1
|
Frénal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D. Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe 2011; 8:343-57. [PMID: 20951968 DOI: 10.1016/j.chom.2010.09.002] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/26/2010] [Accepted: 09/03/2010] [Indexed: 11/24/2022]
Abstract
The glideosome of apicomplexan parasites is an actin- and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N- and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
222 |
2
|
Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D. Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion. PLoS Pathog 2014; 10:e1004504. [PMID: 25393004 PMCID: PMC4231161 DOI: 10.1371/journal.ppat.1004504] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 10/06/2014] [Indexed: 11/23/2022] Open
Abstract
The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMC-associated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Toxoplasma gondii can infect most warm-blooded animals, and is an important opportunistic pathogen for humans. This obligate intracellular parasite is able to invade virtually all nucleated cells, and as with most parasites of the Apicomplexa phylum, relies on a substrate-dependent gliding motility to actively penetrate into host cells and egress from infected cells. The conserved molecular machine (named glideosome) powering motility is located at the periphery of the parasite and involves the molecular motor, myosin A (MyoA). The glideosome exists in three flavors, exhibiting the same overall organization and sharing some common components while being spatially restricted to the central IMC, the apical cap and the basal pole of the parasite, respectively. The central and apical glideosomes are associated with MyoA (MyoA-glideosome) whereas the basal complex recruits myosin C (MyoC). Deleting components of the MyoC-glideosome uncovers the existence of complementary and compensatory mechanisms that ensure successful establishment of infection. This study highlights a higher degree of complexity and plasticity of the gliding machinery.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
69 |
3
|
Peuvel-Fanget I, Polonais V, Brosson D, Texier C, Kuhn L, Peyret P, Vivarès C, Delbac F. EnP1 and EnP2, two proteins associated with the Encephalitozoon cuniculi endospore, the chitin-rich inner layer of the microsporidian spore wall. Int J Parasitol 2006; 36:309-18. [PMID: 16368098 DOI: 10.1016/j.ijpara.2005.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/28/2005] [Accepted: 10/25/2005] [Indexed: 11/30/2022]
Abstract
Microsporidia are obligate intracellular parasites forming environmentally resistant spores that harbour a rigid cell wall. This wall comprises an outer layer or exospore and a chitin-rich inner layer or endospore. So far, only a chitin deacetylase-like protein has been shown to localize to the Encephalitozoon cuniculi endospore and either one or two proteins have been clearly assigned to the exospore in two Encephalitozoon species: SWP1 in E. cuniculi, SWP1 and SWP2 in Encephalitozoon intestinalis. Here, we report the identification of two new spore wall proteins in E. cuniculi, EnP1 and EnP2, the genes of which are both located on chromosome I (ECU01_0820 and ECU01_1270, respectively) and have no known homologue. Detected by immunoscreening of an E. cuniculi cDNA library, enp1 is characterized by small-sized 5' and 3' untranslated regions and is highly expressed throughout the whole intracellular cycle. The encoded basic 40 kDa antigen displays a high proportion of cysteine residues, arguing for a significant role of disulfide bridges in spore wall assembly. EnP2 is a 22 kDa serine-rich protein that is predicted to be O-glycosylated and glycosylated phosphatidyl inositol-anchored. Although having been identified by mass spectrometry of a dithiothreitol-soluble fraction, this protein contains only two cysteine residues. Mouse polyclonal antibodies were raised against EnP1 and EnP2 recombinant proteins produced in Escherichia coli Our immunolocalisation data indicate that EnP1 and EnP2 are targeted to the cell surface as early as the onset of sporogony and are finally associated with the chitin-rich layer of the wall in mature spores.
