1
|
Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 2004; 430:748-54. [PMID: 15306801 DOI: 10.1038/nature02732] [Citation(s) in RCA: 768] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 06/07/2004] [Indexed: 01/23/2023]
Abstract
The mammalian sensory system is capable of discriminating thermal stimuli ranging from noxious cold to noxious heat. Principal temperature sensors belong to the TRP cation channel family, but the mechanisms underlying the marked temperature sensitivity of opening and closing ('gating') of these channels are unknown. Here we show that temperature sensing is tightly linked to voltage-dependent gating in the cold-sensitive channel TRPM8 and the heat-sensitive channel TRPV1. Both channels are activated upon depolarization, and changes in temperature result in graded shifts of their voltage-dependent activation curves. The chemical agonists menthol (TRPM8) and capsaicin (TRPV1) function as gating modifiers, shifting activation curves towards physiological membrane potentials. Kinetic analysis of gating at different temperatures indicates that temperature sensitivity in TRPM8 and TRPV1 arises from a tenfold difference in the activation energies associated with voltage-dependent opening and closing. Our results suggest a simple unifying principle that explains both cold and heat sensitivity in TRP channels.
Collapse
|
|
21 |
768 |
2
|
Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V. Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem 2003; 278:30813-20. [PMID: 12799367 DOI: 10.1074/jbc.m305127200] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPM4 is a Ca2+-activated but Ca2+-impermeable cation channel. An increase of [Ca2+]i induces activation and subsequent reduction of currents through TRPM4 channels. This inactivation is strikingly decreased in cell-free patches. In whole cell and cell-free configuration, currents through TRPM4 deactivate rapidly at negative potentials. At positive potentials, currents are much larger and activate slowly. This voltage-dependent behavior induces a striking outward rectification of the steady state currents. The instantaneous current-voltage relationship, derived from the amplitude of tail currents following a prepulse to positive potentials, is linear. Currents show a Boltzmann type of activation; the fraction of open channels increases at positive potentials and is low at negative potentials. Voltage dependence is not due to block by divalent cations or to voltage-dependent binding of intracellular Ca2+ to an activator site, indicating that TRPM4 is a transient receptor potential channel with an intrinsic voltage-sensing mechanism. Voltage dependence of TRPM4 may be functionally important, especially in excitable tissues generating plateau-like or bursting action potentials.
Collapse
|
|
22 |
271 |
3
|
Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bödding M, Droogmans G, Nilius B. Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 2002; 277:33704-10. [PMID: 12093812 DOI: 10.1074/jbc.m204828200] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the molecular determinants of ion permeation through the TRPV4 channel (VRL-2, TRP12, VR-OAC, and OTRPC4). TRPV4 is characterized by both inward and outward rectification, voltage-dependent block by Ruthenium Red, a moderate selectivity for divalent versus monovalent cations, and an Eisenman IV permeability sequence. We identify two aspartate residues, Asp(672) and Asp(682), as important determinants of the Ca(2+) sensitivity of the TRPV4 pore. Neutralization of either aspartate to alanine caused a moderate reduction of the relative permeability for divalent cations and of the degree of outward rectification. Neutralizing both aspartates simultaneously caused a much stronger reduction of Ca(2+) permeability and channel rectification and additionally altered the permeability order for monovalent cations toward Eisenman sequence II or I. Moreover, neutralizing Asp(682) but not Asp(672) strongly reduces the affinity of the channel for Ruthenium Red. Mutations to Met(680), which is located at the center of a putative selectivity filter, strongly reduced whole cell current amplitude and impaired Ca(2+) permeation. In contrast, neutralizing the only positively charged residue in the putative pore region, Lys(675), had no obvious effects on the properties of the TRPV4 channel pore. Our findings delineate the pore region of TRPV4 and give a first insight into the possible architecture of its permeation pathway.
