1
|
Huang J, Mensi M, Oveisi E, Mantella V, Buonsanti R. Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO 2 Reduction Revealed by Ag-Cu Nanodimers. J Am Chem Soc 2019; 141:2490-2499. [PMID: 30657662 DOI: 10.1021/jacs.8b12381] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding the structural and compositional sensitivities of the electrochemical CO2 reduction reaction (CO2RR) is fundamentally important for developing highly efficient and selective electrocatalysts. Here, we use Ag/Cu nanocrystals to uncover the key role played by the Ag/Cu interface in promoting CO2RR. Nanodimers including the two constituent metals as segregated domains sharing a tunable interface are obtained by developing a seeded growth synthesis, wherein preformed Ag nanoparticles are used as nucleation seeds for the Cu domain. We find that the type of metal precursor and the strength of the reducing agent play a key role in achieving the desired chemical and structural control. We show that tandem catalysis and electronic effects, both enabled by the addition of Ag to Cu in the form of segregated nanodomain within the same catalyst, synergistically account for an enhancement in the Faradaic efficiency for C2H4 by 3.4-fold and in the partial current density for CO2 reduction by 2-fold compared with the pure Cu counterpart. The insights gained from this work may be beneficial for designing efficient multicomponent catalysts for electrochemical CO2 reduction.
Collapse
|
Journal Article |
6 |
235 |
2
|
Guntern YT, Pankhurst JR, Vávra J, Mensi M, Mantella V, Schouwink P, Buonsanti R. Nanocrystal/Metal–Organic Framework Hybrids as Electrocatalytic Platforms for CO
2
Conversion. Angew Chem Int Ed Engl 2019; 58:12632-12639. [DOI: 10.1002/anie.201905172] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/19/2019] [Indexed: 11/08/2022]
|
|
6 |
77 |
3
|
Strach M, Mantella V, Pankhurst JR, Iyengar P, Loiudice A, Das S, Corminboeuf C, van Beek W, Buonsanti R. Insights into Reaction Intermediates to Predict Synthetic Pathways for Shape-Controlled Metal Nanocrystals. J Am Chem Soc 2019; 141:16312-16322. [PMID: 31542922 DOI: 10.1021/jacs.9b06267] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding nucleation phenomena is crucial across all branches of physical and natural sciences. Colloidal nanocrystals are among the most versatile and tunable synthetic nanomaterials. While huge steps have been made in their synthetic development, synthesis by design is still impeded by the lack of knowledge of reaction mechanisms. Here, we report on the investigation of the reaction intermediates in high temperature syntheses of copper nanocrystals by a variety of techniques, including X-ray absorption at a synchrotron source using a customized in situ cell. We reveal unique insights into the chemical nature of the reaction intermediates and into their role in determining the final shape of the metal nanocrystals. Overall, this study highlights the importance of understanding the chemistry behind nucleation as a key parameter to predict synthetic pathways for shape-controlled nanocrystals.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
36 |
4
|
Mantella V, Castilla-Amorós L, Buonsanti R. Shaping non-noble metal nanocrystals via colloidal chemistry. Chem Sci 2020; 11:11394-11403. [PMID: 34094381 PMCID: PMC8162465 DOI: 10.1039/d0sc03663c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Non-noble metal nanocrystals with well-defined shapes have been attracting increasingly more attention in the last decade as potential alternatives to noble metals, by virtue of their earth abundance combined with intriguing physical and chemical properties relevant for both fundamental studies and technological applications. Nevertheless, their synthesis is still primitive when compared to noble metals. In this contribution, we focus on third row transition metals Mn, Fe, Co, Ni and Cu that are recently gaining interest because of their catalytic properties. Along with providing an overview on the state-of-the-art, we discuss current synthetic strategies and challenges. Finally, we propose future directions to advance the synthetic development of shape-controlled non-noble metal nanocrystals in the upcoming years.
Collapse
|
Review |
5 |
17 |
5
|
Guntern YT, Pankhurst JR, Vávra J, Mensi M, Mantella V, Schouwink P, Buonsanti R. Nanocrystal/Metal–Organic Framework Hybrids as Electrocatalytic Platforms for CO
2
Conversion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
6 |
15 |
6
|
Gadiyar C, Loiudice A, D’Ambra F, Oveisi E, Stoian D, Iyengar P, Castilla-Amorós L, Mantella V, Buonsanti R. Nanocrystals as Precursors in Solid-State Reactions for Size- and Shape-Controlled Polyelemental Nanomaterials. J Am Chem Soc 2020; 142:15931-15940. [DOI: 10.1021/jacs.0c06556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
|
5 |
13 |
7
|
Mantella V, Strach M, Frank K, Pankhurst JR, Stoian D, Gadiyar C, Nickel B, Buonsanti R. Polymer Lamellae as Reaction Intermediates in the Formation of Copper Nanospheres as Evidenced by In Situ X-ray Studies. Angew Chem Int Ed Engl 2020; 59:11627-11633. [PMID: 32315499 DOI: 10.1002/anie.202004081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 01/02/2023]
Abstract
The classical nucleation theory (CNT) is the most common theoretical framework used to explain particle formation. However, nucleation is a complex process with reaction pathways which are often not covered by the CNT. Herein, we study the formation mechanism of copper nanospheres using in situ X-ray absorption and scattering measurements. We reveal that their nucleation involves coordination polymer lamellae as pre-nucleation structures occupying a local minimum in the reaction energy landscape. Having learned this, we achieved a superior monodispersity for Cu nanospheres of different sizes. This report exemplifies the importance of developing a more realistic picture of the mechanism involved in the formation of inorganic nanoparticles to develop a rational approach to their synthesis.
