1
|
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:863-893. [PMID: 29053081 DOI: 10.1080/09205063.2017.1394711] [Citation(s) in RCA: 440] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biodegradable polymers have met with an increasing demand in medical usage over the last decades. One of such polymers is poly(ε-caprolactone) (PCL), which is a polyester that has been widely used in tissue engineering field for its availability, relatively inexpensive price and suitability for modification. Its chemical and biological properties, physicochemical state, degradability and mechanical strength can be adjusted, and therefore, it can be used under harsh mechanical, physical and chemical conditions without significant loss of its properties. Degradation time of PCL is quite long, thus it is used mainly in the replacement of hard tissues in the body where healing also takes an extended period of time. It is also used at load-bearing tissues of the body by enhancing its stiffness. However, due to its tailorability, use of PCL is not restricted to one type of tissue and it can be extended to engineering of soft tissues by decreasing its molecular weight and degradation time. This review outlines the basic properties of PCL, its composites, blends and copolymers. We report on various techniques for the production of different forms, and provide examples of medical applications such as tissue engineering and drug delivery systems covering the studies performed in the last decades.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
440 |
2
|
Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 2009; 30:3551-9. [PMID: 19361857 DOI: 10.1016/j.biomaterials.2009.03.024] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/11/2009] [Indexed: 11/18/2022]
Abstract
The aim of this study was to develop a 3-D construct carrying an inherent sequential growth factor delivery system. Poly(lactic acid-co-glycolic acid) (PLGA) nanocapsules loaded with bone morphogenetic protein BMP-2 and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanocapsules loaded with BMP-7 made the early release of BMP-2 and longer term release of BMP-7 possible. 3-D fiber mesh scaffolds were prepared from chitosan and from chitosan-PEO by wet spinning. Chitosan of 4% concentration in 2% acetic acid (CHI4-HAc2) and chitosan (4%) and PEO (2%) in 5% acetic acid (CHI4-PEO2-HAc5) yielded scaffolds with smooth and rough fiber surfaces, respectively. These scaffolds were seeded with rat bone marrow mesenchymal stem cells (MSCs). When there were no nanoparticles the initial differentiation rate was higher on (CHI4-HAc2) scaffolds but by three weeks both the scaffolds had similar alkaline phosphatase (ALP) levels. The cell numbers were also comparable by the end of the third week. Incorporation of nanoparticles into the scaffolds was achieved by two different methods: incorporation within the scaffold fibers (NP-IN) and on the fibers (NP-ON). It was shown that incorporation on the CHI4-HAc2 fibers (NP-ON) prevented the burst release observed with the free nanoparticles, but this did not influence the total amount released in 25 days. However NP-IN for the same fibers revealed a much slower rate of release; ca. 70% released at the end of incubation period. The effect of single, simultaneous and sequential delivery of BMP-2 and BMP-7 from the CHI4-HAc2 scaffolds was studied in vitro using samples prepared with both incorporation methods. The effect of delivered agents was higher with the NP-ON samples. Delivery of BMP-2 alone suppressed cell proliferation while providing higher ALP activity compared to BMP-7. Simultaneous delivery was not particularly effective on cell numbers and ALP activity. The sequential delivery of BMP-2 and BMP-7, on the other hand, led to the highest ALP activity per cell (while suppressing proliferation) indicating the synergistic effect of using both growth factors holds promise for the production of tissue engineered bone.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
219 |
3
|
Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, Hasirci V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Front Bioeng Biotechnol 2019; 7:164. [PMID: 31338366 PMCID: PMC6629835 DOI: 10.3389/fbioe.2019.00164] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional (3D) and Four-dimensional (4D) printing emerged as the next generation of fabrication techniques, spanning across various research areas, such as engineering, chemistry, biology, computer science, and materials science. Three-dimensional printing enables the fabrication of complex forms with high precision, through a layer-by-layer addition of different materials. Use of intelligent materials which change shape or color, produce an electrical current, become bioactive, or perform an intended function in response to an external stimulus, paves the way for the production of dynamic 3D structures, which is now called 4D printing. 3D and 4D printing techniques have great potential in the production of scaffolds to be applied in tissue engineering, especially in constructing patient specific scaffolds. Furthermore, physical and chemical guidance cues can be printed with these methods to improve the extent and rate of targeted tissue regeneration. This review presents a comprehensive survey of 3D and 4D printing methods, and the advantage of their use in tissue regeneration over other scaffold production approaches.