Collapse
|
|
23 |
250 |
4
|
Abstract
A novel member of the transient receptor potential (Trp) family of ion channels, Trp12, was identified. The Trp12 mRNA is abundantly expressed in mouse kidney and encodes a protein of 871 amino acid residues. Trp12 transfected cells reveal an elevated cytosolic Ca(2+) and respond with a further increase of cytosolic Ca(2+) to perfusion with hypoosmotic solutions. The human orthologue of murine Trp12 was localized on a genomic clone derived from human chromosome 12. It is composed of 15 translated exons. The intron placement within that primary structure does not correlate with the previously postulated splice sites in transcripts encoding the stretch-inhibitable channel which shares a high degree of amino acid sequence identity with Trp12 and the vanilloid receptor type 1.
Collapse
|
|
25 |
234 |
5
|
Philipp S, Cavalié A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marquart A, Murakami M, Flockerzi V. A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J 1996. [DOI: 10.1002/j.1460-2075.1996.tb01004.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
|
29 |
222 |
6
|
Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A, Reus K, Meese E, Bonkhoff H, Flockerzi V. Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 2001; 276:19461-8. [PMID: 11278579 DOI: 10.1074/jbc.m009895200] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of intracellular Ca(2+) plays a key role in the development and growth of cells. Here we report the cloning and functional expression of a highly calcium-selective channel localized on the human chromosome 7. The sequence of the new channel is structurally related to the gene product of the CaT1 protein cloned from rat duodenum and is therefore called CaT-like (CaT-L). CaT-L is expressed in locally advanced prostate cancer, metastatic and androgen-insensitive prostatic lesions but is undetectable in healthy prostate tissue and benign prostatic hyperplasia. Additionally, CaT-L is expressed in normal placenta, exocrine pancreas, and salivary glands. New markers with well defined biological function that correlate with aberrant cell growth are needed for the molecular staging of cancer and to predict the clinical outcome. The human CaT-L channel represents a marker for prostate cancer progression and may serve as a target for therapeutic strategies.
Collapse
|
|
24 |
220 |
7
|
Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H. Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 2003; 22:7858-61. [PMID: 14586412 DOI: 10.1038/sj.onc.1206895] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Members of the TRP superfamily of cation channels have homeostatic and regulatory functions in cells and changes in their expression may contribute to malignant growth. Previously, we have demonstrated that the gene of the Ca2+-selective cation channel CaT-L or TRPV6 is not expressed in benign prostate tissues including benign prostate hyperplasia, but is upregulated in prostate cancer. Here, we report on the differential expression of TRPV6 mRNA in prostate tissue obtained from 140 patients with prostate cancer. Using in situ hybridization, TRPV6 transcripts were undetectable in benign prostate tissue, high-grade prostatic intraepithelial neoplasia (n=57), incidental adenocarcinoma and all tumors less than 2.3 cubic centimeter (cc). In prostatectomy specimens from 97 clinically organ-confined tumors, TRPV6 expression correlated significantly with the Gleason score (P=0.032), pathological stage (P<0.001) and extraprostatic extension (P=0.025). Lymph node metastasis (n=17) and androgen-insensitive tumors (n=27) revealed TRPV6 expression in 63 and 67% of cases, respectively. The latter, however, revealed markedly and significantly decreased levels when compared with untreated tumors (P=0.044). In summary, the data demonstrate that TRPV6 expression is associated with prostate cancer progression. Accordingly, TRPV6 represents a prognostic marker and, as a plasma membrane Ca2+ channel, a promising target for new therapeutic strategies to treat advanced prostate cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
185 |
8
|
