1
|
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 11:1164-78. [PMID: 26788077 PMCID: PMC4697050 DOI: 10.5114/aoms.2015.56342] [Citation(s) in RCA: 732] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/05/2014] [Indexed: 01/09/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival and growth, serves as a neurotransmitter modulator, and participates in neuronal plasticity, which is essential for learning and memory. It is widely expressed in the CNS, gut and other tissues. BDNF binds to its high affinity receptor TrkB (tyrosine kinase B) and activates signal transduction cascades (IRS1/2, PI3K, Akt), crucial for CREB and CBP production, that encode proteins involved in β cell survival. BDNF and insulin-like growth factor-1 have similar downstream signaling mechanisms incorporating both p-CAMK and MAPK that increase the expression of pro-survival genes. Brain-derived neurotrophic factor regulates glucose and energy metabolism and prevents exhaustion of β cells. Decreased levels of BDNF are associated with neurodegenerative diseases with neuronal loss, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Thus, BDNF may be useful in the prevention and management of several diseases including diabetes mellitus.
Collapse
|
research-article |
10 |
732 |
2
|
Abstract
Obesity may be a low-grade systemic inflammatory disease. Overweight and obese children and adults have elevated serum levels of C-reactive protein, interleukin-6, tumor necrosis factor-alpha, and leptin, which are known markers of inflammation and closely associated with cardiovascular risk factors and cardiovascular and non-cardiovascular causes of death. This may explain the increased risk of diabetes, heart disease, and many other chronic diseases in the obese. The complex interaction between several neurotransmitters such as dopamine, serotonin, neuropeptide Y, leptin, acetylcholine, melanin-concentrating hormone, ghrelin, nitric oxide, and cytokines and insulin and insulin receptors in the brain ultimately determines and regulates food intake. Breast-feeding of more than 12 mo is associated with decreased incidence of obesity. Breast milk is a rich source of long-chain polyunsaturated fatty acids (LCPUFAs) and brain is especially rich in these fatty acids. LCPUFAs inhibit the production of proinflammatory cytokines and enhance the number of insulin receptors in various tissues and the actions of insulin and several neurotransmitters. LCPUFAs may enhance the production of bone morphogenetic proteins, which participate in neurogenesis, so these fatty acids might play an important role in brain development and function. It is proposed that obesity is a result of inadequate breast feeding, which results in marginal deficiency of LCPUFAs during the critical stages of brain development. This results in an imbalance in the structure, function, and feedback loops among various neurotransmitters and their receptors, which ultimately leads to a decrease in the number of dopamine and insulin receptors in the brain. Hence, promoting prolonged breast feeding may decrease the prevalence of obesity. Exercise enhances parasympathetic tone, promotes antiinflammation, and augments brain acetylcholine and dopamine levels, events that suppress appetite. Acetylcholine and insulin inhibit the production of proinflammatory cytokines and provide a negative feedback loop for postprandial inhibition of food intake, in part, by regulating leptin action. Statins, peroxisome proliferator-activated receptor-gamma binding agents, non-steroidal antiinflammatory drugs, and infant formulas supplemented with LCPUFAs, and LCPUFAs themselves, which suppress inflammation, may be beneficial in obesity.