Collapse
|
Review |
6 |
198 |
4
|
Ermis M, Antmen E, Hasirci V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact Mater 2018; 3:355-369. [PMID: 29988483 PMCID: PMC6026330 DOI: 10.1016/j.bioactmat.2018.05.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Cell-substrate interactions play a crucial role in the design of better biomaterials and integration of implants with the tissues. Adhesion is the binding process of the cells to the substrate through interactions between the surface molecules of the cell membrane and the substrate. There are several factors that affect cell adhesion including substrate surface chemistry, topography, and stiffness. These factors physically and chemically guide and influence the adhesion strength, spreading, shape and fate of the cell. Recently, technological advances enabled us to precisely engineer the geometry and chemistry of substrate surfaces enabling the control of the interaction cells with the substrate. Some of the most commonly used surface engineering methods for eliciting the desired cellular responses on biomaterials are photolithography, electron beam lithography, microcontact printing, and microfluidics. These methods allow production of nano- and micron level substrate features that can control cell adhesion, migration, differentiation, shape of the cells and the nuclei as well as measurement of the forces involved in such activities. This review aims to summarize the current techniques and associate these techniques with cellular responses in order to emphasize the effect of chemistry, dimensions, density and design of surface patterns on cell-substrate interactions. We conclude with future projections in the field of cell-substrate interactions in the hope of providing an outlook for the future studies.
Collapse
|
Review |
7 |
175 |
5
|
Köse GT, Kenar H, Hasirci N, Hasirci V. Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials 2003; 24:1949-58. [PMID: 12615485 DOI: 10.1016/s0142-9612(02)00613-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Macroporous poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) matrices were prepared after solvent evaporation and solute leaching. PHBV solutions with different concentrations were prepared in chloroform: dichloromethane (1:2, v/v). In order to create a matrix with high porosity and uniform pore sizes, sieved sucrose crystals (75-300 or 300-500 microm) were used. PHBV foams were treated with rf-oxygen plasma to modify their surface chemistry and hydrophilicity with the aim of increasing the reattachment of osteoblasts. Surface characteristics, pore sizes and their distribution on PHBV surface were studied by scanning electron microscopy (SEM) and Scion Image Analysis Program. Void volume, pore sizes and density of foams were found to be significantly affected by foam preparation conditions. Stability of PHBV foams in aqueous media was studied. Their weight and density were unchanged for a period of 120 days and then a significant decrease was observed for the rest of the study (60 days). Osteoblasts were seeded onto the foams and their proliferation inside the matrices was also determined by SEM. After 29 and 60 days of incubation, growth of osteoblasts on matrices was observed.