Kamouchi M, Philipp S, Flockerzi V, Wissenbach U, Mamin A, Raeymaekers L, Eggermont J, Droogmans G, Nilius B. Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol 1999; 518 Pt 2:345-58. [PMID: 10381584 PMCID: PMC2269435 DOI: 10.1111/j.1469-7793.1999.0345p.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. We combined patch clamp and fura-2 fluorescence methods to characterize human TRP3 (hTRP3) channels heterologously expressed in cultured bovine pulmonary artery endothelial (CPAE) cells, which do not express the bovine trp3 isoform (btrp3) but express btrp1 and btrp4. 2. ATP, bradykinin and intracellular InsP3 activated a non-selective cation current (IhTRP3) in htrp3-transfected CPAE cells but not in non-transfected wild-type cells. During agonist stimulation, the sustained rise in [Ca2+]i was significantly higher in htrp3-transfected cells than in control CPAE cells. 3. The permeability for monovalent cations was PNa > PCs approximately PK >> PNMDG and the ratio PCa/PNa was 1.62 +/- 0.27 (n = 11). Removal of extracellular Ca2+ enhanced the amplitude of the agonist-activated IhTRP3 as well as that of the basal current The trivalent cations La3+ and Gd3+ were potent blockers of IhTRP3 (the IC50 for La3+ was 24.4 +/- 0.7 microM). 4. The single-channel conductance of the channels activated by ATP, assessed by noise analysis, was 23 pS. 5. Thapsigargin and 2,5-di-tert-butyl-1, 4-benzohydroquinone (BHQ), inhibitors of the organellar Ca2+-ATPase, failed to activate IhTRP3. U-73122, a phospholipase C blocker, inhibited IhTRP3 that had been activated by ATP and bradykinin. Thimerosal, an InsP3 receptor-sensitizing compound, enhanced IhTRP3, but calmidazolium, a calmodulin antagonist, did not affect IhTRP3. 6. It is concluded that hTRP3 forms non-selective plasmalemmal cation channels that function as a pathway for agonist-induced Ca2+ influx.
Collapse
|
research-article |
26 |
143 |
9
|
Niemeyer BA, Bergs C, Wissenbach U, Flockerzi V, Trost C. Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin. Proc Natl Acad Sci U S A 2001; 98:3600-5. [PMID: 11248124 PMCID: PMC30699 DOI: 10.1073/pnas.051511398] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2000] [Indexed: 11/18/2022] Open
Abstract
A finely tuned Ca(2+) signaling system is essential for cells to transduce extracellular stimuli, to regulate growth, and to differentiate. We have recently cloned CaT-like (CaT-L), a highly selective Ca(2+) channel closely related to the epithelial calcium channels (ECaC) and the calcium transport protein CaT1. CaT-L is expressed in selected exocrine tissues, and its expression also strikingly correlates with the malignancy of prostate cancer. The expression pattern and selective Ca(2+) permeation properties suggest an important function in Ca(2+) uptake and a role in tumor progression, but not much is known about the regulation of this subfamily of ion channels. We now demonstrate a biochemical and functional mechanism by which cells can control CaT-L activity. CaT-L is regulated by means of a unique calmodulin binding site, which, at the same time, is a target for protein kinase C-dependent phosphorylation. We show that Ca(2+)-dependent calmodulin binding to CaT-L, which facilitates channel inactivation, can be counteracted by protein kinase C-mediated phosphorylation of the calmodulin binding site.
Collapse
|
research-article |
24 |
135 |
10
|
Nilius B, Prenen J, Wissenbach U, Bödding M, Droogmans G. Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch 2001; 443:227-33. [PMID: 11713648 DOI: 10.1007/s004240100676] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2001] [Accepted: 06/22/2001] [Indexed: 10/28/2022]
Abstract
The detection of changes in volume and osmolality is an essential function in vertebrate cells. A novel member of the transient receptor potential (trp) family of ion channels, which is sensitive to changes in cell volume, has been described recently. Heterologous expression of TRP12 in HEK cells resulted in the appearance of a swelling-activated cation current. The permeability sequence of this cation current for various monovalent cations, as determined from shifts in reversal potential upon extracellular cation substitution, was PK>PCs>PNa>PLi, corresponding to an Eisenman-IV sequence characteristic for a weak-field-strength site. Surprisingly, over-expression of this channel in HEK cells was accompanied by a dramatic down-regulation of the volume-regulated anion channel (VRAC), which is activated by cell swelling in non-transfected cells. In contrast to VRAC, TRP12 could not be activated at constant volume by a reduction of intracellular ionic strength or by intracellular perfusion with guanosine 5'-O-(3-thiotriphosphate (GTPgammaS). The kinetic and pharmacological profile of VRAC and TRP12 currents were also different.