Collapse
|
|
19 |
52 |
4
|
Han B, Polonais V, Sugi T, Yakubu R, Takvorian PM, Cali A, Maier K, Long M, Levy M, Tanowitz HB, Pan G, Delbac F, Zhou Z, Weiss LM. The role of microsporidian polar tube protein 4 (PTP4) in host cell infection. PLoS Pathog 2017; 13:e1006341. [PMID: 28426751 PMCID: PMC5413088 DOI: 10.1371/journal.ppat.1006341] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/02/2017] [Accepted: 04/08/2017] [Indexed: 12/02/2022] Open
Abstract
Microsporidia have been identified as pathogens that have important effects on our health, food security and economy. A key to the success of these obligate intracellular pathogens is their unique invasion organelle, the polar tube, which delivers the nucleus containing sporoplasm into host cells during invasion. Due to the size of the polar tube, the rapidity of polar tube discharge and sporoplasm passage, and the absence of genetic techniques for the manipulation of microsporidia, study of this organelle has been difficult and there is relatively little known regarding polar tube formation and the function of the proteins making up this structure. Herein, we have characterized polar tube protein 4 (PTP4) from the microsporidium Encephalitozoon hellem and found that a monoclonal antibody to PTP4 labels the tip of the polar tube suggesting that PTP4 might be involved in a direct interaction with host cell proteins during invasion. Further analyses employing indirect immunofluorescence (IFA), enzyme-linked immunosorbent (ELISA) and fluorescence-activated cell sorting (FACS) assays confirmed that PTP4 binds to mammalian cells. The addition of either recombinant PTP4 protein or anti-PTP4 antibody reduced microsporidian infection of its host cells in vitro. Proteomic analysis of PTP4 bound to host cell membranes purified by immunoprecipitation identified transferrin receptor 1 (TfR1) as a potential host cell interacting partner for PTP4. Additional experiments revealed that knocking out TfR1, adding TfR1 recombinant protein into cell culture, or adding anti-TfR1 antibody into cell culture significantly reduced microsporidian infection rates. These results indicate that PTP4 is an important protein competent of the polar tube involved in the mechanism of host cell infection utilized by these pathogens. Microsporidia are obligate intracellular parasites that cause disease in immune suppressed individuals such as those with HIV/AIDS and recipients of organ transplants. The microsporidia are defined by a unique invasion organelle, the polar tube. The formation of this organelle and its role in the mechanism of infection remain unknown. Herein, we have identified a role for Encephalitozoon hellem polar tube protein 4 (PTP4) in infection demonstrating that PTP4 can bind to the host cell surface via the host transferrin receptor 1 (TfR1) protein. Interfering with the interaction of PTP4 and TfR1 causes a significant decrease in microsporidian infection of host cells. These data suggest that PTP4 functions as an important microsporidian protein during host cell infection by this pathogen.
Collapse
|
Journal Article |
8 |
52 |
5
|
Polonais V, Prensier G, Méténier G, Vivarès CP, Delbac F. Microsporidian polar tube proteins: highly divergent but closely linked genes encode PTP1 and PTP2 in members of the evolutionarily distant Antonospora and Encephalitozoon groups. Fungal Genet Biol 2005; 42:791-803. [PMID: 16051504 DOI: 10.1016/j.fgb.2005.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 05/11/2005] [Accepted: 05/14/2005] [Indexed: 10/25/2022]
Abstract
The spore polar tube is a unique organelle required for cell invasion by fungi-related microsporidian parasites. Two major polar tube proteins (PTP1 and PTP2) are encoded by two tandemly arranged genes in Encephalitozoon species. A look at Antonospora (Nosema) locustae contigs (http://jbpc.mbl.edu/Nosema/Contigs/) revealed significant conservation in the order and orientation of various genes, despite high sequence divergence features, when comparing with Encephalitozoon cuniculi complete genome. This syntenic relationship between distantly related Encephalitozoon and Antonospora genera has been successfully exploited to identify ptp1 and ptp2 genes in two insect-infecting species assigned to the Antonospora clade (A. locustae and Paranosema grylli). Targeting of respective proteins to the polar tube was demonstrated through immunolocalization experiments with antibodies raised against recombinant proteins. Both PTPs were extracted from spores with 100mM dithiothreitol. Evidence for PTP1 mannosylation was obtained in studied species, supporting a key role of PTP1 in interactions with host cell surface.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
38 |
6
|
Peyretaillade E, El Alaoui H, Diogon M, Polonais V, Parisot N, Biron DG, Peyret P, Delbac F. Extreme reduction and compaction of microsporidian genomes. Res Microbiol 2011; 162:598-606. [PMID: 21426934 DOI: 10.1016/j.resmic.2011.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/21/2011] [Indexed: 12/19/2022]
Abstract
Microsporidia are fungi-related obligate intracellular parasites with a highly reduced and compact genome, as for Encephalitozoon species which harbor a genome smaller than 3 Mbp. Genome compaction is reflected by high gene density and, for larger microsporidian genomes, size variation is due to repeat elements that do not drastically affect gene density. Furthermore, these pathogens present strong host dependency illustrated by extensive gene loss. Such adaptations associated with genome compaction induced gene size reduction but also simplification of cellular processes such as transcription. Thus, microsporidia are excellent models for eukaryotic genome evolution and gene expression in the context of host-pathogen relationships.