Collapse
|
Comparative Study |
22 |
125 |
6
|
Ber S, Torun Köse G, Hasirci V. Bone tissue engineering on patterned collagen films: an in vitro study. Biomaterials 2005; 26:1977-86. [PMID: 15576172 DOI: 10.1016/j.biomaterials.2004.07.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
This study aimed at guiding osteoblast cells from rat bone marrow on chemically modified and patterned collagen films to study the influence of patterns on cell guidance. The films were stabilized using different treatment methods including crosslinking with carbodiimide (EDC) and glutaraldehyde, dehydrothermal treatment (DHT), and deposition of calcium phosphate on the collagen membrane. Mesenchymal osteoprogenitor cells were differentiated into osteoblasts and cultured for 7 and 14 days on micropatterned (groove width: 27 microm, groove depth: 12 microm, ridge width: 2 microm) and macropatterned (groove width: 250 microm, groove depth: 250 microm, ridge width: 100 microm) collagen films to study the influence of pattern dimensions on osteoblast alignment and orientation. Fibrinogen was added to the patterned surfaces as a chemical cue to induce osteoblast adhesion. Cell proliferation on collagen films was determined using MTS assay. Deposition of calcium phosphate on the surface of the film increased surface hydrophilicity and roughness and allowed a good cell proliferation. Combined DHT and EDC treatment provided an intermediate wettability, and also promoted cell proliferation. Glutaraldehyde crosslinking was found to lead to the lowest cell proliferation but fibrinogen adsorption on glutaraldehyde treated film surfaces increased the cell proliferation significantly. Macropatterns were first tested for alignment and only microscopy images were enough to see that there is no specific alignment. As a result of this, micropatterned samples with the topography that affect cell alignment and guidance were used. Osteoblast phenotype expression (ALP activity) was observed to be highest in calcium phosphate deposited samples, emphasizing the effect of mineralization on osteoblast differentiation. In general ALP activity per cell was found to decrease from day 7 to day 14 of incubation. SEM and fluorescence microscopy revealed good osteoblast alignment and orientation along the axis of the patterns when micropatterned films were used. This study shows that it is possible to prepare cell carriers suitable for tissue engineering through choice of appropriate surface topography and surface chemistry. Presence of chemical cues and micropatterns on the surface enhance cell orientation and bone formation.
Collapse
|
|
20 |
114 |
7
|
Sendil D, Gürsel I, Wise DL, Hasirci V. Antibiotic release from biodegradable PHBV microparticles. J Control Release 1999; 59:207-17. [PMID: 10332055 DOI: 10.1016/s0168-3659(98)00195-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For the treatment of periodontal diseases, design of a controlled release system seemed very appropriate for an effective, long term result. In this study a novel, biodegradable microbial polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV of various valerate contents containing a well established antibiotic, tetracycline, known to be effective against many of the periodontal disease related microorganisms, was used in the construction of a controlled release system. Tetracycline was loaded in the PHBV microspheres and microcapsules both in its acidic (TC) and in neutral form (TCN). Microcapsules of PHBV were prepared under different conditions using w/o/w double emulsion and their properties such as encapsulation efficiency, loading, release characteristics, and morphological properties were investigated. It was found that concentration of emulsifiers polyvinyl alcohol (PVA) and gelatin (varied between 0-4%) influenced the encapsulation efficiency appreciably. In order to increase encapsulation efficiency (from the obtained range of 18.1-30.1%) and slow down the release of the highly soluble tetracycline.HCl, it was neutralized with NaOH. Encapsulation efficiency of neutralized tetracycline was much higher (51.9-65.3%) due to the insoluble form of the drug used during encapsulation. The release behaviour of neither of the drugs was found to be of zero order. Rather the trends fitted reasonably well to Higuchi's approach for release from spherical micropheres. Biodegradability was not an appreciable parameter in the release from microcapsules because release was complete before any signs of degradation were observed.
Collapse
|
|
26 |
113 |
8
|
Arslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci V. Peripheral nerve conduits: technology update. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2014; 7:405-24. [PMID: 25489251 PMCID: PMC4257109 DOI: 10.2147/mder.s59124] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented.