Collapse
|
Review |
24 |
539 |
3
|
Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J Am Coll Cardiol 2004; 44:152-8. [PMID: 15234425 DOI: 10.1016/j.jacc.2004.03.039] [Citation(s) in RCA: 526] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 01/29/2004] [Accepted: 03/16/2004] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We studied the effect of the Mediterranean diet on plasma levels of C-reactive protein (CRP), white blood cell counts, interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, amyloid A, fibrinogen, and homocysteine. BACKGROUND To the best of our knowledge, the mechanism(s) by which the Mediterranean diet reduces cardiovascular risk are not well understood. METHODS During the 2001 to 2002 period, we randomly enrolled 1,514 men (18 to 87 years old) and 1,528 women (18 to 89 years old) from the Attica area of Greece (of these, 5% of men and 3% of women were excluded because of a history of cardiovascular disease). Among several factors, adherence to the Mediterranean diet was assessed by a diet score that incorporated the inherent characteristics of this diet. Higher values of the score meant closer adherence to the Mediterranean diet. RESULTS Participants who were in the highest tertile of the diet score had, on average, 20% lower CRP levels (p = 0.015), 17% lower IL-6 levels (p = 0.025), 15% lower homocysteine levels (p = 0.031), 14% lower white blood cell counts (p = 0.001), and 6% lower fibrinogen levels (p = 0.025), as compared with those in the lowest tertile. The findings remained significant even after various adjustments were made. Borderline associations were found regarding TNF-alpha (p = 0.076), amyloid A levels (p = 0.19), and diet score. CONCLUSIONS Adherence to the traditional Mediterranean diet was associated with a reduction in the concentrations of inflammation and coagulation markers. This may partly explain the beneficial actions of this diet on the cardiovascular system.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
526 |
4
|
Abstract
Essential fatty acids (EFAs), linoleic acid (LA), and alpha-linolenic acid (ALA) are essential for humans, and are freely available in the diet. Hence, EFA deficiency is extremely rare in humans. To derive the full benefits of EFAs, they need to be metabolized to their respective long-chain metabolites, i.e., dihomo-gamma-linolenic acid (DGLA), and arachidonic acid (AA) from LA; and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from ALA. Some of these long-chain metabolites not only form precursors to respective prostaglandins (PGs), thromboxanes (TXs), and leukotrienes (LTs), but also give rise to lipoxins (LXs) and resolvins that have potent anti-inflammatory actions. Furthermore, EFAs and their metabolites may function as endogenous angiotensin-converting enzyme and 3-hdroxy-3-methylglutaryl coenzyme A reductase inhibitors, nitric oxide (NO) enhancers, anti-hypertensives, and anti-atherosclerotic molecules. Recent studies revealed that EFAs react with NO to yield respective nitroalkene derivatives that exert cell-signaling actions via ligation and activation of peroxisome proliferator-activated receptors. The metabolism of EFAs is altered in several diseases such as obesity, hypertension, diabetes mellitus, coronary heart disease, schizophrenia, Alzheimer's disease, atherosclerosis, and cancer. Thus, EFAs and their derivatives have varied biological actions and seem to be involved in several physiological and pathological processes.
Collapse
|
Review |
19 |
405 |
5
|
Abstract
Essential fatty acids (EFAs): cis-linoleic acid (LA) and alpha-linolenic acid (ALA) are essential for humans and their deficiency is rare in humans due to their easy availability in diet. EFAs are metabolized to their respective long-chain metabolites: dihomo-gamma-linolenic acid (DGLA), and arachidonic acid (AA) from LA; and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from ALA. Some of these long-chain metabolites form precursors to respective prostaglandins (PGs), thromboxanes (TXs), and leukotrienes (LTs), lipoxins (LXs) and resolvins. EFAs and their metabolites may function as endogenous angiotensin converting enzyme and HMG-CoA reductase inhibitors, nitric oxide enhancers, anti-hypertensives, and anti-atherosclerotic molecules. EFAs react with nitric oxide (NO) to yield respective nitroalkene derivatives that have cell-signaling actions via ligation and activation of peroxisome proliferator-activated receptors (PPARs). In several diseases such as obesity, hypertension, diabetes mellitus, coronary heart disease, alcoholism, schizophrenia, Alzheimer's disease, atherosclerosis, and cancer the metabolism of EFAs is altered. Thus, EFAs and their derivatives have significant clinical implications.
Collapse
|
Review |
18 |
234 |
6
|
Kumar KV, Das UN. Are free radicals involved in the pathobiology of human essential hypertension? FREE RADICAL RESEARCH COMMUNICATIONS 1993; 19:59-66. [PMID: 8225035 DOI: 10.3109/10715769309056499] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Possible involvement of reactive oxygen species and nitric oxide in the pathogenesis of human essential hypertension was investigated. It was observed that both superoxide anion and hydrogen peroxide production by polymorphonuclear leukocytes and the plasma levels of lipid peroxides are higher in uncontrolled essential hypertension compared with normal controls. Nitric oxide levels measured as its stable metabolite nitrite, as an index of nitric oxide synthesis, revealed its levels to be low in hypertensive patients. Superoxide anion, hydrogen peroxide, lipid peroxides and nitric oxide levels reverted to normal values after the control of hypertension by drugs. The concentrations of anti-oxidants such as vitamin E and superoxide dismutase were found to be decreased in patients with uncontrolled hypertension. Several anti-hypertensive drugs inhibited lipid peroxidation in vitro. Angiotensin-II, a potent vasoconstrictor, stimulated free radical generation in normal leukocytes which could be blocked by calmodulin antagonists. These results suggest that an increase in free radical generation and a simultaneous decrease in the production of nitric oxide and anti-oxidants such as SOD and vitamin E occurs in essential hypertension. This increase in free radical generation can inactivate prostacyclin and nitric oxide and decrease their half life which can lead to an increase in peripheral vascular resistance and hypertension.
