1
|
Liang PH, Ko TP, Wang AHJ. Structure, mechanism and function of prenyltransferases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3339-54. [PMID: 12135472 DOI: 10.1046/j.1432-1033.2002.03014.x] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this review, we summarize recent progress in studying three main classes of prenyltransferases: (a) isoprenyl pyrophosphate synthases (IPPSs), which catalyze chain elongation of allylic pyrophosphate substrates via consecutive condensation reactions with isopentenyl pyrophosphate (IPP) to generate linear polymers with defined chain lengths; (b) protein prenyltransferases, which catalyze the transfer of an isoprenyl pyrophosphate (e.g. farnesyl pyrophosphate) to a protein or a peptide; (c) prenyltransferases, which catalyze the cyclization of isoprenyl pyrophosphates. The prenyltransferase products are widely distributed in nature and serve a variety of important biological functions. The catalytic mechanism deduced from the 3D structure and other biochemical studies of these prenyltransferases as well as how the protein functions are related to their reaction mechanism and structure are discussed. In the IPPS reaction, we focus on the mechanism that controls product chain length and the reaction kinetics of IPP condensation in the cis-type and trans-type enzymes. For protein prenyltransferases, the structures of Ras farnesyltransferase and Rab geranylgeranyltransferase are used to elucidate the reaction mechanism of this group of enzymes. For the enzymes involved in cyclic terpene biosynthesis, the structures and mechanisms of squalene cyclase, 5-epi-aristolochene synthase, pentalenene synthase, and trichodiene synthase are summarized.
Collapse
|
Comparative Study |
23 |
319 |
2
|
Hsu MF, Kuo CJ, Chang KT, Chang HC, Chou CC, Ko TP, Shr HL, Chang GG, Wang AHJ, Liang PH. Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem 2005; 280:31257-66. [PMID: 15788388 PMCID: PMC8062786 DOI: 10.1074/jbc.m502577200] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/31/2005] [Indexed: 01/07/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel human coronavirus. Viral maturation requires a main protease (3CL(pro)) to cleave the virus-encoded polyproteins. We report here that the 3CL(pro) containing additional N- and/or C-terminal segments of the polyprotein sequences undergoes autoprocessing and yields the mature protease in vitro. The dimeric three-dimensional structure of the C145A mutant protease shows that the active site of one protomer binds with the C-terminal six amino acids of the protomer from another asymmetric unit, mimicking the product-bound form and suggesting a possible mechanism for maturation. The P1 pocket of the active site binds the Gln side chain specifically, and the P2 and P4 sites are clustered together to accommodate large hydrophobic side chains. The tagged C145A mutant protein served as a substrate for the wild-type protease, and the N terminus was first digested (55-fold faster) at the Gln(-1)-Ser1 site followed by the C-terminal cleavage at the Gln306-Gly307 site. Analytical ultracentrifuge of the quaternary structures of the tagged and mature proteases reveals the remarkably tighter dimer formation for the mature enzyme (K(d) = 0.35 nm) than for the mutant (C145A) containing 10 extra N-terminal (K(d) = 17.2 nM) or C-terminal amino acids (K(d) = 5.6 nM). The data indicate that immature 3CL(pro) can form dimer enabling it to undergo autoprocessing to yield the mature enzyme, which further serves as a seed for facilitated maturation. Taken together, this study provides insights into the maturation process of the SARS 3CL(pro) from the polyprotein and design of new structure-based inhibitors.
Collapse
|
research-article |
20 |
199 |
3
|
Ko TP, Liao CC, Ku WY, Chak KF, Yuan HS. The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Structure 1999; 7:91-102. [PMID: 10368275 DOI: 10.1016/s0969-2126(99)80012-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Colicin E7 (ColE7) is one of the bacterial toxins classified as a DNase-type E-group colicin. The cytotoxic activity of a colicin in a colicin-producing cell can be counteracted by binding of the colicin to a highly specific immunity protein. This biological event is a good model system for the investigation of protein recognition. RESULTS The crystal structure of a one-to-one complex between the DNase domain of colicin E7 and its cognate immunity protein Im7 has been determined at 2.3 A resolution. Im7 in the complex is a varied four-helix bundle that is identical to the structure previously determined for uncomplexed Im7. The structure of the DNase domain of ColE7 displays a novel alpha/beta fold and contains a Zn2+ ion bound to three histidine residues and one water molecule in a distorted tetrahedron geometry. Im7 has a V-shaped structure, extending two arms to clamp the DNase domain of ColE7. One arm (alpha1(*)-loop12-alpha2(*); where * represents helices in Im7) is located in the region that displays the greatest sequence variation among members of the immunity proteins in the same subfamily. This arm mainly uses acidic sidechains to interact with the basic sidechains in the DNase domain of ColE7. The other arm (loop 23-alpha3(*)-loop 34) is more conserved and it interacts not only with the sidechain but also with the mainchain atoms of the DNase domain of ColE7. CONCLUSIONS The protein interfaces between the DNase domain of ColE7 and Im7 are charge-complementary and charge interactions contribute significantly to the tight and specific binding between the two proteins. The more variable arm in Im7 dominates the binding specificity of the immunity protein to its cognate colicin. Biological and structural data suggest that the DNase active site for ColE7 is probably near the metal-binding site.
