki A. Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinct subpopulations of dorsal root ganglion neurons. Neuroscience 2007; 148:560-72. [PMID: 17656027 DOI: 10.1016/j.neuroscience.2007.05.049] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 05/15/2007] [Accepted: 05/23/2007] [Indexed: 01/06/2023]
Abstract
Bone cancer pain has a strong impact on the quality of life of patients but is difficult to treat. Therefore, the mechanisms of bone cancer pain require elucidation for the purpose of development of new therapeutics. A recent study showed that activation of transient receptor potential vanilloid subfamily 1 (TRPV1) was involved in bone cancer pain. In this study, we re-evaluated the analgesic effects of pharmacological blockade of TRPV1 using the potent TRPV1 antagonist 5-iodoresiniferatoxin (I-RTX) and examined whether bone cancer can change TRPV1 expression and distribution in the primary sensory neurons in a mouse model of bone cancer pain. Implantation of osteosarcoma into the femur induced ongoing and movement-evoked bone cancer-related pain behaviors. These behaviors were significantly reduced by i.p. administration of I-RTX, compared with vehicle. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) analyses revealed that TRPV1 level was significantly increased in dorsal root ganglions (DRGs) ipsilateral to sarcoma implantation. Immunohistochemical analysis showed that implantation of osteosarcoma induced not only an increase in the percentage of TRPV1-positive neurons among DRG neurons (24.3+/-1.3% in sham mice and 31.2+/-1.3% in mice with osteosarcoma implantation, P<0.05) but also an overall shift in the distribution of area of profiles to the right. Colocalization study showed that the percentages of colocalization of TRPV1 with neurofilament 200 kD (NF200) and calcitonin gene-related peptide (CGRP) but not isolectin B4 (IB4) among DRG neurons in mice with osteosarcoma implantation were increased compared with those in sham mice (from 0.8+/-0.1% to 2.1+/-0.3% for TRPV1 and NF200 and from 21.1+/-1.3% to 26.5+/-0.2% for TRPV1 and CGRP). In conclusion, TRPV1 activation plays a critical role in the generation of bone cancer pain, and bone cancer increases TRPV1 expression within distinct subpopulation of DRG neurons. These findings may lead to novel strategies for the treatment of bone cancer pain.
Collapse
|
|
18 |
93 |
19
|
Tooyama I, Kawamata T, Walker D, Yamada T, Hanai K, Kimura H, Iwane M, Igarashi K, McGeer EG, McGeer PL. Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson's disease. Neurology 1993; 43:372-6. [PMID: 8437705 DOI: 10.1212/wnl.43.2.372] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Basic fibroblast growth factor (bFGF) has a neurotrophic effect on mesencephalic dopaminergic neurons in vitro and in vivo. To explore whether an abnormality in bFGF expression occurs in Parkinson's disease (PD), we examined the substantia nigra (SN) of six PD and eight control cases immunohistochemically using a monoclonal antibody to bFGF. The mean number of melanin-positive neurons in sections of PD SN was 30.3% of the control mean, but the number of bFGF-immunopositive neurons was only 4.7% of the control mean. bFGF-immunoreactivity was present in only 8.2% of PD, but in 93.7% of control melanin-positive neurons. These results suggest a profound depletion of bFGF in surviving dopaminergic neurons of the SN in PD, and this depletion may be related to the disease process.
Collapse
|
|
32 |
93 |
20
|
Yamada T, Kawamata T, Walker DG, McGeer PL. Vimentin immunoreactivity in normal and pathological human brain tissue. Acta Neuropathol 1992; 84:157-62. [PMID: 1523971 DOI: 10.1007/bf00311389] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vimentin immunoreactivity was examined in brain tissues from non-neurological and various human central nervous system disease cases. In all brain tissues examined, vimentin immunoreactivity was intensely positive in ependymal cells and subpial tissues, and weakly positive in some capillaries and some white matter astrocytes. In affected areas of Alzheimer's disease (AD), Pick's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and cerebral infarction cases, numerous intensely vimentin-immunopositive astrocytes of both protoplasmic and fibrous morphology were demonstrated. A few such astrocytes were also observed in Parkinson's disease and progressive supranuclear palsy. ALS, MS and infarction brains also had numerous, strongly vimentin-positive, round and fat-laden microglia/macrophages. In AD and ALS, a few reactive microglia with irregularly enlarged shapes were vimentin positive. In AD, they were almost exclusively related to senile plaques.