Collapse
|
|
32 |
226 |
7
|
Das UN. Beneficial effect(s) of n-3 fatty acids in cardiovascular diseases: but, why and how? Prostaglandins Leukot Essent Fatty Acids 2000; 63:351-62. [PMID: 11133172 DOI: 10.1054/plef.2000.0226] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Low rates of coronary heart disease was found in Greenland Eskimos and Japanese who are exposed to a diet rich in fish oil. Suggested mechanisms for this cardio-protective effect focused on the effects of n-3 fatty acids on eicosanoid metabolism, inflammation, beta oxidation, endothelial dysfunction, cytokine growth factors, and gene expression of adhesion molecules; But, none of these mechanisms could adequately explain the beneficial actions of n-3 fatty acids. One attractive suggestion is a direct cardiac effect of n-3 fatty acids on arrhythmogenesis. N-3 fatty acids can modify Na+ channels by directly binding to the channel proteins and thus, prevent ischemia-induced ventricular fibrillation and sudden cardiac death. Though this is an attractive explanation, there could be other actions as well. N-3 fatty acids can inhibit the synthesis and release of pro-inflammatory cytokines such as tumor necrosis factoralpha (TNFalpha) and interleukin-1 (IL-1) and IL-2 that are released during the early course of ischemic heart disease. These cytokines decrease myocardial contractility and induce myocardial damage, enhance the production of free radicals, which can also suppress myocardial function. Further, n-3 fatty acids can increase parasympathetic tone leading to an increase in heart rate variability and thus, protect the myocardium against ventricular arrhythmias. Increased parasympathetic tone and acetylcholine, the principle vagal neurotransmitter, significantly attenuate the release of TNF, IL-1beta, IL-6 and IL-18. Exercise enhances parasympathetic tone, and the production of anti-inflammatory cytokine IL-10 which may explain the beneficial action of exercise in the prevention of cardiovascular diseases and diabetes mellitus. TNFalpha has neurotoxic actions, where as n-3 fatty acids are potent neuroprotectors and brain is rich in these fatty acids. Based on this, it is suggested that the principle mechanism of cardioprotective and neuroprotective action(s) of n-3 fatty acids can be due to the suppression of TNFalpha and IL synthesis and release, modulation of hypothalamic-pituitary-adrenal anti-inflammatory responses, and an increase in acetylcholine release, the vagal neurotransmitter. Thus, there appears to be a close interaction between the central nervous system, endocrine organs, cytokines, exercise, and dietary n-3 fatty acids. This may explain why these fatty acids could be of benefit in the management of conditions such as septicemia and septic shock, Alzheimer's disease, Parkinson's disease, inflammatory bowel diseases, diabetes mellitus, essential hypertension and atherosclerosis.
Collapse
|
Review |
25 |
188 |
8
|
Sangeetha P, Das UN, Koratkar R, Suryaprabha P. Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radic Biol Med 1990; 8:15-9. [PMID: 2157633 DOI: 10.1016/0891-5849(90)90139-a] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several anti-cancer drugs are known to bring about their tumoricidal actions by a free radical dependent mechanism. Majority of the studies reported that adriamycin, mitomycin C, bleomycin, etc., augment free radical generation and lipid peroxidation process in vitro. Our results reported here suggest that following chemotherapy both stimulated and unstimulated human polymorphonuclear leukocytes generate increased amounts of superoxide anion and hydrogen peroxide. This was accompanied by increased formation of lipid peroxidation products as measured by thiobarbituric acid assay. These results confirm that many anti-cancer drugs augment free radical generation and lipid peroxidation even in an vivo situation.