Collapse
|
|
26 |
155 |
4
|
Guo RT, Cao R, Liang PH, Ko TP, Chang TH, Hudock MP, Jeng WY, Chen CKM, Zhang Y, Song Y, Kuo CJ, Yin F, Oldfield E, Wang AHJ. Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases. Proc Natl Acad Sci U S A 2007; 104:10022-7. [PMID: 17535895 PMCID: PMC1877987 DOI: 10.1073/pnas.0702254104] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bisphosphonate drugs (e.g., Fosamax and Zometa) are thought to act primarily by inhibiting farnesyl diphosphate synthase (FPPS), resulting in decreased prenylation of small GTPases. Here, we show that some bisphosphonates can also inhibit geranylgeranyl diphosphate synthase (GGPPS), as well as undecaprenyl diphosphate synthase (UPPS), a cis-prenyltransferase of interest as a target for antibacterial therapy. Our results on GGPPS (10 structures) show that there are three bisphosphonate-binding sites, consisting of FPP or isopentenyl diphosphate substrate-binding sites together with a GGPP product- or inhibitor-binding site. In UPPS, there are a total of four binding sites (in five structures). These results are of general interest because they provide the first structures of GGPPS- and UPPS-inhibitor complexes, potentially important drug targets, in addition to revealing a remarkably broad spectrum of binding modes not seen in FPPS inhibition.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
150 |
5
|
Lee CC, Kuo CJ, Ko TP, Hsu MF, Tsui YC, Chang SC, Yang S, Chen SJ, Chen HC, Hsu MC, Shih SR, Liang PH, Wang AHJ. Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds. J Biol Chem 2009; 284:7646-55. [PMID: 19144641 PMCID: PMC2658058 DOI: 10.1074/jbc.m807947200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human coxsackievirus (CV) belongs to the picornavirus family, which consists of over 200 medically relevant viruses. In picornavirus, a chymotrypsin-like protease (3C(pro)) is required for viral replication by processing the polyproteins, and thus it is regarded as an antiviral drug target. A 3C-like protease (3CL(pro)) also exists in human coronaviruses (CoV) such as 229E and the one causing severe acute respiratory syndrome (SARS). To combat SARS, we previously had developed peptidomimetic and zinc-coordinating inhibitors of 3CL(pro). As shown in the present study, some of these compounds were also found to be active against 3C(pro) of CV strain B3 (CVB3). Several crystal structures of 3C(pro) from CVB3 and 3CL(pro) from CoV-229E and SARS-CoV in complex with the inhibitors were solved. The zinc-coordinating inhibitor is tetrahedrally coordinated to the His(40)-Cys(147) catalytic dyad of CVB3 3C(pro). The presence of specific binding pockets for the residues of peptidomimetic inhibitors explains the binding specificity. Our results provide a structural basis for inhibitor optimization and development of potential drugs for antiviral therapies.
Collapse
|
research-article |
16 |
110 |
6
|
Sun HY, Lin SW, Ko TP, Pan JF, Liu CL, Lin CN, Wang AHJ, Lin CH. Structure and mechanism of Helicobacter pylori fucosyltransferase. A basis for lipopolysaccharide variation and inhibitor design. J Biol Chem 2007; 282:9973-9982. [PMID: 17251184 DOI: 10.1074/jbc.m610285200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Helicobacter pylori alpha1,3-fucosyltransferase (FucT) is involved in catalysis to produce the Lewis x trisaccharide, the major component of the bacteria's lipopolysaccharides, which has been suggested to mimic the surface sugars in gastric epithelium to escape host immune surveillance. We report here three x-ray crystal structures of FucT, including the FucT.GDP-fucose and FucT.GDP complexes. The protein structure is typical of the glycosyltransferase-B family despite little sequence homology. We identified a number of catalytically important residues, including Glu-95, which serves as the general base, and Glu-249, which stabilizes the developing oxonium ion during catalysis. The residues Arg-195, Tyr-246, Glu-249, and Lys-250 serve to interact with the donor substrate, GDP-fucose. Variations in the protein and ligand conformations, as well as a possible FucT dimer, were also observed. We propose a catalytic mechanism and a model of polysaccharide binding not only to explain the observed variations in H. pylori lipopolysaccharides, but also to facilitate the development of potent inhibitors.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
103 |
7
|
Guo RT, Ko TP, Chen APC, Kuo CJ, Wang AHJ, Liang PH. Crystal Structures of Undecaprenyl Pyrophosphate Synthase in Complex with Magnesium, Isopentenyl Pyrophosphate, and Farnesyl Thiopyrophosphate. J Biol Chem 2005; 280:20762-74. [PMID: 15788389 DOI: 10.1074/jbc.m502121200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes the consecutive condensation reactions of a farnesyl pyrophosphate (FPP) with eight isopentenyl pyrophosphates (IPP), in which new cis-double bonds are formed, to generate undecaprenyl pyrophosphate that serves as a lipid carrier for peptidoglycan synthesis of bacterial cell wall. The structures of Escherichia coli UPPs were determined previously in an orthorhombic crystal form as an apoenzyme, in complex with Mg(2+)/sulfate/Triton, and with bound FPP. In a further search of its catalytic mechanism, the wild-type UPPs and the D26A mutant are crystallized in a new trigonal unit cell with Mg(2+)/IPP/farnesyl thiopyrophosphate (an FPP analogue) bound to the active site. In the wild-type enzyme, Mg(2+) is coordinated by the pyrophosphate of farnesyl thiopyrophosphate, the carboxylate of Asp(26), and three water molecules. In the mutant enzyme, it is bound to the pyrophosphate of IPP. The [Mg(2+)] dependence of the catalytic rate by UPPs shows that the activity is maximal at [Mg(2+)] = 1 mm but drops significantly when Mg(2+) ions are in excess (50 mm). Without Mg(2+), IPP binds to UPPs only at high concentration. Mutation of Asp(26) to other charged amino acids results in significant decrease of the UPPs activity. The role of Asp(26) is probably to assist the migration of Mg(2+) from IPP to FPP and thus initiate the condensation reaction by ionization of the pyrophosphate group from FPP. Other conserved residues, including His(43), Ser(71), Asn(74), and Arg(77), may serve as general acid/base and pyrophosphate carrier. Our results here improve the understanding of the UPPs enzyme reaction significantly.