Collapse
|
|
24 |
109 |
11
|
Philipp S, Strauss B, Hirnet D, Wissenbach U, Mery L, Flockerzi V, Hoth M. TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J Biol Chem 2003; 278:26629-38. [PMID: 12736256 DOI: 10.1074/jbc.m304044200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of the T-cell receptor (TCR) activates Ca2+ entry across the plasma membrane, which is a key triggering event for the T-cell-associated immune response. We show that TRPC3 channels are important for the TCR-dependent Ca2+ entry pathway. The TRPC3 gene was found to be damaged in human T-cell mutants defective in Ca2+ influx. Mutations of the TRPC3 gene were accompanied by changes of TRPC3 gene expression. Introduction of the complete human TRPC3 cDNA into those mutants rescued Ca2+ currents as well as TCR-dependent Ca2+ signals. Our data provide the initial step toward understanding the molecular nature of endogenous Ca2+ channels participating in T-cell activation and put forward TRPC3 as a new target for modulating the immune response.
Collapse
|
|
22 |
100 |
12
|
Erler I, Hirnet D, Wissenbach U, Flockerzi V, Niemeyer BA. Ca2+-selective Transient Receptor Potential V Channel Architecture and Function Require a Specific Ankyrin Repeat. J Biol Chem 2004; 279:34456-63. [PMID: 15192090 DOI: 10.1074/jbc.m404778200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential (TRP) proteins form cation-conducting ion channels with currently 28 known genes encoding TRP channel monomers in mammals. These monomers are thought to coassemble to form homo- or heterotetrameric channels, but the signals governing their assembly are unknown. Within the TRPV subgroup, TRPV5 and TRPV6 show exclusive calcium selectivity and play an important role in calcium uptake. To identify signals that mediate assembly of functional TRPV6, we screened domains for self-association using co-immunoprecipitation, sucrose gradient centrifugation, bacterial two-hybrid assays, and patch clamp analysis. Of the two identified interaction domains within the N-terminal region, we showed that the first domain encompassing the third ankyrin repeat is the stringent requirement for physical assembly of TRPV6 subunits and when transferred to an unrelated protein enables its interaction with TRPV6. Deletion of this repeat or mutation of critical residues within this repeat rendered nonfunctional channels that do not co-immunoprecipitate or form tetramers. Suppression of dominant-negative inhibitors of TRPV6-specific currents was achieved by deletion of ankyrin (ANK) 3. We propose that the third ANK repeat initiates a molecular zippering process that proceeds past the fifth ANK repeat and creates an intracellular anchor that is necessary for functional subunit assembly.
Collapse
|
|
21 |
99 |
13
|
Bödding M, Wissenbach U, Flockerzi V. Characterisation of TRPM8 as a pharmacophore receptor. Cell Calcium 2007; 42:618-28. [PMID: 17517434 DOI: 10.1016/j.ceca.2007.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 03/15/2007] [Accepted: 03/21/2007] [Indexed: 11/15/2022]
Abstract
Some proteins of the transient receptor potential (TRP) family form temperature sensitive ion channels. One member of the melastatin (M) group, namely TRPM8 is activated by cold and cooling compounds such as menthol and icilin, and its gene is up-regulated in prostate cancer and other malignancies. Here we characterise the effects of the carboxamides WS-12, CPS-113, CPS-369, the carboxylic acid WS-30 and the phosphine oxide WS-148 by Ca2+ imaging experiments and whole-cell patch-clamp recordings on TRPM8 expressing human embryonic kidney (HEK), lymph node prostate cancer (LNCaP) and dorsal root ganglia (DRG) cells. The cooling compounds introduced in this study, show a dose-dependent and reversible activation of TRPM8 with EC50 values in the nM to low microM range. The carboxamide WS-12 is most potent in activating TRPM8. It is selective, since other TRP proteins are not stimulated at muM concentrations and its efficacy with respect to TRPM8 is similar to the one of icilin. In summary, the compounds described in this study represent new tools to dissect TRPM8 functions and may serve as chemical leads for the development of additional TRPM8 agonists and novel antagonists. Such compounds may be beneficial for preventing noxious cold perception. They could also be useful in diagnosis and treatment of most common cancers in which the TRPM8 gene is up-regulated in comparison to the corresponding normal tissue.