Collapse
|
|
35 |
155 |
9
|
Das UN. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis 2008; 7:37. [PMID: 18922179 PMCID: PMC2576273 DOI: 10.1186/1476-511x-7-37] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/15/2008] [Indexed: 01/04/2023] Open
Abstract
Lowering plasma low density lipoprotein-cholesterol (LDL-C), blood pressure, homocysteine, and preventing platelet aggregation using a combination of a statin, three blood pressure lowering drugs such as a thiazide, a beta blocker, and an angiotensin converting enzyme (ACE) inhibitor each at half standard dose; folic acid; and aspirin-called as polypill- was estimated to reduce cardiovascular events by approximately 80%. Essential fatty acids (EFAs) and their long-chain metabolites: gamma-linolenic acid (GLA), dihomo-GLA (DGLA), arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) and other products such as prostaglandins E1 (PGE1), prostacyclin (PGI2), PGI3, lipoxins (LXs), resolvins, protectins including neuroprotectin D1 (NPD1) prevent platelet aggregation, lower blood pressure, have anti-arrhythmic action, reduce LDL-C, ameliorate the adverse actions of homocysteine, show anti-inflammatory actions, activate telomerase, and have cytoprotective properties. Thus, EFAs and their metabolites show all the classic actions expected of the "polypill". Unlike the proposed "polypill", EFAs are endogenous molecules present in almost all tissues, have no significant or few side effects, can be taken orally for long periods of time even by pregnant women, lactating mothers, and infants, children, and adults; and have been known to reduce the incidence cardiovascular diseases including stroke. In addition, various EFAs and their long-chain metabolites not only enhance nitric oxide generation but also react with nitric oxide to yield their respective nitroalkene derivatives that produce vascular relaxation, inhibit neutrophil degranulation and superoxide formation, inhibit platelet activation, and possess PPAR-gamma ligand activity and release NO, thus prevent platelet aggregation, thrombus formation, atherosclerosis, and cardiovascular diseases. Based on these evidences, I propose that a rational combination of omega-3 and omega-6 fatty acids and the co-factors that are necessary for their appropriate action/metabolism is as beneficial as that of the combined use of a statin, thiazide, a beta blocker, and an angiotensin converting enzyme (ACE) inhibitor, folic acid, and aspirin. Furthermore, appropriate combination of omega-3 and omega-6 fatty acids may even show additional benefits in the form of protection from depression, schizophrenia, Alzheimer's disease, and enhances cognitive function; and serve as endogenous anti-inflammatory molecules; and could be administered from childhood for life long.
Collapse
|
Review |
17 |
152 |
10
|
Bégin ME, Das UN, Ells G, Horrobin DF. Selective killing of human cancer cells by polyunsaturated fatty acids. PROSTAGLANDINS, LEUKOTRIENES, AND MEDICINE 1985; 19:177-86. [PMID: 2864701 DOI: 10.1016/0262-1746(85)90084-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polyunsaturated fatty acids killed incubated human breast, lung and prostate cancer cells at concentrations which had no adverse effects on normal human fibroblasts or on normal animal cell lines. The most consistent and selective effects were obtained with fatty acids containing 3, 4 and 5 double bonds. When human cancer cells and normal human fibroblasts were co-cultured in the absence of polyunsaturated fatty acids, the malignant cells overgrew the normal ones. When eicosapentaenoic acid (EPA, 20:5n-3), gamma-linolenic acid (GLA, 18:3n-6) or arachidonic acid (AA, 20:4n-6) were added to the co-cultures, the normal cells outgrew the malignant ones. These observations suggest that treatment of malignancy with polyunsaturated fatty acids may have considerable potential while being associated with a high level of safety.
Collapse
|
|
40 |
150 |
11
|
Abstract
SARS-CoV-2, SARS and MERS are all enveloped viruses that can cause acute respiratory syndrome. Arachidonic acid (AA) and other unsaturated fatty acids (especially eicosapentaenoic acd, EPA and docosahexaenoic acid DHA) are known to inactivate enveloped viruses and inhibit proliferation of various microbial organisms. The pro-inflammatory metabolites of AA and EPA such as prostaglandins, leukotrienes and thromboxanes induce inflammation whereas lipoxins, resolvins, protectins and maresins derived from AA, EPA and DHA not only suppress inflammation but also enhance would healing and augment phagocytosis of macrophages and other immunocytes and decrease microbial load. In view of these actions, it is suggested that AA and other unsaturated fatty acids and their metabolites may serve as endogenous anti-viral compounds and their deficiency may render humans susceptible to SARS-CoV-2, SARS and MERS and other similar viruses' infections. Hence, oral or intravenous administration of AA and other unsaturated fatty acids may aid in enhancing resistance and recovery from SARS-CoV-2, SARS and MERS infections.