Collapse
|
|
20 |
99 |
8
|
Ko TP, Lin JJ, Hu CY, Hsu YH, Wang AHJ, Liaw SH. Crystal structure of yeast cytosine deaminase. Insights into enzyme mechanism and evolution. J Biol Chem 2003; 278:19111-7. [PMID: 12637534 DOI: 10.1074/jbc.m300874200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast cytosine deaminase is an attractive candidate for anticancer gene therapy because it catalyzes the deamination of the prodrug 5-fluorocytosine to form 5-fluorouracil. We report here the crystal structure of the enzyme in complex with the inhibitor 2-hydroxypyrimidine at 1.6-A resolution. The protein forms a tightly packed dimer with an extensive interface of 1450 A2 per monomer. The inhibitor was converted into a hydrated adduct as a transition-state analog. The essential zinc ion is ligated by the 4-hydroxyl group of the inhibitor together with His62, Cys91, and Cys94 from the protein. The enzyme shares similar active-site architecture to cytidine deaminases and an unusually high structural homology to 5-aminoimidazole-4-carboxamide-ribonucleotide transformylase and thereby may define a new superfamily. The unique C-terminal tail is involved in substrate specificity and also functions as a gate controlling access to the active site. The complex structure reveals a closed conformation, suggesting that substrate binding seals the active-site entrance so that the catalytic groups are sequestered from solvent. A comparison of the crystal structures of the bacterial and fungal cytosine deaminases provides an elegant example of convergent evolution, where starting from unrelated ancestral proteins, the same metal-assisted deamination is achieved through opposite chiral intermediates within distinctly different active sites.
Collapse
|
Comparative Study |
22 |
98 |
9
|
Chang TH, Guo RT, Ko TP, Wang AHJ, Liang PH. Crystal Structure of Type-III Geranylgeranyl Pyrophosphate Synthase from Saccharomyces cerevisiae and the Mechanism of Product Chain Length Determination. J Biol Chem 2006; 281:14991-5000. [PMID: 16554305 DOI: 10.1074/jbc.m512886200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geranylgeranyl pyrophosphate synthase (GGPPs) catalyzes a condensation reaction of farnesyl pyrophosphate with isopentenyl pyrophosphate to generate C(20) geranylgeranyl pyrophosphate, which is a precursor for carotenoids, chlorophylls, geranylgeranylated proteins, and archaeal ether-linked lipid. For short-chain trans-prenyltransferases that synthesize C(10)-C(25) products, bulky amino acid residues generally occupy the fourth or fifth position upstream from the first DDXXD motif to block further elongation of the final products. However, the short-chain type-III GGPPs in eukaryotes lack any large amino acid at these positions. In this study, the first structure of type-III GGPPs from Saccharomyces cerevisiae has been determined to 1.98 A resolution. The structure is composed entirely of 15 alpha-helices joined by connecting loops and is arranged with alpha-helices around a large central cavity. Distinct from other known structures of trans-prenyltransferases, the N-terminal 17 amino acids (9-amino acid helix A and the following loop) of this GGPPs protrude from the helix core into the other subunit and contribute to the tight dimer formation. Deletion of the first 9 or 17 amino acids caused the dissociation of dimer into monomer, and the Delta(1-17) mutant showed abolished enzyme activity. In each subunit, an elongated hydrophobic crevice surrounded by D, F, G, H, and I alpha-helices contains two DDXXD motifs at the top for substrate binding with one Mg(2+) coordinated by Asp(75), Asp(79), and four water molecules. It is sealed at the bottom with three large residues of Tyr(107), Phe(108), and His(139). Compared with the major product C(30) synthesized by mutant H139A, the products generated by mutant Y107A and F108A are predominantly C(40) and C(30), respectively, suggesting the most important role of Tyr(107) in determining the product chain length.
