1
|
Shankar S, Shanker U, Shikha. Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. ScientificWorldJournal 2014; 2014:304524. [PMID: 25374935 PMCID: PMC4211162 DOI: 10.1155/2014/304524] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/17/2014] [Indexed: 12/13/2022] Open
Abstract
Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater.
Collapse
|
Review |
11 |
226 |
2
|
Rani M, Shanker U, Jassal V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 190:208-222. [PMID: 28056354 DOI: 10.1016/j.jenvman.2016.12.068] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 05/12/2023]
Abstract
Organochlorines (OCs) are the most hazardous class of pesticides, therefore, banned or restricted in several countries. The major sources of OCs include food industries, agriculture and sewage wastes. Their effluents discharged into the water bodies contain extremely high concentration of OCs which ultimately causes environmental concern. Because of their high persistence, toxicity and potential to bioaccumulation, their removal from wastewater is imperative. The degradation techniques are now advanced using nanomaterials of various kinds. During the last few years, nanoparticles such as TiO2 and Fe are found to be excellent adsorbents and efficient photocatalysts for degrading more or less whole OCs as well as their toxic metabolites, which opens the opportunities for exploring various other nanoparticles as well. It is noteworthy that such methodologies are economic, fast and very efficient. In this review, the detailed information on different types of OC pesticides, their metabolites, environmental concern and present status on degradation methods using nanoparticles have been reviewed. An attempt has also been made to highlight the research gaps prevailing in the current research area.
Collapse
|
Review |
8 |
134 |
3
|
Jassal V, Shanker U, Kaith BS, Shankar S. Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes. RSC Adv 2015. [DOI: 10.1039/c5ra03266k] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The novelty of work lies in the green synthesis of KZnHCF nanocubes using natural surfactant and impact on photocatalytic degradation.
Collapse
|
|
10 |
79 |
4
|
Rani M, Shanker U. Sun-light driven rapid photocatalytic degradation of methylene blue by poly(methyl methacrylate)/metal oxide nanocomposites. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
|
7 |
62 |
5
|
Shanker U, Jassal V, Rani M. Catalytic removal of organic colorants from water using some transition metal oxide nanoparticles synthesized under sunlight. RSC Adv 2016. [DOI: 10.1039/c6ra17555d] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The novelty of the work lies in utilizing the sunlight irradiated, green synthesis of TMO nanoparticles, and their potential in simulated water treatment.
Collapse
|
|
9 |
61 |
6
|
Jassal V, Shanker U, Gahlot S. Green synthesis of some iron oxide nanoparticles and their interaction with 2-Amino, 3-Amino and 4-Aminopyridines. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.matpr.2016.04.087] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
9 |
57 |
7
|
Shanker U, Bhushan B, Bhattacharjee G, Kamaluddin. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry. ORIGINS LIFE EVOL B 2012; 42:31-45. [PMID: 22373603 DOI: 10.1007/s11084-012-9266-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/14/2011] [Indexed: 10/28/2022]
Abstract
Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.