Collapse
|
|
18 |
96 |
14
|
Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H, Flockerzi V. TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys Res Commun 2004; 322:1359-63. [PMID: 15336984 DOI: 10.1016/j.bbrc.2004.08.042] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Indexed: 11/22/2022]
Abstract
Life expectancy for patients suffering from prostate cancer is inversely correlated with the degree of extraprostatic metastasis. In order to find pharmacological tools to treat this aggressive growth it is important to define targets whose expression not only correlates with the malignancy of the cancerous cells, but that are also amenable to pharmacological intervention. In this review, we would like to focus on the potential role of a distinct class of ion channels that may be involved in this process.
Collapse
|
Review |
21 |
92 |
15
|
Gross SA, Wissenbach U, Philipp SE, Freichel M, Cavalié A, Flockerzi V. Murine ORAI2 splice variants form functional Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem 2007; 282:19375-84. [PMID: 17463004 DOI: 10.1074/jbc.m701962200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stimulation of membrane receptors coupled to the phopholipase C pathway leads to activation of the Ca(2+) release-activated Ca(2+) (CRAC) channels. Recent evidence indicates that ORAI1 is an essential pore subunit of CRAC channels. STIM1 is additionally required for CRAC channel activation. The present study focuses on the genomic organization, tissue expression pattern, and functional properties of the murine ORAI2. Additionally, we report the cloning of the murine ORAI1, ORAI3, and STIM1. Two chromosomal loci were identified for the murine orai2 gene, one containing an intronless gene and a second locus that gives rise to the splice variants ORAI2 long (ORAI2L) and ORAI2 short (ORAI2S). Northern blots revealed a prominent expression of the ORAI2 variants in the brain, lung, spleen, and intestine, while ORAI1, ORAI3, and STIM1 appeared to be near ubiquitously expressed in mice tissues. Specific antibodies detected ORAI2 in RBL 2H3 but not in HEK 293 cells, whereas both cell lines appeared to express ORAI1 and STIM1 proteins. Co-expression experiments with STIM1 and either ORAI1 or ORAI2 variants showed that ORAI2L and ORAI2S enhanced substantially CRAC current densities in HEK 293 but were ineffective in RBL 2H3 cells, whereas ORAI1 strongly amplified CRAC currents in both cell lines. Thus, the capability of ORAI2 variants to form CRAC channels depends strongly on the cell background. Additionally, CRAC channels formed by ORAI2S were strongly sensitive to inactivation by internal Ca(2+). When co-expressed with STIM1 and ORAI1, ORAI2S apparently plays a negative dominant role in the formation of CRAC channels.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
89 |
16
|
Freise D, Held B, Wissenbach U, Pfeifer A, Trost C, Himmerkus N, Schweig U, Freichel M, Biel M, Hofmann F, Hoth M, Flockerzi V. Absence of the gamma subunit of the skeletal muscle dihydropyridine receptor increases L-type Ca2+ currents and alters channel inactivation properties. J Biol Chem 2000; 275:14476-81. [PMID: 10799530 DOI: 10.1074/jbc.275.19.14476] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle the oligomeric alpha(1S), alpha(2)/delta-1 or alpha(2)/delta-2, beta1, and gamma1 L-type Ca(2+) channel or dihydropyridine receptor functions as a voltage sensor for excitation contraction coupling and is responsible for the L-type Ca(2+) current. The gamma1 subunit, which is tightly associated with this Ca(2+) channel, is a membrane-spanning protein exclusively expressed in skeletal muscle. Previously, heterologous expression studies revealed that gamma1 might modulate Ca(2+) currents expressed by the pore subunit found in heart, alpha(1C), shifting steady state inactivation, and increasing current amplitude. To determine the role of gamma1 assembled with the skeletal subunit composition in vivo, we used gene targeting to establish a mouse model, in which gamma1 expression is eliminated. Comparing litter-matched mice with control mice, we found that, in contrast to heterologous expression studies, the loss of gamma1 significantly increased the amplitude of peak dihydropyridine-sensitive I(Ca) in isolated myotubes. Whereas the activation kinetics of the current remained unchanged, inactivation of the current was slowed in gamma1-deficient myotubes and, correspondingly, steady state inactivation of I(Ca) was shifted to more positive membrane potentials. These results indicate that gamma1 decreases the amount of Ca(2+) entry during stimulation of skeletal muscle.