Collapse
|
|
19 |
84 |
10
|
Huang KF, Liu YL, Cheng WJ, Ko TP, Wang AHJ. Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Proc Natl Acad Sci U S A 2005; 102:13117-22. [PMID: 16135565 PMCID: PMC1201592 DOI: 10.1073/pnas.0504184102] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Indexed: 11/18/2022] Open
Abstract
N-terminal pyroglutamate (pGlu) formation from its glutaminyl (or glutamyl) precursor is required in the maturation of numerous bioactive peptides. The aberrant formation of pGlu may be related to several pathological processes, such as osteoporosis and amyloidotic diseases. This N-terminal cyclization reaction, once thought to proceed spontaneously, is greatly facilitated by the enzyme glutaminyl cyclase (QC). To probe this important but poorly understood modification, we present here the structure of human QC in free form and bound to a substrate and three imidazole-derived inhibitors. The structure reveals an alpha/beta scaffold akin to that of two-zinc exopeptidases but with several insertions and deletions, particularly in the active-site region. The relatively closed active site displays alternate conformations due to the different indole orientations of Trp-207, resulting in two substrate (glutamine t-butyl ester)-binding modes. The single zinc ion in the active site is coordinated to three conserved residues and one water molecule, which is replaced by an imidazole nitrogen upon binding of the inhibitors. Together with structural and kinetic analyses of several active-site-mutant enzymes, a catalysis mechanism of the formation of protein N-terminal pGlu is proposed. Our results provide a structural basis for the rational design of inhibitors against QC-associated disorders.
Collapse
|
research-article |
20 |
82 |
11
|
Lo YC, Ko TP, Su WC, Su TL, Wang AHJ. Terpyridine–platinum(II) complexes are effective inhibitors of mammalian topoisomerases and human thioredoxin reductase 1. J Inorg Biochem 2009; 103:1082-92. [DOI: 10.1016/j.jinorgbio.2009.05.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
|
|
16 |
79 |
12
|
Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AHJ. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. THE PLANT CELL 2010; 22:454-67. [PMID: 20139160 PMCID: PMC2845413 DOI: 10.1105/tpc.109.071738] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve catalytic fidelity and diversity. Little is known about heteromeric PTSs, particularly the mechanisms regulating formation of specific products. Here, we report the crystal structure of the (LSU . SSU)(2)-type (LSU/SSU = large/small subunit) heterotetrameric geranyl pyrophosphate synthase (GPPS) from mint (Mentha piperita). The LSU and SSU of mint GPPS are responsible for catalysis and regulation, respectively, and this SSU lacks the essential catalytic amino acid residues found in LSU and other PTSs. Whereas no activity was detected for individually expressed LSU or SSU, the intact (LSU . SSU)(2) tetramer produced not only C(10)-GPP at the beginning of the reaction but also C(20)-GGPP (geranylgeranyl pyrophosphate) at longer reaction times. The activity for synthesizing C(10)-GPP and C(20)-GGPP, but not C(15)-farnesyl pyrophosphate, reflects a conserved active-site structure of the LSU and the closely related mustard (Sinapis alba) homodimeric GGPPS. Furthermore, using a genetic complementation system, we showed that no C(20)-GGPP is produced by the mint GPPS in vivo. Presumably through protein-protein interactions, the SSU remodels the active-site cavity of LSU for synthesizing C(10)-GPP, the precursor of volatile C(10)-monoterpenes.
Collapse
|
research-article |
15 |
77 |
13
|
Ko TP, Day J, Greenwood A, McPherson A. Structures of three crystal forms of the sweet protein thaumatin. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2005; 50:813-25. [PMID: 15299348 DOI: 10.1107/s0907444994005512] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Three crystal forms of the sweet-tasting protein thaumatin from the African berry Thaumatococcus daniellii have been grown. These include two naturally occurring isoforms, A and B, that differ by a single amino acid, and a recombinant form of isoform B expressed in yeast. The crystals are of space groups C2 with a = 117.7, b = 44.9, c = 38.0 A, and beta = 94.0 degrees, P2(1)2(1)2(1) with a = 44.3, b = 63.7 and c = 72.7 A, and a tetragonal form P4(1)2(1)2 with a = b = 58.6 and c = 151.8 A. The structures of all three crystals have been solved by molecular replacement and subsequently refined to R factors of 0.184 for the monoclinic at 2.6 A, 0.165 for the orthorhombic at 1.75 A, and 0.181 for the tetragonal, also at 1.75 A resolution. No solvent was included in the monoclinic crystal while 123 and 105 water molecules were included in the higher resolution orthorhombic and tetragonal structures, respectively. A bound tartrate molecule was also clearly visible in the tetragonal structure. The r.m.s. deviations between molecular structures in the three crystals range from 0.6 to 0.7 A for Calpha atoms, and 1.1 to 1.3 A for all atoms. This is comparable to the r.m.s. deviation between the three structures and the starting model. Nevertheless, several peptide loops show particularly large variations from the initial model.