Collapse
|
Journal Article |
5 |
9 |
8
|
Buonsanti R, Loiudice A, Mantella V. Colloidal Nanocrystals as Precursors and Intermediates in Solid State Reactions for Multinary Oxide Nanomaterials. Acc Chem Res 2021; 54:754-764. [PMID: 33492926 DOI: 10.1021/acs.accounts.0c00698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ConspectusPolyelemental compounds with dimensions in the nanosized regime are desirable in a large variety of applications, yet their synthesis remains a general challenge in chemistry. One of the major bottlenecks to obtaining multinary systems is the complexity of the synthesis itself. As the number of elements to include in one single nano-object increases, different chemical interactions arise during nucleation and growth, thus challenging the formation of the targeted product. Choosing the reaction conditions and identifying the parameters which ensure the desired reaction pathway are of the uttermost importance. When, in addition to composition, the simultaneous control of size and shape is sought after, the development of new synthetic strategies guided by the fundamental understanding of the formation mechanisms becomes crucial.In this Account we discuss the use of colloidal chemistry to target multinary oxide nanomaterials, with focus on light absorbers which can drive chemical reactions. We propose the combination of soft and solid-state chemistries as one successful strategy to target this family of polyelemental compounds with control on composition and morphological features. To start with, we highlight studies where in situ forming nanoparticles act as reaction intermediates, which we found in both oxide (i.e., Bi-V-O) and sulfide (Cu-M-S, with M = V, Cr, Mn) nanocrystals (NCs). Examples of ternary sulfides are mentioned only with the purpose of showing that similar mechanisms can apply to different families of multinary nanomaterials. Using this new knowledge, we demonstrate that reacting pre-synthesized NCs with well-defined composition and size with molecular precursors allows significant control of these same property-dictating features (i.e., composition and grain size) in the resulting ternary and quaternary compounds. For example, nanostructured BiV1-xSbxO4 thin films with tunable composition and nanostructured β-Cu2V2O7 with tunable grain size were accessed from colloidally synthesized Bi1-xSbx NCs (0 < x < 1) and size-controlled Cu NCs reacted with a vanadium molecular precursor, respectively. The analysis of reaction aliquots revealed that the formation of these materials occurs via a solid-state reaction between the NC precursors and V-containing amorphous nanoparticles, which form in situ from the molecular precursors. With the aim to achieve better control on the reaction product, we finally propose the use of colloidally synthesized NCs as reactants in solid state reactions. As the first proof of concept, ternary metal oxide NCs, including CuFe2O4, CuMn2O4, and CuGa2O4 with defined size and shape regulated by the NC precursors were obtained. Considering the huge library of single component and binary NCs accessible by colloidal chemistry, the extension of this synthetic concept, which combines soft and solid-state chemistries, to a larger variety of polyelemental nanomaterials is foreseen. Such an approach will contribute to facilitate a more rapid translation of design principles to materials with the desired composition and structural features.
Collapse
|
|
4 |
7 |
9
|
Saris S, Niemann V, Mantella V, Loiudice A, Buonsanti R. Understanding the mechanism of metal-induced degradation in perovskite nanocrystals. NANOSCALE 2019; 11:19543-19550. [PMID: 31576878 DOI: 10.1039/c9nr06328e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A deeper understanding of the perovskite-metal chemistry is crucial to elucidate the instability problems at the device level that can be caused by such interactions. Here, we study the reactions occurring between CsPbX3 (X = Br, BrI, I) perovskite and metal (M = Ag, Cu, Au) nanocrystals. We demonstrate a fast (<1 hour) optical and structural degradation of the I-containing nanocrystals driven by the formation of metal iodides with reaction kinetics according to the following order Cu < Ag < Au. These results point to the need for thoughtful considerations while constructing optoelectronic devices out of all-inorganic CsPbX3 nanocrystals, where the use of contact metals is a necessity.