Collapse
|
Journal Article |
5 |
144 |
12
|
Das UN. Tumoricidal action of cis-unsaturated fatty acids and their relationship to free radicals and lipid peroxidation. Cancer Lett 1991; 56:235-43. [PMID: 1850658 DOI: 10.1016/0304-3835(91)90008-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cis-unsaturated fatty acids (c-UFAs) such as gamma-linolenic acid (GLA), arachidonic acid (AA) and eicosapentaenoic acid (EPA) can kill tumor cells selectively in vitro. As c-UFAs have the ability to augment free radical generation, the effect of antioxidants, free radical quenchers and augmentors of free radical generation such as iron and copper salts on fatty acid-induced tumor cell death was studied. In addition, the role of lipid peroxidation in the tumoricidal action of c-UFAs was also examined. Results indicate that vitamin E, uric acid, glutathione peroxidase, superoxide dismutase and ATP can block, whereas iron, copper and catalase enhance the tumoricidal action of GLA. The ability of GLA, AA and EPA to kill tumor cells correlated with the amount of lipid peroxidation these fatty acids can induce as measured by thiobarbituric acid test. It was also observed that 14C-labelled linoleic acid uptake was almost the same whereas that of 14C-labelled arachidonic acid and eicosapentaenoic acid were substantially less in tumor cells compared to normal cells. Tumor cells incorporated major portions of the fatty acids in the ether lipid and phospholipid fractions, whereas normal cells incorporated the fatty acids primarily in the phospholipid fraction. These results suggest that c-UFA-induced tumoricidal action is a free radical dependent process and that there are significant differences between normal and tumor cells in fatty acid uptake and distribution.
Collapse
|
|
34 |
144 |
13
|
Das UN. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review. J Adv Res 2018; 11:57-66. [PMID: 30034876 PMCID: PMC6052656 DOI: 10.1016/j.jare.2018.01.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/01/2018] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
Our body is endowed with several endogenous anti-microbial compounds such as interferon, cytokines, free radicals, etc. However, little attention has been paid to the possibility that lipids could function as antimicrobial compounds. In this short review, the antimicrobial actions of various polyunsaturated fatty acids (PUFAs, mainly free acids) and their putative mechanisms of action are described. In general, PUFAs kill microbes by their direct action on microbial cell membranes, enhancing generation of free radicals, augmenting the formation of lipid peroxides that are cytotoxic, and by increasing the formation of their bioactive metabolites, such as prostaglandins, lipoxins, resolvins, protectins and maresins that enhance the phagocytic action of leukocytes and macrophages. Higher intakes of α-linolenic and cis-linoleic acids (ALA and LA respectively) and fish (a rich source of eicosapentaenoic acid and docosahexaenoic acid) might reduce the risk pneumonia. Previously, it was suggested that polyunsaturated fatty acids (PUFAs): linoleic, α-linolenic, γ-linolenic (GLA), dihomo-GLA (DGLA), arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) function as endogenous anti-bacterial, anti-fungal, anti-viral, anti-parasitic, and immunomodulating agents. A variety of bacteria are sensitive to the growth inhibitory actions of LA and ALA in vitro. Hydrolyzed linseed oil can kill methicillin-resistant Staphylococcus aureus. Both LA and AA have the ability to inactivate herpes, influenza, Sendai, and Sindbis virus within minutes of contact. AA, EPA, and DHA induce death of Plasmodium falciparum both in vitro and in vivo. Prostaglandin E1 (PGE1) and prostaglandin A (PGA), derived from DGLA, AA, and EPA inhibit viral replication and show anti-viral activity. Oral mucosa, epidermal cells, lymphocytes and macrophages contain and release significant amounts of PUFAs on stimulation. PUFAs stimulate NADPH-dependent superoxide production by macrophages, neutrophils and lymphocytes to kill the invading microorganisms. Cytokines induce the release of PUFAs from cell membrane lipid pool, a potential mechanism for their antimicrobial action. AA, EPA, and DHA give rise to lipoxins (LXs), resolvins, protectins, and maresins that limit and resolve inflammation and have antimicrobial actions. Thus, PUFAs and their metabolites have broad antimicrobial actions.