Collapse
|
|
33 |
89 |
21
|
McGeer PL, Walker DG, Akiyama H, Kawamata T, Guan AL, Parker CJ, Okada N, McGeer EG. Detection of the membrane inhibitor of reactive lysis (CD59) in diseased neurons of Alzheimer brain. Brain Res 1991; 544:315-9. [PMID: 1710165 DOI: 10.1016/0006-8993(91)90071-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The membrane inhibitor of reactive lysis (MIRL) protects host cells from complement-mediated lysis. It was detected immunohistochemically in tangled neurons and dystrophic neurites of Alzheimer disease (AD) tissue in a pattern highly similar to that observed for the membrane attack complex of complement, C5b-9. MIRL was also detected in cultured IMR-32 neuroblastoma cells. The mRNA for MIRL was detected in RNA extracts of both AD and normal brain. These data provide the first evidence of brain neuronal expression of MIRL and its upregulation in neurons exposed to complement attack. They are consistent with the previously advanced hypothesis that complement-mediated neuronal injury may play a role in AD.
Collapse
|
|
34 |
87 |
22
|
Akiyama H, Kawamata T, Dedhar S, McGeer PL. Immunohistochemical localization of vitronectin, its receptor and beta-3 integrin in Alzheimer brain tissue. J Neuroimmunol 1991; 32:19-28. [PMID: 1705945 DOI: 10.1016/0165-5728(91)90067-h] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The vitronectin receptor (VNR) is an integrin which consists of an alpha-subunit which can associate with multiple beta-subunits. A polyclonal antibody to this integrin weakly stained resting microglia in white matter of control brain and strongly stained reactive microglia in both gray and white matter of Alzheimer brain. This antibody, as well as a monoclonal antibody to beta 3, stained some platelets in capillaries of both control and Alzheimer tissue. When the antiserum was immunoabsorbed with a preparation enriched in the alpha-chain of the vitronectin receptor, it failed to stain microglial cells, but continued to stain platelets. When it was immunoabsorbed with a peripheral blood platelet preparation, all immunostaining was abolished. These results indicate that the vitronectin receptor of microglia is associated with a beta-chain different from beta 3, but that beta 3 is expressed by some platelets in brain capillaries. An antibody to vitronectin itself stained senile plaques and neurofibrillary tangles in Alzheimer entorhinal cortex, but only residual plasma in control tissue. Senile plaques positive for vitronectin had microglial cores strongly positive for the vitronectin receptor. The high levels of vitronectin receptor on reactive microglia in areas containing extracellular vitronectin suggest the possibility that vitronectin is serving an opsonizing function for microglial phagocytosis.
Collapse
|
|
34 |
87 |
23
|
Kawamata T, Ren J, Chan TC, Charette M, Finklestein SP. Intracisternal osteogenic protein-1 enhances functional recovery following focal stroke. Neuroreport 1998; 9:1441-5. [PMID: 9631444 DOI: 10.1097/00001756-199805110-00035] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteogenic protein-1 (OP-1, BMP-7) is a member of the transforming growth factor-beta (TGF-beta) superfamily that selectively induces dendritic outgrowth from cultured neurons. We injected human recombinant OP-1 (1 or 10 micrograms) or vehicle into the cisterna magna of mature male Sprague-Dawley rats 1 and 4 days after focal cerebral infarction induced by middle cerebral artery (MCA) occlusion. OP-1 treatment was associated with a marked enhancement of recovery of sensorimotor function of the impaired forelimb and hindlimb (contralateral to infarcts) as assessed by limb placing tests. This effect appeared to be dose dependent. There was no difference in infarct volume between OP-1 and vehicle-treated rats. The mechanisms of enhanced recovery by intracisternal OP-1 may include promotion of dendritic sprouting in the intact uninjured brain.
