1
|
Fluckiger A, Daillère R, Sassi M, Sixt BS, Liu P, Loos F, Richard C, Rabu C, Alou MT, Goubet AG, Lemaitre F, Ferrere G, Derosa L, Duong CPM, Messaoudene M, Gagné A, Joubert P, De Sordi L, Debarbieux L, Simon S, Scarlata CM, Ayyoub M, Palermo B, Facciolo F, Boidot R, Wheeler R, Boneca IG, Sztupinszki Z, Papp K, Csabai I, Pasolli E, Segata N, Lopez-Otin C, Szallasi Z, Andre F, Iebba V, Quiniou V, Klatzmann D, Boukhalil J, Khelaifia S, Raoult D, Albiges L, Escudier B, Eggermont A, Mami-Chouaib F, Nistico P, Ghiringhelli F, Routy B, Labarrière N, Cattoir V, Kroemer G, Zitvogel L. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 2020; 369:936-942. [PMID: 32820119 DOI: 10.1126/science.aax0701] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 02/28/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022]
Abstract
Intestinal microbiota have been proposed to induce commensal-specific memory T cells that cross-react with tumor-associated antigens. We identified major histocompatibility complex (MHC) class I-binding epitopes in the tail length tape measure protein (TMP) of a prophage found in the genome of the bacteriophage Enterococcus hirae Mice bearing E. hirae harboring this prophage mounted a TMP-specific H-2Kb-restricted CD8+ T lymphocyte response upon immunotherapy with cyclophosphamide or anti-PD-1 antibodies. Administration of bacterial strains engineered to express the TMP epitope improved immunotherapy in mice. In renal and lung cancer patients, the presence of the enterococcal prophage in stools and expression of a TMP-cross-reactive antigen by tumors correlated with long-term benefit of PD-1 blockade therapy. In melanoma patients, T cell clones recognizing naturally processed cancer antigens that are cross-reactive with microbial peptides were detected.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
239 |
2
|
Ritvo PGG, Churlaud G, Quiniou V, Florez L, Brimaud F, Fourcade G, Mariotti-Ferrandiz E, Klatzmann D. T
fr
cells lack IL-2Rα but express decoy IL-1R2 and IL-1Ra and suppress the IL-1–dependent activation of T
fh
cells. Sci Immunol 2017; 2:2/15/eaan0368. [DOI: 10.1126/sciimmunol.aan0368] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/26/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022]
|
|
8 |
84 |
3
|
Barennes P, Quiniou V, Shugay M, Egorov ES, Davydov AN, Chudakov DM, Uddin I, Ismail M, Oakes T, Chain B, Eugster A, Kashofer K, Rainer PP, Darko S, Ransier A, Douek DC, Klatzmann D, Mariotti-Ferrandiz E. Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases. Nat Biotechnol 2021; 39:236-245. [PMID: 32895550 DOI: 10.1038/s41587-020-0656-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Monitoring the T cell receptor (TCR) repertoire in health and disease can provide key insights into adaptive immune responses, but the accuracy of current TCR sequencing (TCRseq) methods is unclear. In this study, we systematically compared the results of nine commercial and academic TCRseq methods, including six rapid amplification of complementary DNA ends (RACE)-polymerase chain reaction (PCR) and three multiplex-PCR approaches, when applied to the same T cell sample. We found marked differences in accuracy and intra- and inter-method reproducibility for T cell receptor α (TRA) and T cell receptor β (TRB) TCR chains. Most methods showed a lower ability to capture TRA than TRB diversity. Low RNA input generated non-representative repertoires. Results from the 5' RACE-PCR methods were consistent among themselves but differed from the RNA-based multiplex-PCR results. Using an in silico meta-repertoire generated from 108 replicates, we found that one genomic DNA-based method and two non-unique molecular identifier (UMI) RNA-based methods were more sensitive than UMI methods in detecting rare clonotypes, despite the better clonotype quantification accuracy of the latter.