Collapse
|
Journal Article |
14 |
37 |
7
|
Peyretaillade E, Parisot N, Polonais V, Terrat S, Denonfoux J, Dugat-Bony E, Wawrzyniak I, Biderre-Petit C, Mahul A, Rimour S, Gonçalves O, Bornes S, Delbac F, Chebance B, Duprat S, Samson G, Katinka M, Weissenbach J, Wincker P, Peyret P. Annotation of microsporidian genomes using transcriptional signals. Nat Commun 2012; 3:1137. [DOI: 10.1038/ncomms2156] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022] Open
|
|
13 |
36 |
8
|
Parisot N, Pelin A, Gasc C, Polonais V, Belkorchia A, Panek J, El Alaoui H, Biron DG, Brasset E, Vaury C, Peyret P, Corradi N, Peyretaillade É, Lerat E. Microsporidian genomes harbor a diverse array of transposable elements that demonstrate an ancestry of horizontal exchange with metazoans. Genome Biol Evol 2014; 6:2289-300. [PMID: 25172905 PMCID: PMC4202319 DOI: 10.1093/gbe/evu178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microsporidian genomes are the leading models to understand the streamlining in response to a pathogenic lifestyle; they are gene-poor and often possess small genomes. In this study, we show a feature of microsporidian genomes that contrasts this pattern of genome reduction. Specifically, genome investigations targeted at Anncaliia algerae, a human pathogen with a genome size of 23 Mb, revealed the presence of a hitherto undetected diversity in transposable elements (TEs). A total of 240 TE families per genome were identified, exceeding that found in many free-living fungi, and searches of microsporidian species revealed that these mobile elements represent a significant portion of their coding repertoire. Their phylogenetic analysis revealed that many cases of ancestry involve recent and bidirectional horizontal transfers with metazoans. The abundance and horizontal transfer origin of microsporidian TEs highlight a novel dimension of genome evolution in these intracellular pathogens, demonstrating that factors beyond reduction are at play in their diversification.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
30 |
9
|
Polonais V, Javier Foth B, Chinthalapudi K, Marq JB, Manstein DJ, Soldati-Favre D, Frénal K. Unusual anchor of a motor complex (MyoD-MLC2) to the plasma membrane of Toxoplasma gondii. Traffic 2011; 12:287-300. [PMID: 21143563 DOI: 10.1111/j.1600-0854.2010.01148.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)-like domain and anchored to the plasma membrane of T. gondii via its N-terminal extension. Molecular modeling suggests that the MyoD-MLC2 complex is more compact than the reported structure of Plasmodium MyoA-myosin A tail-interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
30 |
10
|
Wawrzyniak I, Courtine D, Osman M, Hubans-Pierlot C, Cian A, Nourrisson C, Chabe M, Poirier P, Bart A, Polonais V, Delgado-Viscogliosi P, El Alaoui H, Belkorchia A, van Gool T, Tan KSW, Ferreira S, Viscogliosi E, Delbac F. Draft genome sequence of the intestinal parasite Blastocystis subtype 4-isolate WR1. GENOMICS DATA 2015; 4:22-3. [PMID: 26484170 PMCID: PMC4535960 DOI: 10.1016/j.gdata.2015.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 11/27/2022]
Abstract
The intestinal protistan parasite Blastocystis is characterized by an extensive genetic variability with 17 subtypes (ST1–ST17) described to date. Only the whole genome of a human ST7 isolate was previously sequenced. Here we report the draft genome sequence of Blastocystis ST4-WR1 isolated from a laboratory rodent at Singapore.