Collapse
|
Journal Article |
20 |
74 |
14
|
Ko TP, Ng JD, McPherson A. The three-dimensional structure of canavalin from jack bean (Canavalia ensiformis). PLANT PHYSIOLOGY 1993; 101:729-744. [PMID: 8310056 PMCID: PMC158685 DOI: 10.1104/pp.101.3.729] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The three-dimensional structure of the vicilin storage protein canavalin, from Canavalia ensiformis, has been determined in a hexagonal crystal by x-ray diffraction methods. The model has been refined at 2.6 A resolution to an R factor of 0.197 with acceptable geometry. Because of proteolysis, 58 of 419 amino acids of the canavalin polypeptide are not visible in the electron density map. The canavalin subunit is composed of two extremely similar structural domains that reflect the tandem duplication observed in the cDNA and in the amino acid sequence. Each domain consists of two elements, a compact, eight-stranded beta-barrel having the "Swiss roll" topology and an extended loop containing several short alpha-helices. The root mean square deviation between 84 pairs of corresponding C alpha atoms making up the strands of the two beta-barrels in a subunit is 0.78 A, and for 112 pairs of structurally equivalent C alpha atoms of the two domains the deviation is 1.37 A. The interface between domains arises from the apposition of broad hydrophobic surfaces formed by side chains originating from one side of the beta-barrels, supplemented by at least four salt bridges. The interfaces between subunits in the trimer are supplied by the extended loop elements. These interfaces are also composed primarily of hydrophobic residues supplemented by six salt bridges. The canavalin subunits have dimensions about 40 x 40 x 86 A, and the oligomer is a disk-shaped molecule about 88 A in diameter with a thickness of about 40 A. The distribution of domains lends a high degree of pseudo-32-point group symmetry to the molecule. There is a large channel of 18 A diameter, lined predominantly by hydrophilic and charged amino acids, running through the molecule along the 3-fold axis. The majority of residues conserved between domains and among vicilins occur at the interface between subunits but appear otherwise arbitrarily distributed within the subunit, although predominantly on its exterior.
Collapse
|
research-article |
32 |
73 |
15
|
Ko TP, Chen YK, Robinson H, Tsai PC, Gao YG, Chen AP, Wang AH, Liang PH. Mechanism of product chain length determination and the role of a flexible loop in Escherichia coli undecaprenyl-pyrophosphate synthase catalysis. J Biol Chem 2001; 276:47474-82. [PMID: 11581264 DOI: 10.1074/jbc.m106747200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli undecaprayl-pyrophosphate synthase (UPPs) structure has been solved using the single wavelength anomalous diffraction method. The putative substrate-binding site is located near the end of the betaA-strand with Asp-26 playing a critical catalytic role. In both subunits, an elongated hydrophobic tunnel is found, surrounded by four beta-strands (betaA-betaB-betaD-betaC) and two helices (alpha2 and alpha3) and lined at the bottom with large residues Ile-62, Leu-137, Val-105, and His-103. The product distributions formed by the use of the I62A, V105A, and H103A mutants are similar to those observed for wild-type UPPs. Catalysis by the L137A UPPs, on the other hand, results in predominantly the formation of the C(70) polymer rather than the C(55) polymer. Ala-69 and Ala-143 are located near the top of the tunnel. In contrast to the A143V reaction, the C(30) intermediate is formed to a greater extent and is longer lived in the process catalyzed by the A69L mutant. These findings suggest that the small side chain of Ala-69 is required for rapid elongation to the C(55) product, whereas the large hydrophobic side chain of Leu-137 is required to limit the elongation to the C(55) product. The roles of residues located on a flexible loop were investigated. The S71A, N74A, or R77A mutants displayed 25-200-fold decrease in k(cat) values. W75A showed an 8-fold increase of the FPP K(m) value, and 22-33-fold increases in the IPP K(m) values were observed for E81A and S71A. The loop may function to bridge the interaction of IPP with FPP, needed to initiate the condensation reaction and serve as a hinge to control the substrate binding and product release.
Collapse
|
|
24 |
69 |
16
|
Musayev FN, Di Salvo ML, Ko TP, Schirch V, Safo MK. Structure and properties of recombinant human pyridoxine 5'-phosphate oxidase. Protein Sci 2003; 12:1455-63. [PMID: 12824491 PMCID: PMC2323923 DOI: 10.1110/ps.0356203] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 04/04/2003] [Accepted: 04/07/2003] [Indexed: 10/27/2022]
Abstract
Pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the synthesis of pyridoxal 5'-phosphate. The cDNA for the human enzyme has been cloned and expressed in Escherichia coli. The purified human enzyme is a homodimer that exhibits a low catalytic rate constant of approximately 0.2 sec(-1) and K(m) values in the low micromolar range for both pyridoxine 5'phosphate and pyridoxamine 5'-phosphate. Pyridoxal 5'-phosphate is an effective product inhibitor. The three-dimensional fold of the human enzyme is very similar to those of the E. coli and yeast enzymes. The human and E. coli enzymes share 39% sequence identity, but the binding sites for the tightly bound FMN and substrate are highly conserved. As observed with the E. coli enzyme, the human enzyme binds one molecule of pyridoxal 5'-phosphate tightly on each subunit.