Collapse
|
Research Support, N.I.H., Intramural |
4 |
67 |
4
|
Terrisse S, Goubet AG, Ueda K, Thomas AM, Quiniou V, Thelemaque C, Dunsmore G, Clave E, Gamat-Huber M, Yonekura S, Ferrere G, Rauber C, Pham HP, Fahrner JE, Pizzato E, Ly P, Fidelle M, Mazzenga M, Costa Silva CA, Armanini F, Pinto F, Asnicar F, Daillère R, Derosa L, Richard C, Blanchard P, Routy B, Culine S, Opolon P, Silvin A, Ginhoux F, Toubert A, Segata N, McNeel DG, Fizazi K, Kroemer G, Zitvogel L. Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. J Immunother Cancer 2022; 10:jitc-2021-004191. [PMID: 35296557 PMCID: PMC8928383 DOI: 10.1136/jitc-2021-004191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background Prostate cancer (PC) responds to androgen deprivation therapy (ADT) usually in a transient fashion, progressing from hormone-sensitive PC (HSPC) to castration-resistant PC (CRPC). We investigated a mouse model of PC as well as specimens from PC patients to unravel an unsuspected contribution of thymus-derived T lymphocytes and the intestinal microbiota in the efficacy of ADT. Methods Preclinical experiments were performed in PC-bearing mice, immunocompetent or immunodeficient. In parallel, we prospectively included 65 HSPC and CRPC patients (Oncobiotic trial) to analyze their feces and blood specimens. Results In PC-bearing mice, ADT increased thymic cellularity and output. PC implanted in T lymphocyte-depleted or athymic mice responded less efficiently to ADT than in immunocompetent mice. Moreover, depletion of the intestinal microbiota by oral antibiotics reduced the efficacy of ADT. PC reduced the relative abundance of Akkermansia muciniphila in the gut, and this effect was reversed by ADT. Moreover, cohousing of PC-bearing mice with tumor-free mice or oral gavage with Akkermansia improved the efficacy of ADT. This appears to be applicable to PC patients because long-term ADT resulted in an increase of thymic output, as demonstrated by an increase in circulating recent thymic emigrant cells (sjTRECs). Moreover, as compared with HSPC controls, CRPC patients demonstrated a shift in their intestinal microbiota that significantly correlated with sjTRECs. While feces from healthy volunteers restored ADT efficacy, feces from PC patients failed to do so. Conclusions These findings suggest the potential clinical utility of reversing intestinal dysbiosis and repairing acquired immune defects in PC patients.
Collapse
|
|
3 |
19 |
5
|
Comarmond C, Lorin V, Marques C, Maciejewski-Duval A, Joher N, Planchais C, Touzot M, Biard L, Hieu T, Quiniou V, Desbois AC, Rosenzwajg M, Klatzmann D, Cacoub P, Mouquet H, Saadoun D. TLR9 signalling in HCV-associated atypical memory B cells triggers Th1 and rheumatoid factor autoantibody responses. J Hepatol 2019; 71:908-919. [PMID: 31279905 DOI: 10.1016/j.jhep.2019.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection contributes to the development of autoimmune disorders such as cryoglobulinaemia vasculitis (CV). However, it remains unclear why only some individuals with HCV develop HCV-associated CV (HCV-CV). HCV-CV is characterized by the expansion of anergic CD19+CD27+CD21low/- atypical memory B cells (AtMs). Herein, we report the mechanisms by which AtMs participate in HCV-associated autoimmunity. METHODS The phenotype and function of peripheral AtMs were studied by multicolour flow cytometry and co-culture assays with effector T cells and regulatory T cells in 20 patients with HCV-CV, 10 chronicallyHCV-infected patients without CV and 8 healthy donors. We performed gene expression profile analysis of AtMs stimulated or not by TLR9. Immunoglobulin gene repertoire and antibody reactivity profiles of AtM-expressing IgM antibodies were analysed following single B cell FACS sorting and expression-cloning of monoclonal antibodies. RESULTS The Tbet+CD11c+CD27+CD21- AtM population is expanded in patients with HCV-CV compared to HCV controls without CV. TLR9 activation of AtMs induces a specific transcriptional signature centred on TNFα overexpression, and an enhanced secretion of TNFα and rheumatoid factor-type IgMs in patients with HCV-CV. AtMs stimulated through TLR9 promote type 1 effector T cell activation and reduce the proliferation of CD4+CD25hiCD127-/lowFoxP3+ regulatory T cells. AtM expansions display intraclonal diversity with immunoglobulin features of antigen-driven maturation. AtM-derived IgM monoclonal antibodies do not react against ubiquitous autoantigens or HCV antigens including NS3 and E2 proteins. Rather, AtM-derived antibodies possess rheumatoid factor activity and target unique epitopes on the human IgG-Fc region. CONCLUSION Our data strongly suggest a central role for TLR9 activation of AtMs in driving HCV-CV autoimmunity through rheumatoid factor production and type 1 T cell responses. LAY SUMMARY B cells are best known for their capacity to produce antibodies, which often play a deleterious role in the development of autoimmune diseases. During chronic hepatitis C, self-reactive B cells proliferate and can be responsible for autoimmune symptoms (arthritis, purpura, neuropathy, renal disease) and/or lymphoma. Direct-acting antiviral therapy clears the hepatitis C virus and eliminates deleterious B cells.