Collapse
|
|
27 |
85 |
24
|
Omote K, Hazama K, Kawamata T, Kawamata M, Nakayaka Y, Toriyabe M, Namiki A. Peripheral nitric oxide in carrageenan-induced inflammation. Brain Res 2001; 912:171-5. [PMID: 11532433 DOI: 10.1016/s0006-8993(01)02733-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies have suggested that nitric oxide (NO) peripherally produced by different nitric oxide synthase (NOS) isoforms contributes to edema formation and development of hyperalgesia. The present study was designed to examine the effects of NOS isoforms on NO release in carrageenan-induced inflammation at various time points. A microdialysis probe was implanted subcutaneously into the glabrous skin of hindpaws of Sprague-Dawley rats under pentobarbital anesthesia. After sample collection to obtain the basal level of the total amount of nitrite and nitrate (NO2-/NO3-), modified Ringer solution, a non-selective NOS inhibitor, NG monomethyl-L-arginine acetate (L-NMMA), or an iNOS inhibitor, aminoguanidine hemisulfate (AG) was perfused through the microdialysis probe. 2 mg of carrageenan was injected into the plantar surface of the probe-implanted hindpaw. Carrageenan was also injected in rats that had undergone sciatic nerve sectioning. Carrageenan significantly increased the dialysate concentrations of NO2-/NO3- for more than 8 h. L-NMMA suppressed the carrageenan-induced increase in NO2-/NO3- concentration. Although AG did not suppress the increase in NO2-/NO3- for the first 2 h after carrageenan injection, significant suppression of the increase in NO2-/NO3- was observed from 2.5 h after carrageenan injection. In the rats in which the sciatic nerves had been denervated, the increases in concentrations of NO2-/NO3- were completely suppressed up to 3 h and partially suppressed 4.5-8 h after carrageenan injection. The results of the current study show that carrageenan induces peripheral release of NO, the production of which is mediated by nNOS in the early phase and by both nNOS and iNOS in the late phase of carrageenan-induced inflammation.
Collapse
|
|
24 |
80 |
25
|
Kawamata T, Omote K. Activation of spinal N-methyl-D-aspartate receptors stimulates a nitric oxide/cyclic guanosine 3,5-monophosphate/glutamate release cascade in nociceptive signaling. Anesthesiology 1999; 91:1415-24. [PMID: 10551594 DOI: 10.1097/00000542-199911000-00035] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Increasing evidence has suggested the possibility that the activation of N-methyl-D-aspartate (NMDA) receptors modulates spinal nociceptive transmission via a nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP) pathway. However, the existence and the role of an NO/cGMP pathway in the modulation of spinal nociceptive transmission has been unclear. The authors hypothesized that the activation of NMDA receptors stimulates an NO/cGMP pathway, and this pathway evokes glutamate release within the spinal cord, modulating spinal nociceptive transmission. METHODS The authors have examined the effects of an NO synthase inhibitor and a soluble guanylate cyclase inhibitor on the concentrations of NO metabolites (NO2-/NO3-) and glutamate in the cerebrospinal fluid after intrathecal perfusion of NMDA, concomitantly observing pain-related behavior (scratching, biting, and vocalization) in unanesthetized, free-moving rats using an intrathecal microdialysis method. The contents of cGMP in the dorsal horn were also measured using enzyme immunoassay method. RESULTS Intrathecal perfusion of NMDA produced pain-related behavior and increased glutamate and NO2-/NO3-concentrations in a dose-dependent manner. A competitive NMDA receptor antagonist, D,L-2-amino-5-phosphonovaleric acid, completely blocked the NMDA-induced responses. An NO synthase inhibitor, N(G)-monomethyl-L-arginine acetate, at a dose that completely blocked the increase in NO2-/NO3-, inhibited both the NMDA-induced pain-related behavior and the increase in glutamate concentration. In addition, a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazole[4,3-a]quinoxaline-1-one, also inhibited significantly NMDA-induced pain-related behavior and the increase in glutamate concentration. NMDA induced an increase in cGMP in the dorsal half of the spinal cord, which was blocked by N(G)-monomethyl-L-arginine acetate. CONCLUSIONS The results of this study support the hypothesis that the activation of NMDA receptors modulated pain-related behavior via an NO/cGMP/glutamate release cascade within the spinal cord.
Collapse
|
|
26 |
75 |