Collapse
|
|
13 |
37 |
8
|
Rani M, Shanker U. Insight in to the degradation of bisphenol A by doped ZnO@ZnHCF nanocubes: High photocatalytic performance. J Colloid Interface Sci 2018; 530:16-28. [DOI: 10.1016/j.jcis.2018.06.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
|
|
7 |
36 |
9
|
Rani M, Shanker U. Removal of chlorpyrifos, thiamethoxam, and tebuconazole from water using green synthesized metal hexacyanoferrate nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10878-10893. [PMID: 29397507 DOI: 10.1007/s11356-018-1346-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
The low-cost and highly efficient pesticides are largely used in residential, agricultural, and commercial applications. Their prevalent occurrence, bioaccumulation, and chronic toxicity to living beings have raised environmental concern and call for their whole eradication, especially from water. By virtue of semiconducting nature and high surface area, nanomaterials have become efficient adsorbent and photocatalyst in removal of toxins. To confirm this, the potential of highly crystalline metal hexacyanoferrates (MHCFs) of Zn, Cu, Co, and Ni was evaluated in deprivation of selected hazardous pesticides, viz., chlorpyrifos (CP), thiamethoxam (TH), and tebuconazole (TEB). Sharp nanocubes of ZnHCF (~ 100 nm), distorted nanocubes of CuHCF (~ 100 nm), and nanospheres of CoHCF and NiHCF (< 10 nm) were synthesized via green route using Sapindus mukorossi (raw ritha). At 50 mg L-1 of pesticide, 15 mg of MHCF photocatalyst, neutral pH and sunlight irradiation, selected agrochemicals were degraded to maximum extent (91-98%) by ZnHCF followed by CuHCF (85-91%), NiHCF (73-85%), and CoHCF (70-83%). This might be because of highest zeta potential and BET surface area of ZnHCF. The highest adsorption of CP (83-98%) followed by TH (76-95%) and TEB (70-91%) on acidic surface of catalysts might be related to access of free electrons in their structures. On treatment with MHCF photocatalyst, targets underwent mineralization along with formation of some minor and non-toxic by-products such as (Z) but-2-enal, 3-aminopropanoic acid, and pyridin-3-ol, identified after mass spectrometric analysis of reaction mixture. Based on them, degradation pathways have been proposed to reveal the potential of MHCF for solar photocatalytic removal of organic pollutants in environment.
Collapse
|
|
7 |
36 |
10
|
Shanker U, Jassal V, Rani M. Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:337-348. [PMID: 28910732 DOI: 10.1016/j.jenvman.2017.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/26/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) the ubiquitous, persistent and carcinogenic environmental contaminants have raised concern worldwide. Recently, their removal methodologies are advanced after exploring nanomaterials. Therefore, degradation of selected toxic PAHs (3-5 rings) using potassium zinc hexacyanoferrate (KZnHCF) nanocubes was studied. Highly crystalline and sharp KZnHCF nanocubes (∼100 nm) were obtained by green route using sapindus mukorossi. In both water and soil, anthracene and phenanthrene were degraded to maximum extent (80-93%), whereas, the degradation of fluorene, chrysene and benzo (a) pyrene were ∼70-80%.Because of small size (lower molecular weight), large number of anthracene and phenanthrene molecules were adsorbed on catalyst as compared to other PAHs. Higher degradation of PAHs in water than in the soil is attributed to the easy absorption of PAHs on catalyst in water and slow diffusion of PAHs on organic content of soil. PAHs were degraded at the concentration of 50 mg/L, 25 mg catalyst dose, neutral pH and solar irradiation. Higher proficiency of the catalyst was revealed by degradation of PAHs into small and non-toxic by-products such as malealdehyde, 4-oxobut-2-enoic acid and o-xylene. Overall, the potential KZnHCF nanostructures open future scope for eradication of other pollutants from the environment.