Collapse
|
|
6 |
17 |
6
|
Mhanna V, Fourcade G, Barennes P, Quiniou V, Pham HP, Ritvo PG, Brimaud F, Gouritin B, Churlaud G, Six A, Mariotti-Ferrandiz E, Klatzmann D. Impaired Activated/Memory Regulatory T Cell Clonal Expansion Instigates Diabetes in NOD Mice. Diabetes 2021; 70:976-985. [PMID: 33479057 DOI: 10.2337/db20-0896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022]
Abstract
Regulatory T cell (Treg) insufficiency licenses the destruction of insulin-producing pancreatic β-cells by autoreactive effector T cells (Teffs), causing spontaneous autoimmune diabetes in NOD mice. We investigated the contribution to diabetes of the T-cell receptor (TCR) repertoires of naive regulatory T cells (nTregs), activated/memory Tregs (amTregs), and CD4+ Teffs from prediabetic NOD mice and normal C57BL/6 (B6) mice. NOD mice amTreg and Teff repertoire diversity was unexpectedly higher than that of B6 mice. This was due to the presence of highly expanded clonotypes in B6 amTregs and Teffs that were largely lost in their NOD counterparts. Interleukin-2 (IL-2) administration to NOD mice restored such amTreg clonotype expansions and prevented diabetes development. In contrast, IL-2 administration only led to few or no clonotype expansions in nTregs and Teffs, respectively. Noteworthily, IL-2-expanded amTreg and nTreg clonotypes were markedly enriched in islet-antigen specific TCRs. Altogether, our results highlight the link between a reduced clonotype expansion within the activated Treg repertoire and the development of an autoimmune disease. They also indicate that the repertoire of amTregs is amenable to rejuvenation by IL-2.
Collapse
|
|
4 |
13 |
7
|
Desbois AC, Régnier P, Quiniou V, Lejoncour A, Maciejewski-Duval A, Comarmond C, Vallet H, Rosenzwag M, Darrasse-Jèze G, Derian N, Pouchot J, Samson M, Bienvenu B, Fouret P, Koskas F, Garrido M, Sène D, Bruneval P, Cacoub P, Klatzmann D, Saadoun D. Specific Follicular Helper T Cell Signature in Takayasu Arteritis. Arthritis Rheumatol 2021; 73:1233-1243. [PMID: 33538119 DOI: 10.1002/art.41672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Our aim was to compare transcriptome and phenotype profiles of CD4+ T cells and CD19+ B cells in patients with Takayasu arteritis (TAK), patients with giant cell arteritis (GCA), and healthy donors. METHODS Gene expression analyses, flow cytometry immunophenotyping, T cell receptor (TCR) gene sequencing, and functional assessments of cells from peripheral blood and arterial lesions from TAK patients, GCA patients, and healthy donors were performed. RESULTS Among the most significantly dysregulated genes in CD4+ T cells of TAK patients compared to GCA patients (n = 720 genes) and in CD4+ T cells of TAK patients compared to healthy donors (n = 1,447 genes), we identified a follicular helper T (Tfh) cell signature, which included CXCR5, CCR6, and CCL20 genes, that was transcriptionally up-regulated in TAK patients. Phenotypically, there was an increase in CD4+CXCR5+CCR6+CXCR3- Tfh17 cells in TAK patients that was associated with a significant enrichment of CD19+ B cell activation. Functionally, Tfh cells helped B cells to proliferate, differentiate into memory cells, and secrete IgG antibodies. Maturation of B cells was inhibited by JAK inhibitors. Locally, in areas of arterial inflammation, we found a higher proportion of tertiary lymphoid structures comprised CD4+, CXCR5+, programmed death 1+, and CD20+ cells in TAK patients compared to GCA patients. CD4+CXCR5+ T cells in the aortas of TAK patients had an oligoclonal α/β TCR repertoire. CONCLUSION We established the presence of a specific Tfh cell signature in both circulating and aorta-infiltrating CD4+ T cells from TAK patients. The cooperation of Tfh cells and B cells might be critical in the occurrence of vascular inflammation in patients with TAK.