Collapse
|
Review |
7 |
136 |
14
|
Das UN. Obesity: genes, brain, gut, and environment. Nutrition 2009; 26:459-73. [PMID: 20022465 DOI: 10.1016/j.nut.2009.09.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 09/21/2009] [Accepted: 09/27/2009] [Indexed: 01/04/2023]
Abstract
Obesity, which is assuming alarming proportions, has been attributed to genetic factors, hypothalamic dysfunction, and intestinal gut bacteria and an increase in the consumption of energy-dense food. Obesity predisposes to the development of type 2 diabetes mellitus, hypertension, coronary heart disease, and certain forms of cancer. Recent studies have shown that the intestinal bacteria in obese humans and mice differ from those in lean that could trigger a low-grade systemic inflammation. Consumption of a calorie-dense diet that initiates and perpetuates obesity could be due to failure of homeostatic mechanisms that regulate appetite, food consumption, and energy balance. Hypothalamic factors that regulate energy needs of the body, control appetite and satiety, and gut bacteria that participate in food digestion play a critical role in the onset of obesity. Incretins, cholecystokinin, brain-derived neurotrophic factor, leptin, long-chain fatty acid coenzyme A, endocannabinoids and vagal neurotransmitter acetylcholine play a role in the regulation of energy intake, glucose homeostasis, insulin secretion, and pathobiology of obesity and type 2 diabetes mellitus. Thus, there is a cross-talk among the gut, liver, pancreas, adipose tissue, and hypothalamus. Based on these evidences, it is clear that management of obesity needs a multifactorial approach.
Collapse
|
Review |
16 |
122 |
15
|
Zampelas A, Panagiotakos DB, Pitsavos C, Das UN, Chrysohoou C, Skoumas Y, Stefanadis C. Fish Consumption Among Healthy Adults Is Associated With Decreased Levels of Inflammatory Markers Related to Cardiovascular Disease. J Am Coll Cardiol 2005; 46:120-4. [PMID: 15992645 DOI: 10.1016/j.jacc.2005.03.048] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/12/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The aim of this work was to investigate the association between fish consumption and levels of various inflammatory markers among adults without any evidence of cardiovascular disease. BACKGROUND Fish consumption has been associated with reduced risk of coronary heart disease, but the mechanisms have not been well understood or appreciated. METHODS The ATTICA study is a cross-sectional survey that enrolled 1,514 men (age 18 to 87 years) and 1,528 women (age 18 to 89 years) from the Attica region, Greece. Of them, 5% of men and 3% of women were excluded due to a history of cardiovascular disease. Among others, C-reactive protein (CRP), interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, serum amyloid A (SAA), and white blood cells (WBC) were measured, and dietary habits (including fish consumption) were evaluated using a validated food frequency questionnaire. RESULTS A total of 88% of men and 91% of women reported fish consumption at least once a month. Compared to non-fish consumers, those who consumed >300 g of fish per week had on average 33% lower CRP, 33% lower IL-6, 21% lower TNF-alpha, 28% lower SAA levels, and 4% lower WBC counts (all p < 0.05). Significant results were also observed when lower quantities (150 to 300 g/week) of fish were consumed. All associations remained significant after various adjustments were made. CONCLUSIONS Fish consumption was independently associated with lower inflammatory markers levels, among healthy adults. The strength and consistency of this finding has implications for public health and should be explored further.
Collapse
|
|
20 |
122 |
16
|
Rao AA, Sridhar GR, Das UN. Elevated butyrylcholinesterase and acetylcholinesterase may predict the development of type 2 diabetes mellitus and Alzheimer's disease. Med Hypotheses 2007; 69:1272-6. [PMID: 17553629 DOI: 10.1016/j.mehy.2007.03.032] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/06/2007] [Indexed: 12/12/2022]
Abstract
Plasma levels of C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and lipid peroxides are elevated and concentrations of endothelial nitric oxide (eNO) decreased in type 2 diabetes mellitus and Alzheimer's disease. This suggests that both these diseases are low-grade systemic inflammatory conditions and are closely associated with each other. Recent studies revealed that plasma and tissue concentrations of enzymes butyrylcholinesterase and acetylcholinesterase are elevated in type 2 diabetes and Alzheimer's disease. Acetylcholine has anti-inflammatory actions. Hence, elevated butyrylcholinesterase and acetylcholinesterase concentrations will lead to a decrease in the levels of acetylcholine that could trigger the onset of low-grade systemic inflammation seen in type 2 diabetes and Alzheimer's disease. In view of this, we propose that butyrylcholinesterase and acetylcholinesterase will not only serve as therapeutic targets but also may serve as markers to predict the development of type 2 diabetes mellitus and Alzheimer's disease.