Collapse
|
Review |
11 |
109 |
9
|
Gürsel I, Korkusuz F, Türesin F, Alaeddinoglu NG, Hasirci V. In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis. Biomaterials 2001; 22:73-80. [PMID: 11085386 DOI: 10.1016/s0142-9612(00)00170-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study the construction and in vivo testing of antibiotic-loaded polyhydroxyalkanoate rods were planned for use in the treatment of implant-related osteomyelitis. The rods were constructed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), carrying 50% (w/w) Sulperazone or Duocid. They were implanted in rabbit tibia in which implant-related osteomyelitis (IRO) had been induced with Staphylococcus aureus. The effectiveness of the antibiotics in the treatment of IRO was determined. The establishment of IRO with bacterial inoculation was complete after 3 weeks with 100% infection rate in all groups. There was no contamination or super-infection. Both antibiotics were found to be highly effective against the bacteria. Following the application of Sulperazone-P(3-HB-co-4-HB) rods, no infective agents could be isolated from the infection site within the 6-week test period, indicating complete treatment of the infection. Macroscopical evaluation at follow-up revealed no drainage, minimal swelling and increase in local warmth, most probably due to the surgery rather than to a reaction towards the implant. The overall scores for radiological findings by the end of 6 weeks were 0.8/5 for the antibiotic-loaded rod implanted in the right limb, and 1.1/5 for the antibiotic-free rod implanted in the left limb. There was no statistical difference between the antibiotic-loaded and antibiotic-free polymeric rods. In vivo drug release was almost complete within the first week. One interesting observation, however, was that the therapy was still very effective even when the release rate was very high. In the SEM of in vitro tested rods, the polymeric component was unchanged in 2 weeks while the drug leached out, leaving voids behind. In vivo, however, the morphology of the implant was significantly modified within 6 weeks post-implantation. Since a substantial degree of the in vivo drug release was complete within 1 week, we believe that dissolution of the drug must be the predominant mechanism through which the drug release is controlled.
Collapse
|
|
24 |
99 |
10
|
Yucel D, Kose GT, Hasirci V. Polyester based nerve guidance conduit design. Biomaterials 2010; 31:1596-603. [DOI: 10.1016/j.biomaterials.2009.11.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/03/2009] [Indexed: 02/03/2023]
|
|
15 |
96 |
11
|
Arica MY, Hasirci V, Alaeddinoğlu NG. Covalent immobilization of alpha-amylase onto pHEMA microspheres: preparation and application to fixed bed reactor. Biomaterials 1995; 16:761-8. [PMID: 7492706 DOI: 10.1016/0142-9612(95)99638-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Microspheres of poly(2-hydroxyethyl methacrylate) with and without cross-linker were prepared by suspension polymerization. As the amount of cross-linker increased, the equilibrium water content, enzyme loading, immobilization efficiency and recovered activity were all adversely affected. Enzyme alpha-amylase was immobilized onto the microspheres after activation with epichlorohydrin. The Km value for the immobilized enzyme (0.90% w/v) was much greater than that of the free enzyme (0.53% w/v). It was found that the inactivation constant (ki) increased from 2.23 x 10(-8) min-1 at 20 degrees C to 1.45 x 10(-4) min-1 at 60 degrees C. Since the enzyme activity increased as the temperature increased, the temperature profile yielded a peak at 50 degrees C. For free enzyme this is at 45 degrees C. The residence time was proportional to the percentage hydrolysis until a residence time of 12 min was reached. Beyond this the activity increase could not match the increase in residence time. The pH profile yielded a broadening upon immobilization in addition to a small shift to higher pH (from 5.5 to 6.0). The continuous run at 30 degrees C, 1.0% w/v starch concentration and flow rate of 40 cm3 h-1 led to only 20% loss in activity after a 120 h operation.