Collapse
|
|
8 |
32 |
11
|
Rachna, Rani M, Shanker U. Sunlight mediated improved photocatalytic degradation of carcinogenic benz[a]anthracene and benzo[a]pyrene by zinc oxide encapsulated hexacyanoferrate nanocomposite. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111861] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
6 |
30 |
12
|
Selvaraju S, Agarwal SK, Karche SD, Srivastava SK, Majumdar AC, Shanker U. Fertility responses and hormonal profiles in repeat breeding cows treated with insulin. Anim Reprod Sci 2002; 73:141-9. [PMID: 12363438 DOI: 10.1016/s0378-4320(02)00133-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The influence of insulin treatment on conception rate and endocrine profile was studied on 21 repeat breeding cows divided randomly into two groups, i.e. insulin treatment (n = 11) and control (n = 10). Cows of the insulin treatment group were injected subcutaneously with a long acting purified form of bovine insulin at 0.2 IU/kg body weight/day on days 8, 9 and 10, and then with 0.75 mg tiaprost (PGF(2)alpha) intramuscularly on day 12 of the oestrous cycle (oestrus = day 0). The cows of the control group only received 0.75 mg tiaprost was injected intramuscularly on day 12. There was no difference (P > 0.05) in the interval to the onset of oestrus and subsequent cycle length between the treatment (84.5 +/- 6.6 h and 21.2 +/- 0.6 days, respectively) and the control (72.3 +/- 5.9 h and 19.7 +/- 0.4 days, respectively) groups. First service conception rate and overall pregnancy rate did not differ (P > 0.05) between the insulin treatment group (45.4 and 63.6%) and the control group (33.3 and 40.0%). Progesterone concentration following administration of insulin increased (P < 0.05) in the insulin treated cows (2.2+/-0.4 ng/ml versus 2.9 +/- 0.4 ng/ml) but the concentration of oestradiol-17beta did not differ. The insulin concentration was higher on day 10 of the oestrous cycle (P < 0.05) in the treatment group (71.0 +/- 12.5 microU/ml versus 38.1 +/- 4.5 microU/ml). The insulin and glucose concentrations were higher (P > 0.05) in animals, which subsequently became pregnant than in non-pregnant animals. The results may indicate that there is beneficial effect of insulin on fertility in repeat breeder cattle.
Collapse
|
|
23 |
27 |
13
|
Rachna, Rani M, Shanker U. Synergistic effects of zinc oxide coupled copper hexacyanoferrate nanocomposite: Robust visible-light driven dye degradation. J Colloid Interface Sci 2021; 584:67-79. [DOI: 10.1016/j.jcis.2020.09.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
|
|
4 |
22 |
14
|
Rani M, Yadav J, Keshu, Shanker U. Green synthesis of sunlight responsive zinc oxide coupled cadmium sulfide nanostructures for efficient photodegradation of pesticides. J Colloid Interface Sci 2021; 601:689-703. [DOI: 10.1016/j.jcis.2021.05.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
|
|
4 |
22 |
15
|
Suguna K, Mehrotra S, Agarwal S, Hoque M, Singh S, Shanker U, Sarath T. Early pregnancy diagnosis and embryonic and fetal development using real time B mode ultrasound in goats. Small Rumin Res 2008. [DOI: 10.1016/j.smallrumres.2008.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
17 |
21 |
16
|
Rani M, Shanker U. Degradation of tricyclic polyaromatic hydrocarbons in water, soil and river sediment with a novel TiO 2 based heterogeneous nanocomposite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109340. [PMID: 31386991 DOI: 10.1016/j.jenvman.2019.109340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), pervasive and precedence pollutants have potential to decimate the bionetwork and human health. Therefore, photocatalytic degradation of toxic three membered PAHs, namely acenaphthene (ACN), phenanthrene (PHN) and fluorene (FLU) was explored in water and soil. Titanium dioxide based zinc hexacyanoferrate framework (TiO2@ZnHCF) nanocomposite was synthesized via a two step A. indica mediated co-precipitation method. Under sunlight, fall in concentration of PAHs (Water- 93%-96%, soil- 82%-86% and river sediment- 81.63%-85.43%) with time revealed superior activity of nanocomposite (TiO2@ZnHCF) as compared to the bared one. Slower degradation in soil and sediment could be attributed to the reduced diffusion caused by the interaction between the organic content of soil/sediment with PAHs. Doping caused an increase in surface area (118.15 m2g-1) with decrease in band gap energy (1.65 eV) and photoluminescence intensity. PAHs removal (Xm = 9.48 mg g-1 of ACN, 9.35 mg g-1 of PHN and 8.96 mg g-1 of FLU) involved role of "cation- π" interaction with nanocomposite. Besides, it reduced t1/2 values of ACN (1.88 h), PHN (2.09 h) and FLU (2.86 h) and resulted into smaller by-products. Smaller by-products like (Z)-prop-1-ene-1,2,3-triol (m/z = 91) and (E)-3-hydroxyacrylaldehyde (m/z = 71) identified in GC-MS, evidently braced e- excitement from encapsulated nanocatalyst followed by OH (active species) based oxidation of PAHs. Lower photoluminescence intensity indicates the least charge carrier recombination with highest photocatalytic activity of nanocomposites. Inclusive of the present study provides promising photocatalyst with greater surface activity, low quantum yield with charge separation, reusable up to ten cycles deprived of substantial loss of its action and suppressing the cost of process.