Collapse
|
Journal Article |
18 |
118 |
17
|
Yu HN, Zhu J, Pan WS, Shen SR, Shan WG, Das UN. Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota. Arch Med Res 2014; 45:195-202. [PMID: 24681186 DOI: 10.1016/j.arcmed.2014.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/29/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS Many studies show that fish oil with high content of n-3 polyunsaturated fatty acids (PUFAs) plays an important role in human health and disease. But the effects of fish oil with high content of PUFAs on gut microbiota, which are also known play a significant role in several human diseases, is not clear. In the present study we evaluated the effects of fish oil with high content of n-3 PUFAs on gut microbiota. METHODS Changes in gut microbiota in ICR mice after supplementation of fish oil (containing eicosapentaenoic acid and docosahexaenoic acid: ∼40 and 27% respectively) for 15 days was characterized using the hypervariable V3 region of the 16 rRNA gene-based polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) profiling, DNA sequencing, and phylogenetic analysis techniques. RESULTS Fish oil treatment resulted in a decrease in Helicobacter, Uncultured bacterium clone WD2_aaf07d12 (GenBank: EU511712.1), Clostridiales bacterium, Sphingomonadales bacterium and Pseudomonas species Firmicutes, and several uncultured bacteria. CONCLUSIONS Fish oil with a high content of n-3 PUFAs are capable of producing significant changes in the gut microbiota that may, at least in part, explain the health benefits or injury induced by fish oil use.
Collapse
|
Journal Article |
11 |
117 |
18
|
Abstract
I suggest that insulin suppresses the secretion and antagonizes the harmful effects of tumor necrosis factor-alpha, macrophage migration-inhibitory factor, and superoxide anion. Therefore, the glucose-insulin-potassium regimen might be beneficial in acute myocardial infarction and useful in the management of patients with septicemia, septic shock, and other inflammatory diseases in which tumor necrosis factor-alpha and macrophage migration-inhibitory factor have important roles.
Collapse
|
Review |
23 |
117 |
19
|
Das UN, Begin ME, Ells G, Huang YS, Horrobin DF. Polyunsaturated fatty acids augment free radical generation in tumor cells in vitro. Biochem Biophys Res Commun 1987; 145:15-24. [PMID: 3593336 DOI: 10.1016/0006-291x(87)91281-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) have been shown to inhibit both normal and tumor cell growth in vitro. As PUFAs are known to induce a respiratory burst and free radical generation in polymorphonuclear leukocytes and since free radicals are toxic to cells, we investigated the effect of PUFAs on a measure of free radical generation (nitroblue tetrazolium reduction) in normal human fibroblasts and breast cancer cells in vitro. Results suggested that linoleate (LA), gamma-linolenate (GLA), arachidonate (AA) and eicosapentaenoate (EPA) can enhance nitroblue tetrazolium reduction in tumor cells but not in normal cells. GLA, AA and EPA were 1 1/2 to 2 times more effective than LA in inducing free radical generation. This difference was not due to increased uptake of LA, AA and EPA by tumor cells. In fact, the uptake of LA was the same both in normal and tumor cells whereas that of AA and EPA occurred at approximately half the rate in the tumor cells compared to normal cells. This indicates that PUFA induced growth inhibition and cytotoxicity to tumor cells may, at least in part, be due to enhanced free radical generation.
Collapse
|
|
38 |
111 |
20
|
Abstract
Essential fatty acids (EFAs) and their metabolites, especially gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid and decosahexaenoic acid are known to induce apoptotic death of tumour cells. But the exact mechanism by which these fatty acids are able to induce apoptosis is not clear. Recent studies suggest that these fatty acids are able to induce apoptosis in cells over expressing cytochrome P450 following depletion of cellular glutathione and inhibition of carnitine palmitoyl transferase I (CPTI) activity. On the other hand, BCL-2 prevented apoptosis induced by these long-chain fatty acids, where as n-3 fatty acids suppressed ras expression leading to suppression of development of overt neoplasia. Phosphorylation of BCL-2 inhibits its ability to interfere with apoptosis and enhances lipid peroxidation leading to the occurrence of apoptosis. Tumour cells treated with long-chain fatty acids show increase in lipid peroxidation process, depletion of antioxidants and phosphorylation of proteins. Based on these results, it is suggested that long-chain fatty acids induce apoptosis by enhancing lipid peroxidation, suppressing BCL-2 expression possibly by phosphorylation and augmentation of P450 activity. Thus, these long-chain fatty acids may, infact act at the level of gene/oncogene expression in producing their cytotoxic action on tumour cells.