Collapse
|
Comparative Study |
30 |
93 |
12
|
Köse GT, Korkusuz F, Korkusuz P, Purali N, Ozkul A, Hasirci V. Bone generation on PHBV matrices: an in vitro study. Biomaterials 2004; 24:4999-5007. [PMID: 14559013 DOI: 10.1016/s0142-9612(03)00417-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bone formation was investigated in vitro by culturing rat marrow stromal osteoblasts in biodegradable, macroporous poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) matrices over a period of 60 days. Foams were prepared after solvent evaporation and solute leaching. PHBV solutions with different concentrations were prepared in chloroform: dichloromethane (1:2, v/v). In order to create a matrix with high porosity and uniform pore sizes, sieved sucrose crystals (300-500 microm) were used. PHBV foams were treated with rf-oxygen plasma (100 W 10 min) to modify their surface chemistry and hydrophilicity with the aim of increasing the reattachment of osteoblasts. Osteoblasts were isolated from rat bone marrow and seeded onto PHBV foams. The cell density on and in the foams was determined with MTS assay. MTS results showed that osteoblasts proliferated on PHBV. Twenty-one days after seeding of incubation, growth of osteoblasts on matrices and initiation of mineralization were observed by confocal laser scanning microscopy. Increasing ALP and osteocalcin secretion during 60 days confirmed the osteoblastic phenotype of the derived stromal cells. SEM, histological evaluations and confocal laser scanning microscopy showed that osteoblasts could grow inside the matrices and lead to mineralization. Cells exhibited spindle-like morphology and had a diameter of 10-30 microm. Based on these, it could confidently be stated that PHBV seems to be a promising polymeric matrix material for bone tissue engineering.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
85 |
13
|
Hasirci V, Lewandrowski K, Gresser JD, Wise DL, Trantolo DJ. Versatility of biodegradable biopolymers: degradability and an in vivo application. J Biotechnol 2001; 86:135-150. [PMID: 11245902 DOI: 10.1016/s0168-1656(00)00409-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biodegradable materials have various important applications in the biomedical field. There are basically two groups of polyesters which have significant importance in this field. These are polylactides and polyhydroxybutyrates. Both groups degrade via hydrolysis with the rates of degradation depending on medium properties such as pH, temperature, solvent and presence of biocatalysts, as well as on chemical compositions. In order for these biomaterials to be suitable for use in load bearing applications without deformation or warping their strengths and their capability to maintain their form must be improved. To insure dimensional stability during degradation and to match modulus and strength to that of bone, introduction of a reinforcing structure for those applications to plate fixation through the creation of an interpenetrating network might be a feasible approach. In this study, poly(lactide-co-glycolide) (PLGA), was the major structural element to be strengthened by a three-dimensional network or "scaffold" of another biodegradable polymer, poly(propylene fumarate) (PPF). PPF would be crosslinked with a biocompatible vinyl monomer, vinylpyrrolidone (VP). Three different approaches were tested to create dimensionally stable bone plates. First, via in situ crosslinking of PPF in the presence of PLGA. Secondly, by blending of precrosslinked PPF with PLGA. Finally, by simultaneous crosslinking and molding of the PLGA, PPF and VP. These were compared against extruded or compression molded PLGA controls. Results showed that compression molding at room temperature followed by crosslinking under pressure at elevated temperature and subsequently by gamma-irradiation appeared to yield the most favorable product as judged by swelling, hardness and flexural strength data. The composition of the implant material, PLGA(3):PPF(1):VP(0.7), appeared to be suitable and formed the compositional and procedural basis for in vivo biocompatibility studies.
Collapse
|
|
24 |
81 |
14
|
Köse GT, Korkusuz F, Ozkul A, Soysal Y, Ozdemir T, Yildiz C, Hasirci V. Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials 2005; 26:5187-97. [PMID: 15792546 DOI: 10.1016/j.biomaterials.2005.01.037] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 01/04/2005] [Indexed: 02/03/2023]
Abstract
Cartilage engineering is a very novel approach to tissue repair through use of implants. Matrices of collagen containing calcium phosphate (CaP-Gelfix), and matrices of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) were produced to create a cartilage via tissue engineering. The matrices were characterized by scanning electron microscopy (SEM) and electron diffraction spectroscopy (EDS). Porosity and void volume analysis were carried out to characterize the matrices. Chondrocytes were isolated from the proximal humerus of 22 week-old male, adult, local albino rabbits. For cell type characterization, Type II collagen was measured by Western Blot analysis. The foams were seeded with 1x10(6) chondrocytes and histological examinations were carried out to assess cell-matrix interaction. Macroscopic examination showed that PHBV (with or without chondrocytes) maintained its integrity for 21 days, while CaP-Gelfix was deformed and degraded within 15 days. Cell-containing and cell-free matrices were implanted into full thickness cartilage defects (4.5 mm in diameter and 4 mm in depth) at the patellar groove on the right and left knees of eight rabbits, respectively. In vivo results at 8 and 20 weeks with chondrocyte seeded PHBV matrices presented early cartilage formation resembling normal articular cartilage and revealed minimal foreign body reaction. In CaP-Gelfix matrices, fibrocartilage formation and bone invasion was noted in 20 weeks. Cells maintained their phenotype in both matrices. PHBV had better healing response than CaP-Gelfix. Both matrices were effective in cartilage regeneration. These matrices have great potential for use in the repair of joint cartilage defects.