Collapse
|
Journal Article |
10 |
23 |
11
|
Peek R, Delbac F, Speijer D, Polonais V, Greve S, Wentink-Bonnema E, Ringrose J, van Gool T. Carbohydrate moieties of microsporidian polar tube proteins are targeted by immunoglobulin G in immunocompetent individuals. Infect Immun 2006; 73:7906-13. [PMID: 16299281 PMCID: PMC1307029 DOI: 10.1128/iai.73.12.7906-7913.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microsporidia of the Encephalitozoon species are frequently found as opportunistic pathogens of immunocompromised patients, but very little is known about the prevalence and significance of Encephalitozoon infection in immunocompetent individuals. It was reported previously that 8% of Dutch blood donors and 5% of pregnant French women had an immunoglobulin G (IgG) immune response against specific organelles of Encephalitozoon intestinalis. These organelles, the so-called polar tube and anchoring disk, are used to penetrate membranes of host cells during infection. The unexpectedly high percentage of immunocompetent individuals with IgG against these organelles suggested that infection of humans with microsporidia might be more common than previously recognized. In the present study, we analyzed this anti-Encephalitozoon IgG response by using indirect immunofluorescence, Western blotting, two-dimensional gel electrophoresis, and chemical deglycosylation. Our results show that the antibody response is directed against the posttranslational carbohydrate modification of the major polar tube protein (polar tube protein 1) and carbohydrate moieties of proteins in the anchoring region of the polar tube of Encephalitozoon. In addition, the antibodies were found to decrease the infectivity of E. intestinalis in vitro. The significance and possible origin of these prevalent antibodies are discussed.
Collapse
|
Journal Article |
19 |
18 |
12
|
|
Review |
17 |
14 |
13
|
Belkorchia A, Biderre C, Militon C, Polonais V, Wincker P, Jubin C, Delbac F, Peyretaillade E, Peyret P. In vitro propagation of the microsporidian pathogen Brachiola algerae and studies of its chromosome and ribosomal DNA organization in the context of the complete genome sequencing project. Parasitol Int 2008; 57:62-71. [DOI: 10.1016/j.parint.2007.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/02/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
|
|
17 |
13 |
14
|
Polonais V, Belkorchia A, Roussel M, Peyretaillade E, Peyret P, Diogon M, Delbac F. Identification of two new polar tube proteins related to polar tube protein 2 in the microsporidian Antonospora locustae. FEMS Microbiol Lett 2013; 346:36-44. [PMID: 23763358 DOI: 10.1111/1574-6968.12198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/28/2013] [Accepted: 06/07/2013] [Indexed: 01/25/2023] Open
Abstract
Microsporidia are obligate intracellular eukaryotic parasites with a broad host spectrum characterized by a unique and highly sophisticated invasion apparatus, the polar tube (PT). In a previous study, two PT proteins, named AlPTP1 (50 kDa) and AlPTP2 (35 kDa), were identified in Antonospora locustae, an orthoptera parasite that is used as a biological control agent against locusts. Antibodies raised against AlPTP2 cross-reacted with a band migrating at ~70 kDa, suggesting that this 70-kDa antigen is closely related to AlPTP2. A blastp search against the A. locustae genome database allowed the identification of two further PTP2-like proteins named AlPTP2b (568 aa) and AlPTP2c (599 aa). Both proteins are characterized by a specific serine- and glycine-rich N-terminal extension with elastomeric structural features and share a common C-terminal end conserved with AlPTP2 (~88% identity for the last 250 aa). MS analysis of the 70-kDa band revealed the presence of AlPTP2b. Specific anti-AlPTP2b antibodies labelled the extruded PTs of the A. locustae spores, confirming that this antigen is a PT component. Finally, we showed that several PTP2-like proteins are also present in other phylogenetically related insect microsporidia, including Anncaliia algerae and Paranosema grylli.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
13 |
15
|
Belkorchia A, Pombert JF, Polonais V, Parisot N, Delbac F, Brugère JF, Peyret P, Gaspin C, Peyretaillade E. Comparative genomics of microsporidian genomes reveals a minimal non-coding RNA set and new insights for transcription in minimal eukaryotic genomes. DNA Res 2017; 24:251-260. [PMID: 28338834 PMCID: PMC5499648 DOI: 10.1093/dnares/dsx002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/21/2017] [Indexed: 11/14/2022] Open
Abstract
Microsporidia are ubiquitous intracellular pathogens whose opportunistic nature led to their increased recognition with the rise of the AIDS pandemic. As the RNA world was largely unexplored in this parasitic lineage, we developed a dedicated in silico methodology to carry out exhaustive identification of ncRNAs across the Encephalitozoon and Nosema genera. Thus, the previously missing U1 small nuclear RNA (snRNA) and small nucleolar RNAs (snoRNAs) targeting only the LSU rRNA were highlighted and were further validated using 5' and 3'RACE-PCR experiments. Overall, the 15 ncRNAs that were found shared between Encephalitozoon and Nosema spp. may represent the minimal core set required for parasitic life. Interestingly, the systematic presence of a CCC- or GGG-like motif in 5' of all ncRNA and mRNA gene transcripts regardless of the RNA polymerase involved suggests that the RNA polymerase machineries in microsporidia species could use common factors. Our data provide additional insights in accordance with the simplification processes observed in these reduce genomes and underline the usefulness of sequencing closely related species to help identify highly divergent ncRNAs in these parasites.