Collapse
|
|
25 |
86 |
17
|
Gross SA, Guzmán GA, Wissenbach U, Philipp SE, Zhu MX, Bruns D, Cavalié A. TRPC5 is a Ca2+-activated channel functionally coupled to Ca2+-selective ion channels. J Biol Chem 2009; 284:34423-32. [PMID: 19815560 DOI: 10.1074/jbc.m109.018192] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPC5 forms non-selective cation channels. Here we studied the role of internal Ca(2+) in the activation of murine TRPC5 heterologously expressed in human embryonic kidney cells. Cell dialysis with various Ca(2+) concentrations (Ca(2+)(i)) revealed a dose-dependent activation of TRPC5 channels by internal Ca(2+) with EC(50) of 635.1 and 358.2 nm at negative and positive membrane potentials, respectively. Stepwise increases of Ca(2+)(i) induced by photolysis of caged Ca(2+) showed that the Ca(2+) activation of TRPC5 channels follows a rapid exponential time course with a time constant of 8.6 +/- 0.2 ms at Ca(2+)(i) below 10 microM, suggesting that the action of internal Ca(2+) is a primary mechanism in the activation of TRPC5 channels. A second slow activation phase with a time to peak of 1.4 +/- 0.1 s was also observed at Ca(2+)(i) above 10 microM. In support of a Ca(2+)-activation mechanism, the thapsigargin-induced release of Ca(2+) from internal stores activated TRPC5 channels transiently, and the subsequent Ca(2+) entry produced a sustained TRPC5 activation, which in turn supported a long-lasting membrane depolarization. By co-expressing STIM1 plus ORAI1 or the alpha(1)C and beta(2) subunits of L-type Ca(2+) channels, we found that Ca(2+) entry through either calcium-release-activated-calcium or voltage-dependent Ca(2+) channels is sufficient for TRPC5 channel activation. The Ca(2+) entry activated TRPC5 channels under buffering of internal Ca(2+) with EGTA but not with BAPTA. Our data support the hypothesis that TRPC5 forms Ca(2+)-activated cation channels that are functionally coupled to Ca(2+)-selective ion channels through local Ca(2+) increases beneath the plasma membrane.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
86 |
18
|
Erler I, Al-Ansary DMM, Wissenbach U, Wagner TFJ, Flockerzi V, Niemeyer BA. Trafficking and assembly of the cold-sensitive TRPM8 channel. J Biol Chem 2006; 281:38396-404. [PMID: 17065148 DOI: 10.1074/jbc.m607756200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPM (transient receptor potential melastatin-like) channels are distinct from many other members of the transient receptor potential family in regard to their overall size (>1000 amino acids), the lack of N-terminal ankyrin-like repeats, and hydrophobicity predictions that may allow for more than six transmembrane regions. Common to each TRPM member is a prominent C-terminal coiled coil region. Here we have shown that TRPM8 channels assemble as multimers using the putative coiled coil region within the intracellular C terminus and that this assembly can be disturbed by a single point mutation within the coiled coil region. This mutant neither gives rise to functional channels nor do its subunits interact or form protein complexes that correspond to a multimer. However, they are still transported to the plasma membrane. Furthermore, wild-type currents can be suppressed by expressing the membrane-attached C-terminal region of TRPM8. To separate assembly from trafficking, we investigated the maturation of TRPM8 protein by identifying and mutating the relevant N-linked glycosylation site and showing that glycosylation is neither essential for multimerization nor for transport to the plasma membrane per se but appears to facilitate efficient multimerization and transport.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
83 |
19
|
Wissenbach U, Kröger A, Unden G. The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch Microbiol 1990; 154:60-6. [PMID: 2204318 DOI: 10.1007/bf00249179] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The respiratory activities of E. coli with H2 as donor and with nitrate, fumarate, dimethylsulfoxide (DMSO) or trimethylamine N-oxide (TMAO) as acceptor were measured using the membrane fraction of quinone deficient strains. The specific activities of the membrane fraction lacking naphthoquinones with fumarate, DMSO or TMAO amounted to less than or equal to 2% of those measured with the membrane fraction of the wild-type strain. After incorporation of vitamin K1 [instead