Collapse
|
Comparative Study |
22 |
68 |
17
|
K-M Chen C, Hudock MP, Zhang Y, Guo RT, Cao R, No JH, Liang PH, Ko TP, Chang TH, Chang SC, Song Y, Axelson J, Kumar A, Wang AHJ, Oldfield E. Inhibition of geranylgeranyl diphosphate synthase by bisphosphonates: a crystallographic and computational investigation. J Med Chem 2008; 51:5594-607. [PMID: 18800762 DOI: 10.1021/jm800325y] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the X-ray structures of several bisphosphonate inhibitors of geranylgeranyl diphosphate synthase, a target for anticancer drugs. Bisphosphonates containing unbranched side chains bind to either the farnesyl diphosphate (FPP) substrate site, the geranylgeranyl diphosphate (GGPP) product site, and in one case, both sites, with the bisphosphonate moiety interacting with 3 Mg (2+) that occupy the same position as found in FPP synthase. However, each of three "V-shaped" bisphosphonates bind to both the FPP and GGPP sites. Using the Glide program, we reproduced the binding modes of 10 bisphosphonates with an rms error of 1.3 A. Activities of the bisphosphonates in GGPPS inhibition were predicted with an overall error of 2x by using a comparative molecular similarity analysis based on a docked-structure alignment. These results show that some GGPPS inhibitors can occupy both substrate and product site and that binding modes as well as activity can be accurately predicted, facilitating the further development of GGPPS inhibitors as anticancer agents.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
63 |
18
|
Chan HC, Zhu Y, Hu Y, Ko TP, Huang CH, Ren F, Chen CC, Ma Y, Guo RT, Sun Y. Crystal structures of D-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars. Protein Cell 2012; 3:123-31. [PMID: 22426981 PMCID: PMC4875416 DOI: 10.1007/s13238-012-2026-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 02/05/2012] [Indexed: 01/07/2023] Open
Abstract
D-psicose 3-epimerase (DPEase) is demonstrated to be useful in the bioproduction of D-psicose, a rare hexose sugar, from D-fructose, found plenty in nature. Clostridium cellulolyticum H10 has recently been identified as a DPEase that can epimerize D-fructose to yield D-psicose with a much higher conversion rate when compared with the conventionally used DTEase. In this study, the crystal structure of the C. cellulolyticum DPEase was determined. The enzyme assembles into a tetramer and each subunit shows a (β/α)(8) TIM barrel fold with a Mn(2+) metal ion in the active site. Additional crystal structures of the enzyme in complex with substrates/products (D-psicose, D-fructose, D-tagatose and D-sorbose) were also determined. From the complex structures of C. cellulolyticum DPEase with D-psicose and D-fructose, the enzyme has much more interactions with D-psicose than D-fructose by forming more hydrogen bonds between the substrate and the active site residues. Accordingly, based on these ketohexose-bound complex structures, a C3-O3 proton-exchange mechanism for the conversion between D-psicose and D-fructose is proposed here. These results provide a clear idea for the deprotonation/protonation roles of E150 and E244 in catalysis.
Collapse
|
research-article |
13 |
61 |
19
|
Ko TP, Robinson H, Gao YG, Cheng CHC, DeVries AL, Wang AHJ. The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation. Biophys J 2003; 84:1228-37. [PMID: 12547803 PMCID: PMC1302699 DOI: 10.1016/s0006-3495(03)74938-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
RD1 is a 7-kDa globular protein from the Antarctic eel pout Lycodichthys dearborni. It belongs to type III of the four types of antifreeze proteins (AFPs) found in marine fishes living at subzero temperatures. For type III AFP, a potential ice-binding flat surface has been identified and is imbedded with side chains capable of making hydrogen bonds with a specific lattice plane on ice. So far, all crystallographic studies on type III AFPs were carried out using the Atlantic ocean pout Macrozoarces americanus as the source organism. Here we present the crystal structure of a type III AFP from a different zoarcid fish, and at an ultra-high resolution of 0.62 A. The protein fold of RD1 comprises a compact globular domain with two internal tandem motifs arranged about a pseudo-dyad symmetry. Each motif of the "pretzel fold" includes four short beta-strands and a 3(10) helix. There is a novel internal cavity of 45 A(3) surrounded by eight conserved nonpolar residues. The model contains several residues with alternate conformations, and a number of split water molecules, probably caused by alternate interactions with the protein molecule. After extensive refinement that includes hydrogen atoms, significant residual electron densities associated with the electrons of peptides and many other bonds could be visualized.