Collapse
|
|
6 |
20 |
17
|
Jassal V, Shanker U, Kaith BS. Aegle marmelos Mediated Green Synthesis of Different Nanostructured Metal Hexacyanoferrates: Activity against Photodegradation of Harmful Organic Dyes. SCIENTIFICA 2016; 2016:2715026. [PMID: 27034896 PMCID: PMC4789527 DOI: 10.1155/2016/2715026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/26/2016] [Indexed: 05/26/2023]
Abstract
Prussian blue analogue potassium metal hexacyanoferrate (KMHCF) nanoparticles Fe4[Fe(CN)6]3 (FeHCF), K2Cu3[Fe(CN)6]2 (KCuHCF), K2Ni[Fe(CN)6]·3H2O (KNiHCF), and K2Co[Fe(CN)6] (KCoHCF) have been synthesized using plant based biosurfactant Aegle marmelos (Bael) and water as a green solvent. It must be emphasized here that no harmful reagent or solvent was used throughout the study. Plant extracts are easily biodegradable and therefore do not cause any harm to the environment. Hence, the proposed method of synthesis of various KMHCF nanoparticles followed a green path. The synthesized nanoparticles were characterized by powder X-ray diffraction (PXRD), Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FT-IR). MHCF nanoparticles were used for the photocatalytic degradation of toxic dyes like Malachite Green (MG), Eriochrome Black T (EBT), Methyl Orange (MO), and Methylene Blue (MB). Under optimized reaction conditions, maximum photocatalytic degradation was achieved in case of KCuHCF nanoparticles mediated degradation process (MG: 96.06%, EBT: 83.03%, MB: 94.72%, and MO: 63.71%) followed by KNiHCF (MG: 95%, EBT: 80.32%, MB: 91.35%, and MO: 59.42%), KCoHCF (MG: 91.45%, EBT: 78.84%, MB: 89.28%, and MO: 58.20%).
Collapse
|
research-article |
9 |
17 |
18
|
Rani M, Rachna, Shanker U. Mineralization of carcinogenic anthracene and phenanthrene by sunlight active bimetallic oxides nanocomposites. J Colloid Interface Sci 2019; 555:676-688. [PMID: 31416023 DOI: 10.1016/j.jcis.2019.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are causing environmental concerns due to their persistent nature and carcinogenicity. Hence, their removal through advanced nanomaterials with characteristics of low-cost and high efficiency is essential. In view of this, bimetallic oxides (BMOs) nanocomposites of NiO-ZnO, ZnCo2O4, MnCo2O4 and CoFe2O4 were synthesized via green route using leaf extract of Aegle marmelos. Subsequently, these BMOs were investigated for photocatalytic removal of selected PAHs like anthracene (ANTH) and phenanthrene (PHEN) from water. Nanospheres of NiO-ZnO, ZnCo2O4, and CoFe2O4 and nanosheets of MnCo2O4 with particle size range of 10-30 nm were confirmed by transmission electron microscopy. At neutral pH, nanocomposites showed excellent ability in degrading 2 mg L-1 of PAHs (ANTH: 98%; PHEN: 93%) within 12 h under the exposure of sunlight. Among the synthesized BMOs, NiO-ZnO was found best followed by ZnCo2O4, MnCo2O4 and CoFe2O4. This fact is attributed to the highest surface area (129 m2 g-1) and particles stability (zeta potential: -30 eV) of NiO-ZnO. Photodegradation of PAHs by nanocomposites followed first order kinetics and fitted in Langmuir model for adsorption. Higher degradation under sunlight and lower removal efficiency with scavenger confirmed the photodegradation activity of nanocomposites. Overall, reusable (n = 10) nanocomposites with no loss of activity have high photocatalytic potential in the removal of carcinogenic PAHs.