of menaquinone (MK)] into the membrane fraction deficient of naphthoquinones, the activities with fumarate or DMSO were 92% or 17%, respectively, of the activities which could be theoretically achieved. Incorporation of demethylmenaquinone (DMK) did not lead to a stimulation of the activities of the mutant. In contrast, the electron transport activity with TMAO was stimulated by the incorporation of either vitamin K1 or DMK. Nitrate respiration was fully active in membrane fractions lacking either naphthoquinones or Q, but was less than or equal to 3% of the wild-type activity, when all quinones were missing. Nitrate respiration was stimulated on the incorporation of either vitamin K1 or Q into the membrane fraction lacking quinones, while the incorporation of DMK was without effect. These results suggest that MK is specifically involved in the electron transport chains catalyzing the reduction of fumarate or DMSO, while either MK or DMK serve as mediators in TMAO reduction. Nitrate respiration requires either Q or MK.
Collapse
|
|
35 |
82 |
20
|
Weissgerber P, Kriebs U, Tsvilovskyy V, Olausson J, Kretz O, Stoerger C, Vennekens R, Wissenbach U, Middendorff R, Flockerzi V, Freichel M. Male Fertility Depends on Ca2+ Absorption by TRPV6 in Epididymal Epithelia. Sci Signal 2011; 4:ra27. [DOI: 10.1126/scisignal.2001791] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
14 |
82 |
21
|
Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, Hoth M. TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium 2005; 39:163-73. [PMID: 16356545 DOI: 10.1016/j.ceca.2005.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/13/2005] [Accepted: 10/17/2005] [Indexed: 12/20/2022]
Abstract
The Ca(2+) homeostasis within cells controls a diversity of cellular processes including gene transcription, proliferation and apoptosis. Perturbance of Ca(2+) signaling may induce deregulation of cell proliferation and suppression of cell death providing the basis for cancer development. In human prostate cancer, a correlation between the mRNA expression of the Ca(2+) channel TRPV6 and the staging of the cancer has been described. We have analyzed the influence of TRPV6 on cell proliferation within HEK-293 cells. We show that TRPV6 increases cell proliferation of HEK-293 cells in a Ca(2+) dependent manner. The increased proliferation correlates with slightly increased intracellular Ca(2+) levels without interfering with the intrinsic Ca(2+) dependence of HEK-293 cell proliferation. Low doses of econazole inhibit both, TRPV6 dependent Ca(2+) signals and cell proliferation while BTP2, a potent inhibitor of Ca(2+) signals and cell proliferation in T-cells, neither influences TRPV6 dependent Ca(2+) signals nor cell proliferation of HEK-293 cells. Our data demonstrate that TRPV6 increases the rate of Ca(2+) dependent cell proliferation which is a prerequisite for its potential role in tumor progression.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
75 |
22
|
Wissenbach U, Ternes D, Unden G. An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration. Arch Microbiol 1992; 158:68-73. [PMID: 1444716 DOI: 10.1007/bf00249068] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mutant strain AN70 (ubiE) of Escherichia coli which is known to lack ubiquinone (Young IG et al. 1971), was analyzed for menaquinone (MK) and demethylmenaquinone (DMK) contents. In contrast to the wild-type, strain AN70 contained only DMK, but no MK. The mutant strain was able to grow with fumarate, trimethylamine N-oxide (TMAO) and dimethylsulfoxide (DMSO), but not with nitrate as electron acceptor. The membranes catalyzed anaerobic respiration with fumarate and TMAO at 69 and 74% of wild-type rates. DMSO respiration was reduced to 38% of wild-type activities and nitrate respiration was missing (less than or equal to 8% of wild-type), although the respective enzymes were present in wild-type rates. The results complement earlier findings which demonstrated a role for DMK only in TMAO respiration (Wissenbach et al. 1990). It is concluded, that DMK (in addition to MK) can serve as a redox mediator in fumarate, TMAO and to some extent in DMSO respiration, but not in nitrate respiration. In strain AN70 (ubiE) the lack of ubiquinone (Q) is due to a defect in a specific methylation step of Q biosynthesis. Synthesis of MK from DMK appears to depend on the same gene (ubiE).