Collapse
|
research-article |
22 |
60 |
20
|
Jeng WY, Ko TP, Liu CI, Guo RT, Liu CL, Shr HL, Wang AHJ. Crystal structure of IcaR, a repressor of the TetR family implicated in biofilm formation in Staphylococcus epidermidis. Nucleic Acids Res 2008; 36:1567-77. [PMID: 18208836 PMCID: PMC2275139 DOI: 10.1093/nar/gkm1176] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Expression of the gene cluster icaADBC is necessary for biofilm production in Staphylococcus epidermidis. The ica operon is negatively controlled by the repressor IcaR. Here, the crystal structure of IcaR was determined and the refined structure revealed a homodimer comprising entirely α-helices, typical of the tetracycline repressor protein family for gene regulations. The N-terminal domain contains a conserved helix-turn-helix DNA-binding motif with some conformational variations, indicating flexibility in this region. The C-terminal domain shows a complementary surface charge distribution about the dyad axis, ideal for efficient and specific dimer formation. The results of the electrophoretic mobility shift assay and isothermal titration calorimetry suggested that a 28 bp core segment of the ica operator is implicated in the cooperative binding of two IcaR dimers on opposite sides of the duplex DNA. Computer modeling based on the known DNA-complex structure of QacR and site-specific mutagenesis experiments showed that direct protein–DNA interactions are mostly conserved, but with slight variations for recognizing the different sequences. By interfering with the binding of IcaR to DNA, aminoglycoside gentamicin and other antibiotics may activate the icaADBC genes and elicit biofilm production in S. epidermidis, and likely S. aureus, as a defense mechanism.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
59 |
21
|
Guo RT, Kuo CJ, Chou CC, Ko TP, Shr HL, Liang PH, Wang AHJ. Crystal Structure of Octaprenyl Pyrophosphate Synthase from Hyperthermophilic Thermotoga maritima and Mechanism of Product Chain Length Determination. J Biol Chem 2004; 279:4903-12. [PMID: 14617622 DOI: 10.1074/jbc.m310161200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to generate C40 octaprenyl pyrophosphate (OPP), which constitutes the side chain of bacterial ubiquinone or menaquinone. In this study, the first structure of long chain C40-OPPs from Thermotoga maritima has been determined to 2.28-A resolution. OPPs is composed entirely of alpha-helices joined by connecting loops and is arranged with nine core helices around a large central cavity. An elongated hydrophobic tunnel between D and F alpha-helices contains two DDXXD motifs on the top for substrate binding and is occupied at the bottom with two large residues Phe-52 and Phe-132. The products of the mutant F132A OPPs are predominantly C50, longer than the C40 synthesized by the wild-type and F52A mutant OPPs, suggesting that Phe-132 is the key residue for determining the product chain length. Ala-76 and Ser-77 located close to the FPP binding site and Val-73 positioned further down the tunnel were individually mutated to larger amino acids. A76Y and S77F mainly produce C20 indicating that the mutated large residues in the vicinity of the FPP site limit the substrate chain elongation. Ala-76 is the fifth amino acid upstream from the first DDXXD motif on helix D of OPPs, and its corresponding amino acid in FPPs is Tyr. In contrast, V73Y mutation led to additional accumulation of C30 intermediate. The new structure of the trans-type OPPs, together with the recently determined cis-type UPPs, significantly extends our understanding on the biosynthesis of long chain polyprenyl molecules.
Collapse
|
|
21 |
58 |
22
|
Huang WC, Ko TP, Li SSL, Wang AHJ. Crystal structures of the human SUMO-2 protein at 1.6 Å and 1.2 Å resolution. ACTA ACUST UNITED AC 2004; 271:4114-22. [PMID: 15479240 DOI: 10.1111/j.1432-1033.2004.04349.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The SUMO proteins are a class of small ubiquitin-like modifiers. SUMO is attached to a specific lysine side chain on the target protein via an isopeptide bond with its C-terminal glycine. There are at least four SUMO proteins in humans, which are involved in protein trafficking and targeting. A truncated human SUMO-2 protein that contains residues 9-93 was expressed in Escherichia coli and crystallized in two different unit cells, with dimensions of a=b=75.25 A, c=29.17 A and a=b=74.96 A, c=33.23 A, both belonging to the rhombohedral space group R3. They diffracted X-rays to 1.6 A and 1.2 A resolution, respectively. The structures were determined by molecular replacement using the yeast SMT3 protein as a search model. Subsequent refinements yielded R/Rfree values of 0.169/0.190 and 0.119/0.185, at 1.6 A and 1.2 A, respectively. The peptide folding of SUMO-2 consists of a half-open beta-barrel and two flanking alpha-helices with secondary structural elements arranged as betabetaalphabetabetaalphabeta in the sequence, identical to those of ubiquitin, SMT3 and SUMO-1. Comparison of SUMO-2 with SUMO-1 showed a surface region near the C terminus with significantly different charge distributions. This may explain their distinct intracellular locations. In addition, crystal-packing analysis suggests a possible trimeric assembly of the SUMO-2 protein, of which the biological significance remains to be determined.