Collapse
|
Journal Article |
4 |
12 |
8
|
Yonekura S, Terrisse S, Alves Costa Silva C, Lafarge A, Iebba V, Ferrere G, Goubet AG, Fahrner JE, Lahmar I, Ueda K, Mansouri G, Pizzato E, Ly P, Mazzenga M, Thelemaque C, Fidelle M, Jaulin F, Cartry J, Deloger M, Aglave M, Droin N, Opolon P, Puget A, Mann F, Neunlist M, Bessard A, Aymeric L, Matysiak-Budnik T, Bosq J, Hofman P, Duong CPM, Ugolini S, Quiniou V, Berrard S, Ryffel B, Kepp O, Kroemer G, Routy B, Lordello L, Bani MA, Segata N, Yousef Yengej F, Clevers H, Scoazec JY, Pasolli E, Derosa L, Zitvogel L. Cancer induces a stress ileopathy depending on B-adrenergic receptors and promoting dysbiosis that contribute to carcinogenesis. Cancer Discov 2021; 12:1128-1151. [DOI: 10.1158/2159-8290.cd-21-0999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
|
|
4 |
8 |
9
|
Benhamouda N, Sam I, Epaillard N, Gey A, Phan L, Pham HP, Gruel N, Saldmann A, Pineau J, Hasan M, Quiniou V, Nevoret C, Verkarre V, Libri V, Mella S, Granier C, Broudin C, Ravel P, De Guillebon E, Mauge L, Helley D, Jabla B, Chaput N, Albiges L, Katsahian S, Adam J, Mejean A, Adotevi O, Vano YA, Oudard S, Tartour E. Plasma CD27, a Surrogate of the Intratumoral CD27-CD70 Interaction, Correlates with Immunotherapy Resistance in Renal Cell Carcinoma. Clin Cancer Res 2022; 28:4983-4994. [PMID: 36067339 DOI: 10.1158/1078-0432.ccr-22-0905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE CD70 is a costimulatory molecule known to activate CD27-expressing T cells. CD27-CD70 interaction leads to the release of soluble CD27 (sCD27). Clear-cell renal cell carcinoma (ccRCC) expresses the highest levels of CD70 among all solid tumors; however, the clinical consequences of CD70 expression remain unclear. EXPERIMENTAL DESIGN Tumor tissue from 25 patients with ccRCC was assessed for the expression of CD27 and CD70 in situ using multiplex immunofluorescence. CD27+ T-cell phenotypes in tumors were analyzed by flow cytometry and their gene expression profile were analyzed by single-cell RNA sequencing then confirmed with public data. Baseline sCD27 was measured in 81 patients with renal cell carcinoma (RCC) treated with immunotherapy (35 for training cohort and 46 for validation cohort). RESULTS In the tumor microenvironment, CD27+ T cells interacted with CD70-expressing tumor cells. Compared with CD27- T cells, CD27+ T cells exhibited an apoptotic and dysfunctional signature. In patients with RCC, the intratumoral CD27-CD70 interaction was significantly correlated with the plasma sCD27 concentration. High sCD27 levels predicted poor overall survival in patients with RCC treated with anti-programmed cell death protein 1 in both the training and validation cohorts but not in patients treated with antiangiogenic therapy. CONCLUSIONS In conclusion, we demonstrated that sCD27, a surrogate marker of T-cell dysfunction, is a predictive biomarker of resistance to immunotherapy in RCC. Given the frequent expression of CD70 and CD27 in solid tumors, our findings may be extended to other tumors.