Collapse
|
|
6 |
7 |
10
|
Pankhurst JR, Castilla-Amorós L, Stoian DC, Vavra J, Mantella V, Albertini PP, Buonsanti R. Copper Phosphonate Lamella Intermediates Control the Shape of Colloidal Copper Nanocrystals. J Am Chem Soc 2022; 144:12261-12271. [PMID: 35770916 PMCID: PMC9284559 DOI: 10.1021/jacs.2c03489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Understanding the
structure and behavior of intermediates in chemical
reactions is the key to developing greater control over the reaction
outcome. This principle is particularly important in the synthesis
of metal nanocrystals (NCs), where the reduction, nucleation, and
growth of the reaction intermediates will determine the final size
and shape of the product. The shape of metal NCs plays a major role
in determining their catalytic, photochemical, and electronic properties
and, thus, the potential applications of the material. In this work,
we demonstrate that layered coordination polymers, called lamellae,
are reaction intermediates in Cu NC synthesis. Importantly, we discover
that the lamella structure can be fine-tuned using organic ligands
of different lengths and that these structural changes control the
shape of the final NC. Specifically, we show that short-chain phosphonate
ligands generate lamellae that are stable enough at the reaction temperature
to facilitate the growth of Cu nuclei into anisotropic Cu NCs, being
primarily triangular plates. In contrast, lamellae formed from long-chain
ligands lose their structure and form spherical Cu NCs. The synthetic
approach presented here provides a versatile tool for the future development
of metal NCs, including other anisotropic structures.
Collapse
|
|
3 |
6 |
11
|
Krivitsky V, Krivitsky A, Mantella V, Ben-Yehuda Greenwald M, Sankar DS, Betschmann J, Bader J, Zoratto N, Schreier K, Feiss S, Walker D, Dengjel J, Werner S, Leroux JC. Ultrafast and Controlled Capturing, Loading, and Release of Extracellular Vesicles by a Portable Microstructured Electrochemical Fluidic Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212000. [PMID: 37452635 DOI: 10.1002/adma.202212000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are found in body fluids. They exert numerous physiological and pathological functions and serve as cargo shuttles. Due to their safety and inherent bioactivity, they have emerged as versatile therapeutic agents, biomarkers, and potential drug carriers. Despite the growing interest in EVs, current progress in this field is, in part, limited by relatively inefficient isolation techniques. Conventional methods are indeed slow, laborious, require specialized laboratory equipment, and may result in low yield and purity. This work describes an electrochemically controlled "all-in-one" device enabling capturing, loading, and releasing of EVs. The device is composed of a fluidic channel confined within antibody-coated microstructured electrodes. It rapidly isolates EVs with a high level of purity from various biofluids. As a proof of principle, the device is applied to isolate EVs from skin wounds of healthy and diabetic mice. Strikingly, it is found that EVs from healing wounds of diabetic mice are enriched in mitochondrial proteins compared to those of healthy mice. Additionally, the device improves the loading protocol of EVs with polyplexes, and may therefore find applications in nucleic acid delivery. Overall, the electrochemical device can greatly facilitate the development of EVs-based technologies.
Collapse
|
|
2 |
|
12
|
Seltmann K, Hettich B, Abele S, Gurri S, Mantella V, Leroux J, Werner S. Transport of CLCA2 to the nucleus by extracellular vesicles controls keratinocyte survival and migration. J Extracell Vesicles 2024; 13:e12430. [PMID: 38602325 PMCID: PMC11007793 DOI: 10.1002/jev2.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
Chloride channel accessory 2 (CLCA2) is a transmembrane protein, which promotes adhesion of keratinocytes and their survival in response to hyperosmotic stress. Here we show that CLCA2 is transported to the nucleus of keratinocytes via extracellular vesicles. The nuclear localization is functionally relevant, since wild-type CLCA2, but not a mutant lacking the nuclear localization signal, suppressed migration of keratinocytes and protected them from hyperosmotic stress-induced cell death. In the nucleus, CLCA2 bound to and activated β-catenin, resulting in enhanced expression of Wnt target genes. Mass-spectrometry-based interaction screening and functional rescue studies identified RNA binding protein 3 as a key effector of nuclear CLCA2. This is of likely relevance in vivo because both proteins co-localize in the human epidermis. Together, these results identify an unexpected nuclear function of CLCA2 in keratinocytes under homeostatic and stress conditions and suggest a role of extracellular vesicles and their nuclear transport in the control of key cellular activities.
Collapse
|
research-article |
1 |
|
13
|
Bader J, Rüedi P, Mantella V, Geisshüsler S, Brigger F, Qureshi BM, Ortega Arroyo J, Montanari E, Leroux J. Loading of Extracellular Vesicles with Nucleic Acids via Hybridization with Non-Lamellar Liquid Crystalline Lipid Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404860. [PMID: 39741121 PMCID: PMC11848734 DOI: 10.1002/advs.202404860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/01/2024] [Indexed: 01/02/2025]
Abstract
The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (HII) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L2) or sponge (L3) phases, at pH 7.4, which are particularly suitable for inducing a controlled hybridization process with EVs. State-of-the-art single-particle analysis techniques reveal that LCNPs interact with various EV subpopulations at physiological conditions and that ≈40% of HEVs are loaded with the genetic cargo. Importantly, this study demonstrates that EV membrane proteins remain accessible on HEV surfaces, with their intrinsic enzymatic activity unaffected after the hybridization process. Finally, HEVs show in vitro improved transfection efficiencies compared to unhybridized LCNPs. In summary, this versatile platform holds potential for loading various nucleic acid molecules into native EVs and may help developing EV-based therapeutics.
Collapse
|
research-article |
1 |
|