Collapse
|
|
21 |
57 |
23
|
Fan JJ, Hsu WH, Lee KH, Chen KC, Lin CW, Lee YLA, Ko TP, Lee LT, Lee MT, Chang MS, Cheng CH. Dietary Flavonoids Luteolin and Quercetin Inhibit Migration and Invasion of Squamous Carcinoma through Reduction of Src/Stat3/S100A7 Signaling. Antioxidants (Basel) 2019; 8:antiox8110557. [PMID: 31731716 PMCID: PMC6912538 DOI: 10.3390/antiox8110557] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Flavonoids are well-known antioxidants and have shown the ability to prevent tumor formation and recurrence. Especially in dietary flavonoids, they have provided convenience and consistence of intake for long-term prevention of tumor formation. Previous reports suggested that S100 calcium-binding protein A7 (S100A7) might activate epithelial–mesenchymal transition (EMT) signaling and promote the metastasis of tumor cells; however, the regulatory signaling was unclear. In this study, we found that S100A7 was highly expressed in cancer cells and could be reduced by luteolin (Lu) and quercetin (Qu) through Src/Stat3 signaling. We found that the protein levels of S100A7, phosphorylated Src (p-Src), and p-Stat3 were increased in A431-III cells. Flavonoids Lu and Qu reduce protein levels of p-Src, p-Stat3 and S100A7 in A431-III cells. Treatment of A431-III cells with Src inhibitor SU6656 and Stat3 inhibitor S3I-201 also reduced the protein levels of S100A7. Transactivation activity of 5′-upstream regions of S100A7 was activated by Stat3 but was reduced by treatment with Lu, Qu, SU6656 and S3I-201. The treatment also reduced the migratory and invasive abilities of A431-III cells. In a further analysis of EMT markers, the protein level of E-cad increased and that of Twist decreased after treatment with the inhibitors and flavonoids. Overexpression of S100A7 decreased the protein level of E-cad and increased the Twist level, whereas knockdown of S100A7 had the opposite effects. Treatment with S3I-201, Lu and Qu, compared to the control, were found to decrease metastasis of tumor cells in zebrafish larvae. These results suggest that Lu and Qu may inhibit Src/Stat3/S100A7 signaling to reduce tumorigenesis of cancer cells.
Collapse
|
Journal Article |
6 |
55 |
24
|
Safo MK, Zhao Q, Ko TP, Musayev FN, Robinson H, Scarsdale N, Wang AHJ, Archer GL. Crystal structures of the BlaI repressor from Staphylococcus aureus and its complex with DNA: insights into transcriptional regulation of the bla and mec operons. J Bacteriol 2005; 187:1833-44. [PMID: 15716455 PMCID: PMC1064009 DOI: 10.1128/jb.187.5.1833-1844.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The 14-kDa BlaI protein represses the transcription of blaZ, the gene encoding beta-lactamase. It is homologous to MecI, which regulates the expression of mecA, the gene encoding the penicillin binding protein PBP2a. These genes mediate resistance to beta-lactam antibiotics in staphylococci. Both repressors can bind either bla or mec DNA promoter-operator sequences. Regulated resistance genes are activated via receptor-mediated cleavage of the repressors. Cleavage is induced when beta-lactam antibiotics bind the extramembrane sensor of the sensor-transducer signaling molecules, BlaR1 or MecR1. The crystal structures of BlaI from Staphylococcus aureus, both in free form and in complex with 32 bp of DNA of the mec operator, have been determined to 2.0- and 2.7-A resolutions, respectively. The structure of MecI, also in free form and in complex with the bla operator, has been previously reported. Both repressors form homodimers, with each monomer composed of an N-terminal DNA binding domain of winged helix-turn-helix topology and a C-terminal dimerization domain. The structure of BlaI in complex with the mec operator shows a protein-DNA interface that is conserved between both mec and bla targets. The recognition helix alpha3 interacts specifically with the conserved TACA/TGTA DNA binding motif. BlaI and, probably, MecI dimers bind to opposite faces of the mec DNA double helix in an up-and-down arrangement, whereas MecI and, probably, BlaI dimers bind to the same DNA face of bla promoter-operator DNA. This is due to the different spacing of mec and bla DNA binding sites. Furthermore, the flexibility of the dimeric proteins may make the C-terminal proteolytic cleavage site more accessible when the repressors are bound to DNA than when they are in solution, suggesting that the induction cascade involves bound rather than free repressor.
Collapse
|
research-article |
20 |
55 |
25
|
Lee CC, Ko TP, Chou CC, Yoshimura M, Doong SR, Wang MY, Wang AHJ. Crystal structure of infectious bursal disease virus VP2 subviral particle at 2.6A resolution: implications in virion assembly and immunogenicity. J Struct Biol 2006; 155:74-86. [PMID: 16677827 DOI: 10.1016/j.jsb.2006.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
The structural protein VP2 of infectious bursal disease virus (IBDV) spontaneously forms a dodecahedral T=1 subviral particle (SVP), and is a primary immunogen of the virus. In this study, the structure of IBDV SVP was determined in a cubic crystal and refined to 2.6A resolution. It contains 20 independent VP2 subunits in a crystallographic asymmetric unit. Each subunit is folded mainly into a shell domain and a protrusion domain, both with the Swiss-roll topology, plus a small helical base domain. Three VP2 subunits constitute a tight trimer, which is the building block of IBDV (sub)viral particles. The structure revealed a calcium ion bound to three pairs of symmetry-related Asp31 and Asp174 to stabilize the VP2 trimer. Our results of treatment of SVP with EGTA, a Ca(2+)-chelating reagent, indicated that the metal-ion may be important not only in maintaining highly stable quaternary structure but also in regulating the swelling and dissociation of the icosahedral particles. A Ca(2+)-dependent assembly pathway was thus proposed, which involves further interactions between the trimers. The 20 independent subunits showed conformational variations, with the surface loops of the protrusion domain being the most diverse. These loops are targets of the neutralizing antibodies. Several common interactions between the surface loops were clearly observed, suggesting a possible major conformation of the immunogenic epitopes.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
54 |