Collapse
|
|
3 |
8 |
10
|
Quiniou V, Barennes P, Mhanna V, Stys P, Vantomme H, Zhou Z, Martina F, Coatnoan N, Barbie M, Pham HP, Clémenceau B, Vie H, Shugay M, Six A, Brandao B, Mallone R, Mariotti-Ferrandiz E, Klatzmann D. Human thymopoiesis produces polyspecific CD8 + α/β T cells responding to multiple viral antigens. eLife 2023; 12:81274. [PMID: 36995951 PMCID: PMC10063231 DOI: 10.7554/elife.81274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/12/2023] [Indexed: 03/31/2023] Open
Abstract
T-cell receptors (TCRs) are formed by stochastic gene rearrangements, theoretically generating >1019 sequences. They are selected during thymopoiesis, which releases a repertoire of about 108 unique TCRs per individual. How evolution shaped a process that produces TCRs that can effectively handle a countless and evolving set of infectious agents is a central question of immunology. The paradigm is that a diverse enough repertoire of TCRs should always provide a proper, though rare, specificity for any given need. Expansion of such rare T cells would provide enough fighters for an effective immune response and enough antigen-experienced cells for memory. We show here that human thymopoiesis releases a large population of clustered CD8+ T cells harboring α/β paired TCRs that (i) have high generation probabilities and (ii) a preferential usage of some V and J genes, (iii) which CDR3 are shared between individuals, and (iv) can each bind and be activated by multiple unrelated viral peptides, notably from EBV, CMV, and influenza. These polyspecific T cells may represent a first line of defense that is mobilized in response to infections before a more specific response subsequently ensures viral elimination. Our results support an evolutionary selection of polyspecific α/β TCRs for broad antiviral responses and heterologous immunity.
Collapse
|
|
2 |
2 |
11
|
Fluckiger A, Daillère R, Sassi M, Sixt BS, Liu P, Loos F, Richard C, Rabu C, Alou MT, Goubet AG, Lemaitre F, Ferrere G, Derosa L, Duong CPM, Messaoudene M, Gagné A, Joubert P, De Sordi L, Debarbieux L, Simon S, Scarlata CM, Ayyoub M, Palermo B, Facciolo F, Boidot R, Wheeler R, Boneca IG, Sztupinszki Z, Papp K, Csabai I, Pasolli E, Segata N, Lopez-Otin C, Szallasi Z, Andre F, Iebba V, Quiniou V, Klatzmann D, Boukhalil J, Khelaifia S, Raoult D, Albiges L, Escudier B, Eggermont A, Mami-Chouaib F, Nistico P, Ghiringhelli F, Routy B, Labarrière N, Cattoir V, Kroemer G, Zitvogel L. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 2020. [PMID: 32820119 DOI: 10.1126/science.aax0701/suppl_file/aax0701_fluckiger_sm.pdf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Intestinal microbiota have been proposed to induce commensal-specific memory T cells that cross-react with tumor-associated antigens. We identified major histocompatibility complex (MHC) class I-binding epitopes in the tail length tape measure protein (TMP) of a prophage found in the genome of the bacteriophage Enterococcus hirae Mice bearing E. hirae harboring this prophage mounted a TMP-specific H-2Kb-restricted CD8+ T lymphocyte response upon immunotherapy with cyclophosphamide or anti-PD-1 antibodies. Administration of bacterial strains engineered to express the TMP epitope improved immunotherapy in mice. In renal and lung cancer patients, the presence of the enterococcal prophage in stools and expression of a TMP-cross-reactive antigen by tumors correlated with long-term benefit of PD-1 blockade therapy. In melanoma patients, T cell clones recognizing naturally processed cancer antigens that are cross-reactive with microbial peptides were detected.