Collapse
|
|
33 |
68 |
23
|
Wissenbach U, Six S, Bongaerts J, Ternes D, Steinwachs S, Unden G. A third periplasmic transport system for L-arginine in Escherichia coli: molecular characterization of the artPIQMJ genes, arginine binding and transport. Mol Microbiol 1995; 17:675-86. [PMID: 8801422 DOI: 10.1111/j.1365-2958.1995.mmi_17040675.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new binding-protein-dependent transport system of Escherichia coli specific for L-arginine was characterized by genetic and biochemical means. The system is encoded by five adjacent genes, artPIQMJ (art standing for arginine transport), which are organized in two transcriptional units (artPIQM and artJ). The artl and artJ gene products (Artl and ArtJ) are periplasmic binding proteins with sequence similarity to binding proteins for polar (basic) amino acids. The artQ, artM and artP products are similar to the transmembraneous proteins and the ATPase of binding-protein-dependent carriers. The mature Artl and J proteins were localized in the periplasm and lacked signal peptides of 19 amino acid residues. Artl and ArtJ were isolated from overproducing strains. ArtJ specifically binds L-arginine with high affinity and overproduction of ArtJ stimulated L-arginine uptake by the bacteria. The substrate for Artl is not known, and isolated Artl did not bind common amino acids, various basic uncommon amino acids or amines. It is concluded that the artPIQM artJ genes encode a third arginine-uptake system in addition to the known argT hisJQMP system of Salmonella typhimurium and E. coli and the arginine (-ornithine) carrier (aps) of E. coli.
Collapse
|
Comparative Study |
30 |
65 |
24
|
Wissenbach U, Schroth G, Philipp S, Flockerzi V. Structure and mRNA expression of a bovine trp homologue related to mammalian trp2 transcripts. FEBS Lett 1998; 429:61-6. [PMID: 9657384 DOI: 10.1016/s0014-5793(98)00561-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammalian homologues of the transient receptor potential (trp) gene product from Drosophila melanogaster function as Ca2+-selective or non-selective cation channels. Complementary DNA was isolated from a bovine testis cDNA library which encodes bovine trp2 (btrp2), a protein of 432 amino acid residues comprising four predicted transmembrane segments. Btrp2 mRNA is expressed in bovine testis, spleen and liver but not in brain, heart, adrenal gland or retina. In bovine testis expression of btrp2 mRNA is restricted to spermatocytes but is not present in spermatogonia, Leydig or Sertoli cells suggesting that btrp2 may contribute to the formation of ion channels in sperm cells.
Collapse
|
|
27 |
63 |
25
|
Hirnet D, Olausson J, Fecher-Trost C, Bödding M, Nastainczyk W, Wissenbach U, Flockerzi V, Freichel M. The TRPV6 gene, cDNA and protein. Cell Calcium 2003; 33:509-18. [PMID: 12765696 DOI: 10.1016/s0143-4160(03)00066-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mouse TRPV6 gene is localized on chromosome 6 and extends over 15.66kb. The encoded protein comprises 727 amino acid residues with a calculated relative molecular mass of 83,210Da. TRPV6 is glycosylated and both variants, the glycosylated and the de-glycosylated proteins, are recognized by various polyclonal and monoclonal antibodies, which were raised against TRPV6. Like human TRPV6, mouse TRPV6 binds calmodulin in the presence, but not in the absence of Ca2+. TRPV6 is abundantly expressed in mouse pancreas and placenta, and to a much lesser extend in mouse stomach and kidney. No transcript expression was detected in poly(A)+RNA isolated from heart, brain, intestine, esophagus or aortic endothelial cells.
Collapse
|
|
22 |
60 |