Collapse
|
Journal Article |
6 |
14 |
19
|
Rani M, Shanker U. Efficient degradation of organic pollutants by novel titanium dioxide coupled bismuth oxide nanocomposite: Green synthesis, kinetics and photoactivity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113777. [PMID: 34649309 DOI: 10.1016/j.jenvman.2021.113777] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 05/14/2023]
Abstract
Herein, a green and facile methodology was used for the structural design of semiconductor nanomaterials and employed as efficient photocatalyst to resolve the environmental issues of water pollutants. Titanium oxide coupled with bismuth oxide (TiO2@Bi2O3) nanocomposite was synthesized by employing the seed extract of Sapindus mukorossi (commonly found plant in India) and subsequently used for the elimination of toxic, and persistence industrial pollutants namely bisphenol A (BPA) and methylene blue (MB). Microscopic and spectroscopic techniques revealed particle size of synthesized nanocomposite found less than 50 nm along with high crystallinity. Appearance of stretching vibrations at 459 cm-1 for Bi-O-Ti in the IR spectra of nanocomposite has established the coupling of TiO2 with Bi2O3. The parameters of degradation were optimized by varying the pollutant concentration, catalytic amount and pH in the presence of natural sunlight. The nanocomposite TiO2@Bi2O3 showed maximum degradation (MB: 94% and BPA: 91%) at a minimum concentration of pollutant (50 mgL-1) with catalyst amount (35 mg), neutral pH and reduces half-life of pollutants (BPA: 1h, MB: 0.5h). Owing of higher surface area (80 m2g-1), lower band gap (2.5 eV), and more negative zeta potential value (-40.3 mV) results into excellent photocatalytic properties. The breakage of S-N conjugated system in MB results into rapid degradation as compare to BPA. The degradation followed first-order kinetics and Langmuir adsorption in both the cases. Presence of active radicals during the photocatalysis process was responsible for quick degradation and strongly supported by scavenger analysis. GC-MS analysis revealed the degradation of toxic pollutants into safer metabolites and finally mineralized. Multiple times (n = 8) reusability of green photocatalyst advocated sustainability and appropriate for industrial applications.
Collapse
|
|
4 |
14 |
20
|
Sharma AK, Kaith BS, Shanker U, Gupta B. γ-radiation induced synthesis of antibacterial silver nanocomposite scaffolds derived from natural gum Boswellia serrata. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
|
5 |
13 |
21
|
Shanker U, Bhushan B, Bhattacharjee G. Formation of nucleobases from formamide in the presence of iron oxides: implication in chemical evolution and origin of life. ASTROBIOLOGY 2011; 11:225-233. [PMID: 21480791 DOI: 10.1089/ast.2010.0530] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Simple compounds like HCN, which have one C and one N, are proposed as the probable precursors for biomonomers. Formamide, a hydrolysis product of HCN, is known as the precursor of various biologically important compounds, for example, nucleobases (purines and pyrimidines). In this paper, we report our results on the synthesis of nucleobases, adenine, cytosine, purine, 9-(hydroxyacetyl) purine, and 4(3H)-pyrimidinone from formamide, using iron oxide (hematite) and oxide hydroxides (goethite and akaganeite) as a catalyst. Goethite and hematite produced purine in higher yield. The products formed were characterized by high-performance liquid chromatography and electrospray ionization mass spectrometry techniques. Results of our study reveal that iron oxides might have worked as efficient prebiotic catalysts.
Collapse
|
|
14 |
13 |
22
|
Khan WA, Gupta A, Shanker U, Pandya KP. Involvement of iron and free radicals in benzene toxicity. Biochem Pharmacol 1984; 33:2009-12. [PMID: 6331455 DOI: 10.1016/0006-2952(84)90566-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The 59Fe distribution after a single i.v. injection of 59Fe citrate in rats exposed to benzene was studied in circulating erythrocytes and organs up to period of 1 hr to 14 days. The iron content was significantly higher in bone marrow and liver compared to a control group of animals. A few cells with hemosiderin granules were observed in the benzene-administered group. Benzene increased lipid peroxidation in the liver and bone marrow and iron accelerated it further. Superoxide dismutase activities measured in terms of epinephrine auto-oxidation, an indirect measure of superoxide anion generation was enhanced in the benzene-treated groups. The data suggest the involvement of oxygen activation in benzene toxicity.