Collapse
|
|
5 |
2 |
12
|
Paolini L, Tran T, Corgnac S, Villemin JP, Wislez M, Arrondeau J, Johannes L, Ulmer J, Vieillard LV, Pineau J, Gey A, Quiniou V, Barennes P, Pham HP, Gruel N, Hasan M, Libri V, Mella S, De Percin S, Boudou-Rouquette P, Caidi A, Cremer I, Blons H, Leroy K, Laurent-Puig P, De Saint Basile H, Gibault L, Ravel P, Mami-Chouaib F, Goldwasser F, Fabre E, Damotte D, Tartour E. Differential predictive value of resident memory CD8 +T cell subpopulations in patients with non-small-cell lung cancer treated by immunotherapy. J Immunother Cancer 2024; 12:e009440. [PMID: 39631852 PMCID: PMC11624836 DOI: 10.1136/jitc-2024-009440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND A high density of resident memory T cells (TRM) in tumors correlates with improved clinical outcomes in immunotherapy-treated patients. In most clinical studies, TRM are defined by the CD103 marker. However, it is clearly established that not all TRM express CD103, but can be defined by other markers (CD49a, CD69, etc). The frequency of these subpopulations of TRM expressing or not CD103 varies according to the location of the cancer. Little is known about their functionality and their predictive impact on response to immunotherapy. In preclinical models, only some subpopulations of TRM are associated with cancer vaccine efficacy. METHODS Multiparametric cytometry analyses were used to demonstrate the presence of TRM subpopulations in the lung in mice after vaccination and in fresh ex vivo human non-small cell lung cancer (NSCLC). An analysis of the T-cell repertoire of these TRM was conducted to search for their relationships. Multiplex immunofluorescence techniques were used to quantify intratumor infiltration of TRM subpopulations in two cohorts of patients with NSCLC. The impact on the clinical outcome of the TRM tumor infiltration was also investigated. RESULTS We identified two main TRM subpopulations in tumor-infiltrating lymphocytes derived from patients with NSCLC: one co-expressing CD103 and CD49a (double positive (DP)), and the other expressing only CD49a (simple positive (SP)); both exhibiting additional TRM surface markers like CD69. Despite higher expression of inhibitory receptors, DP TRM exhibited greater functionality compared with SP TRM. Analysis of T-cell receptor (TCR) repertoire and expression of the stemness marker TCF1 revealed shared TCRs between populations, with the SP subset appearing more progenitor-like phenotype. In the training cohort, PD-L1 (Programmed Death-Ligand 1) and TCF1+CD8+T cells predict response to anti-PD-1. In patient with NSCLC validation cohorts, only DP TRM predicted PD-1 blockade response. Multivariate analysis, including various biomarkers associated with responses to anti-PD-(L)1, such as total CD8, TCF1+CD8+T cells, and PD-L1, showed that only intratumoral infiltration by DP TRM remained significant. CONCLUSIONS This study highlights the non-equivalence of TRM subpopulations. The population of TRM co-expressing CD103 and CD49a appears to be the most functional and has the most significant capacity for predicting response to immunotherapy in multivariate analysis in patients with NSCLC.
Collapse
|
research-article |
1 |
|
13
|
Yared N, Papadopoulou M, Barennes P, Pham HP, Quiniou V, Netzer S, Kaminski H, Burguet L, Demeste A, Colas P, Mora-Charrot L, Rousseau B, Izotte J, Zouine A, Gauthereau X, Vermijlen D, Déchanet-Merville J, Capone M. Long-lived central memory γδ T cells confer protection against murine cytomegalovirus reinfection. PLoS Pathog 2024; 20:e1010785. [PMID: 38976755 PMCID: PMC11257398 DOI: 10.1371/journal.ppat.1010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/18/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
The involvement of γδ TCR-bearing lymphocytes in immunological memory has gained increasing interest due to their functional duality between adaptive and innate immunity. γδ T effector memory (TEM) and central memory (TCM) subsets have been identified, but their respective roles in memory responses are poorly understood. In the present study, we used subsequent mouse cytomegalovirus (MCMV) infections of αβ T cell deficient mice in order to analyze the memory potential of γδ T cells. As for CMV-specific αβ T cells, MCMV induced the accumulation of cytolytic, KLRG1+CX3CR1+ γδ TEM that principally localized in infected organ vasculature. Typifying T cell memory, γδ T cell expansion in organs and blood was higher after secondary viral challenge than after primary infection. Viral control upon MCMV reinfection was prevented when masking γδ T-cell receptor, and was associated with a preferential amplification of private and unfocused TCR δ chain repertoire composed of a combination of clonotypes expanded post-primary infection and, more unexpectedly, of novel expanded clonotypes. Finally, long-term-primed γδ TCM cells, but not γδ TEM cells, protected T cell-deficient hosts against MCMV-induced death upon adoptive transfer, probably through their ability to survive and to generate TEM in the recipient host. This better survival potential of TCM cells was confirmed by a detailed scRNASeq analysis of the two γδ T cell memory subsets which also revealed their similarity to classically adaptive αβ CD8 T cells. Overall, our study uncovered memory properties of long-lived TCM γδ T cells that confer protection in a chronic infection, highlighting the interest of this T cell subset in vaccination approaches.