Collapse
|
Review |
26 |
111 |
21
|
Anderson G, Berk M, Dodd S, Bechter K, Altamura AC, Dell'osso B, Kanba S, Monji A, Fatemi SH, Buckley P, Debnath M, Das UN, Meyer U, Müller N, Kanchanatawan B, Maes M. Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:1-4. [PMID: 23085074 DOI: 10.1016/j.pnpbp.2012.10.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 01/07/2023]
|
Editorial |
12 |
111 |
22
|
Prabha PS, Das UN, Koratkar R, Sagar PS, Ramesh G. Free radical generation, lipid peroxidation and essential fatty acids in uncontrolled essential hypertension. Prostaglandins Leukot Essent Fatty Acids 1990; 41:27-33. [PMID: 2174565 DOI: 10.1016/0952-3278(90)90127-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular endothelium produces prostacyclin (PG12) and endothelium-derived vascular relaxing factor (EDRF), which are potent vasodilators and hence, may have a role in the regulation of blood pressure. Both PG12 and EDRF are readily degraded by free radicals, especially superoxide anion. Hence, we studied free radical generation and lipid peroxidation in patients with uncontrolled essential hypertension. It was observed that superoxide anion and hydrogen peroxide production by polymorphonuclear leukocytes (PMN) and the levels of lipid peroxides (measured by thiobarbituric acid assay) were higher in uncontrolled hypertensives compared to controls. Both free radical generation and the levels of lipid peroxides reverted to normal values when assayed after the control of hypertension. The calcium antagonist, verapamil, and beta-1 blocker, metoprolol, at the doses used inhibited free radical generation by phorbolmyristate acetate-stimulated PMNs. On the other hand, angiotensin II augmented free radical generation in normal PMN. In addition, it was also observed that both linoleic acid and arachidonic acid levels are low in the plasma of patients with hypertension compared to controls. These results suggest that increase in free radical generation by PMN and alterations in the plasma concentrations of essential fatty acids are closely associated with uncontrolled hypertension.
Collapse
|
|
35 |
108 |
23
|
Das UN. Essential fatty acid metabolism in patients with essential hypertension, diabetes mellitus and coronary heart disease. Prostaglandins Leukot Essent Fatty Acids 1995; 52:387-91. [PMID: 7644560 DOI: 10.1016/0952-3278(95)90066-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mortality and morbidity from coronary heart disease (CHD), diabetes mellitus (DM) and essential hypertension (HTN) are higher in people of South Asian descent than in other groups. There is evidence to believe that essential fatty acids (EFAs) and their metabolites may have a role in the pathobiology of CHD, DM and HTN. Fatty acid analysis of the plasma phospholipid fraction revealed that in CHD the levels of gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are low, in patients with HTN linoleic acid (LA) and AA are low, and in patients with non-insulin dependent diabetes mellitus (NIDDM) and diabetic nephropathy the levels of dihomo-gamma-linolenic acid (DGLA), AA, alpha-linolenic acid (ALA) and DHA are low, all compared to normal controls. These results are interesting since DGLA, AA and EPA form precursors to prostaglandin E1, (PGE1), prostacyclin (PGI2), and PGI3, which are potent platelet anti-aggregators and vasodilators and can prevent thrombosis and atherosclerosis. Further, the levels of lipid peroxides were found to be high in patients with CHD, HTN, NIDDM and diabetic nephropathy. These results suggest that increased formation of lipid peroxides and an alteration in the metabolism of EFAs are closely associated with CHD, HTN and NIDDM in Indians.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
30 |
106 |
24
|
Abstract
It is suggested that metabolic syndrome X is a low-grade systemic inflammatory condition.
Collapse
|
Review |
23 |
102 |
25
|
Suresh Y, Das UN. Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus. Effect of omega-3 fatty acids. Nutrition 2003; 19:213-28. [PMID: 12620523 DOI: 10.1016/s0899-9007(02)00855-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In a previous study, we showed that prior oral feeding of oils rich in omega-3 eicosapentaenoic acid and docosahexaenoic acid and omega-6 gamma-linolenic acid and arachidonic acid prevent the development of alloxan-induced diabetes mellitus in experimental animals. We also observed that 99% pure omega-6 fatty acids gamma-linolenic acid and arachidonic acid protect against chemically induced diabetes mellitus. Here we report the results of our studies with omega-3 fatty acids. Alloxan-induced in vitro cytotoxicity and apoptosis in an insulin-secreting rat insulinoma cell line, RIN, was prevented by prior exposure of these cells to alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. Prior oral supplementation with alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid prevented alloxan-induced diabetes mellitus. alpha-Linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid not only attenuated chemical-induced diabetes mellitus but also restored the anti-oxidant status to normal range in various tissues. These results suggested that omega-3 fatty acids can abrogate chemically induced diabetes in experimental animals and attenuate the oxidant stress that occurs in diabetes mellitus.
Collapse
|
|
22 |
100 |