Collapse
|
|
41 |
13 |
23
|
Rani M, Sillanpää M, Shanker U. An updated review on environmental occurrence, scientific assessment and removal of brominated flame retardants by engineered nanomaterials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115998. [PMID: 36001915 DOI: 10.1016/j.jenvman.2022.115998] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Due to the extensive manufacturing and use of brominated flame retardants (BFRs), they are known to be hazardous, bioaccumulative, and recalcitrant pollutants in various environmental matrices. BFRs make flame-resistant items for industrial purposes (textiles, electronics, and plastics equipment) that are disposed of in massive amounts and leak off in various environmental matrices. The consumption of plastic items has expanded tremendously during the COVID-19 pandemic which has resulted into the increasing load of solid waste on land and water. Some BFRs, such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDs), are no longer utilized or manufactured owing to their negative impacts, which promotes the utilization of new BFRs as alternatives. BFRs have been discovered worldwide in soil, sludge, water, and other contamination sources. Various approaches such as photocatalysis-based oxidation/reduction, adsorption, and heat treatment have been found to eradicate BFRs from the environment. Nanomaterials with unique properties are one of the most successful methodologies for removing BFRs via photocatalysis. These methods have been praised for being low-cost, quick, and highly efficient. Engineered nanoparticles degraded BFRs when exposed to light and either convert them into safer metabolites or completely mineralize. Scientific assessment of research taking place in this area during the past five years has been discussed. This review offers comprehensive details on environmental occurrence, toxicity, and removal of BFRs from various sources. Degradation pathways and different removal strategies related to data have also been presented. An attempt has also been made to highlight the research gaps prevailing in the current research area.
Collapse
|
Review |
3 |
11 |
24
|
Kaith BS, Sharma J, Sukriti, Sethi S, Kaur T, Shanker U, Jassal V. Fabrication of green device for efficient capture of toxic methylene blue from industrial effluent based on K2Zn3[Fe(CN)6]2·9H2O nanoparticles reinforced gum xanthan-psyllium hydrogel nanocomposite. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/22243682.2016.1214923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
9 |
11 |
25
|
Bhushan B, Shanker U, Kamaluddin. Adsorption of ribose nucleotides on manganese oxides with varied mn/o ratio: implications for chemical evolution. ORIGINS LIFE EVOL B 2011; 41:469-82. [PMID: 21626404 DOI: 10.1007/s11084-011-9241-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
Manganese exists in different oxidation states under different environmental conditions with respect to redox potential. Various forms of manganese oxides, namely, Manganosite (MnO), Bixbyite (Mn(2)O(3)), Hausmannite (Mn(3)O(4)) and Pyrolusite (MnO(2)) were synthesized and their possible role in chemical evolution studied. Adsorption studies of ribose nucleotides (5'-AMP, 5'-GMP, 5'-CMP and 5'-UMP) on these manganese oxides at neutral pH, revealed a higher binding affinity to manganosite (MnO) compared to the other manganese oxides. That manganese oxides having a lower Mn-O ratio show higher binding affinity for the ribonucleotides indirectly implies that such oxides may have provided a surface onto which biomonomers could have been concentrated through selective adsorption. Purine nucleotides were adsorbed to a greater extent compared to the pyrimidine nucleotides. Adsorption data followed Langmuir adsorption isotherms, and X( m ) and K( L ) values were calculated. The nature of the interaction and mechanism was elucidated by infrared spectral studies conducted on the metal-oxide and ribonucleotide-metal-oxide adducts.
Collapse
|
|
14 |
10 |