Collapse
|
research-article |
1 |
|
14
|
Terrisse S, Goubet AG, Ueda K, Thomas AM, Quiniou V, Thelemaque C, Dunsmore G, Clave E, Gamat-Huber M, Yonekura S, Derosa L, Culine S, Opolon P, Ginhoux F, Toubert A, Segata N, McNeel DG, Fizazi K, Kroemer G, Zitvogel L. Immune system and intestinal microbiota determine efficacy of androgen depletion therapy against prostate cancer. J Clin Oncol 2022. [DOI: 10.1200/jco.2022.40.6_suppl.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
168 Background: Prostate cancer (PC) responds to androgen deprivation therapy (ADT) usually in a transient fashion, progressing from hormone-sensitive PC (HSPC) to castration-resistant PC (CRPC). While it is recognized that ADT has an immunomodulatory effect, little is known about the intestinal microbiome effect on therapeutic outcome of ADT. Methods: We investigated a mouse model of PC as well as specimens from PC patients to unravel an unsuspected contribution of thymus-derived T lymphocytes and the intestinal microbiota in the efficacy of ADT. Preclinical experiments were performed in PC-bearing mice, immunocompetent or immunodeficient. In parallel, we prospectively included 65 HSPC and CRPC patients to analyze their feces and blood specimen. Results: In PC-bearing mice, ADT increased thymic cellularity and output. PC implanted in T lymphocyte-depleted or athymic mice responded less efficiently to ADT than in immunocompetent mice. Moreover, depletion of the intestinal microbiota by oral antibiotics reduced the efficacy of ADT. PC reduced the relative abundance of Akkermansia muciniphila in the gut, and this effect was reversed by ADT. Moreover, cohousing of PC-bearing mice with tumor-free mice, or oral gavage with Akkermansia improved the efficacy of ADT. This appear to be applicable to PC patients because long-term ADT resulted in an increase of thymic output, as demonstrated by an increase in circulating recent thymic emigrant cells (sjTRECs). Moreover, as compared to HSPC controls, CRPC patients demonstrated a shift in their intestinal microbiota that significantly correlated with sjTRECs. While feces from healthy volunteers restored ADT efficacy. Conclusions: These findings suggest that reversing the intestinal dysbiosis and repairing acquired immune defects in PC patients have a potential impact on the therapeutic outcome of ADT.
Collapse
|
|
3 |
|
15
|
Desbois A, Comarmond C, Maciejewsky A, Vallet H, Garrido M, Bruneval P, Quiniou V, Derian N, Pouchot J, Klatzmann D, Cacoub P, Saadoun D. Coopération des lymphocytes T folliculaires helper et des lymphocytes B dans la maladie de Takayasu. Rev Med Interne 2017. [DOI: 10.1016/j.revmed.2017.10.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
|
8 |
|
16
|
Isacchini G, Quiniou V, Barennes P, Mhanna V, Vantomme H, Stys P, Mariotti-Ferrandiz E, Klatzmann D, Walczak AM, Mora T, Nourmohammad A. Local and Global Variability in Developing Human T-Cell Repertoires. PRX LIFE 2024; 2:013011. [PMID: 39582620 PMCID: PMC11583800 DOI: 10.1103/prxlife.2.013011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The adaptive immune response relies on T cells that combine phenotypic specialization with diversity of T-cell receptors (TCRs) to recognize a wide range of pathogens. TCRs are acquired and selected during T-cell maturation in the thymus. Characterizing TCR repertoires across individuals and T-cell maturation stages is important for better understanding adaptive immune responses and for developing new diagnostics and therapies. Analyzing a dataset of human TCR repertoires from thymocyte subsets, we find that the variability between individuals generated during the TCR V(D)J recombination is maintained through all stages of T-cell maturation and differentiation. The interindividual variability of repertoires of the same cell type is of comparable magnitude to the variability across cell types within the same individual. To zoom in on smaller scales than whole repertoires, we defined a distance measuring the relative overlap of locally similar sequences in repertoires. We find that the whole repertoire models correctly predict local similarity networks, suggesting a lack of forbidden T-cell receptor sequences. The local measure correlates well with distances calculated using whole repertoire traits and carries information about cell types.
Collapse
|
research-article |
1 |
|