Collapse
|
Journal Article |
8 |
7 |
16
|
Fayet M, Prybylski N, Collin ML, Peyretaillade E, Wawrzyniak I, Belkorchia A, Akossi RF, Diogon M, El Alaoui H, Polonais V, Delbac F. Identification and localization of polar tube proteins in the extruded polar tube of the microsporidian Anncaliia algerae. Sci Rep 2023; 13:8773. [PMID: 37253964 DOI: 10.1038/s41598-023-35511-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023] Open
Abstract
Microsporidia are obligate intracellular parasites able to infect a wide range of hosts from invertebrates to vertebrates. The success of their invasion process is based on an original organelle, the polar tube, which is suddenly extruded from the spore to inoculate the sporoplasm into the host cytoplasm. The polar tube is mainly composed of proteins named polar tube proteins (PTPs). A comparative analysis allowed us to identify genes coding for 5 PTPs (PTP1 to PTP5) in the genome of the microsporidian Anncaliia algerae. While PTP1 and PTP2 are found on the whole polar tube, PTP3 is present in a large part of the extruded polar tube except at its end-terminal part. On the contrary, PTP4 is specifically detected at the end-terminal part of the polar tube. To complete PTPs repertoire, sequential sporal protein extractions were done with high concentration of reducing agents. In addition, a method to purify polar tubes was developed. Mass spectrometry analysis conducted on both samples led to the identification of a PTP3-like protein (PTP3b), and a new PTP (PTP7) only found at the extremity of the polar tube. The specific localization of PTPs asks the question of their roles in cell invasion processes used by A. algerae.
Collapse
|
|
2 |
7 |
17
|
Tournayre J, Polonais V, Wawrzyniak I, Akossi RF, Parisot N, Lerat E, Delbac F, Souvignet P, Reichstadt M, Peyretaillade E. MicroAnnot: A Dedicated Workflow for Accurate Microsporidian Genome Annotation. Int J Mol Sci 2024; 25:880. [PMID: 38255958 PMCID: PMC10815200 DOI: 10.3390/ijms25020880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
With nearly 1700 species, Microsporidia represent a group of obligate intracellular eukaryotes with veterinary, economic and medical impacts. To help understand the biological functions of these microorganisms, complete genome sequencing is routinely used. Nevertheless, the proper prediction of their gene catalogue is challenging due to their taxon-specific evolutionary features. As innovative genome annotation strategies are needed to obtain a representative snapshot of the overall lifestyle of these parasites, the MicroAnnot tool, a dedicated workflow for microsporidian sequence annotation using data from curated databases of accurately annotated microsporidian genes, has been developed. Furthermore, specific modules have been implemented to perform small gene (<300 bp) and transposable element identification. Finally, functional annotation was performed using the signature-based InterProScan software. MicroAnnot's accuracy has been verified by the re-annotation of four microsporidian genomes for which structural annotation had previously been validated. With its comparative approach and transcriptional signal identification method, MicroAnnot provides an accurate prediction of translation initiation sites, an efficient identification of transposable elements, as well as high specificity and sensitivity for microsporidian genes, including those under 300 bp.
Collapse
|
research-article |
1 |
|