Collapse
|
|
20 |
78 |
15
|
Tezcaner A, Bugra K, Hasirci V. Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films. Biomaterials 2003; 24:4573-83. [PMID: 12951000 DOI: 10.1016/s0142-9612(03)00302-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is currently no effective treatment for the retinal disorders caused by retinal pigment epithelium (RPE) degeneration. Transplantation of allografts is the main strategy towards correction of this malady. Tissue engineering could offer hope and involve the use of biodegradable polymeric templates to replace diseased or lost RPE. In this study PHBV8 film was chosen as a temporary substrate for growing retinal pigment epithelium cells as an organized monolayer before their subretinal transplantation. The surface of the PHBV8 film was rendered hydrophilic by oxygen plasma treatment to increase the reattachment of D407 cells on the film surface. Power and duration was changed, from 50 W, 10 min to 100 W, 20 min during plasma treatment. The effect of these two parameters on surface hydrophilicity, morphology, topography, surface composition of PHBV8 thin films was studied using AFM, SEM, and phase contrast microscopy. The effect of changes in surface characteristics on cell reattachment, spreading and cell growth rate was investigated. It was found that as the treatment level was increased the surface hydrophilicity increased and roughness was decreased probably due to ablation. The PHBV8 film treated with 100 W 10 min was found to be the most suitable for 24 h reattachment of D407 cells. The cells were also grown to confluency as an organized monolayer suggesting PHBV8 film as a potential temporary substrate for subretinal transplantation to replace diseased or damaged retinal pigment epithelium.
Collapse
|
Evaluation Study |
22 |
76 |
16
|
Kok FN, Bozoglu F, Hasirci V. Construction of an acetylcholinesterase-choline oxidase biosensor for aldicarb determination. Biosens Bioelectron 2002; 17:531-9. [PMID: 11959475 DOI: 10.1016/s0956-5663(02)00009-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this study, acetylcholinesterase and choline oxidase were co-immobilized on poly(2-hydroxyethyl methacrylate) membranes and the change in oxygen consumption upon aldicarb introduction was measured. Immobilization of the enzymes was achieved either by entrapment or by surface attachment via a hybrid immobilization method including epichlorohydrin and Cibacron Blue F36A activation. Immobilized enzymes had a long-storage stability (only 15% activity decrease in 2 months in wet storage and no activity loss in dry storage). Aldicarb detection studies showed that a linear working range of 10-500 and 10-250 ppb aldicarb could be achieved by entrapped and surface immobilized enzymes, respectively. Enzymes immobilized on membrane surfaces responded to aldicarb presence more quickly than entrapped enzymes. Aldicarb concentrations as low as 23 and 12 ppb could be detected by entrapped and surface immobilized enzymes, respectively, in 25 min.
Collapse
|
Comparative Study |
23 |
74 |
17
|
Kenar H, Kose GT, Toner M, Kaplan DL, Hasirci V. A 3D aligned microfibrous myocardial tissue construct cultured under transient perfusion. Biomaterials 2011; 32:5320-9. [PMID: 21570112 DOI: 10.1016/j.biomaterials.2011.04.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/06/2011] [Indexed: 12/16/2022]
Abstract
The goal of this study was to design and develop a myocardial patch to use in the repair of myocardial infarctions or to slow down tissue damage and improve long-term heart function. The basic 3D construct design involved two biodegradable macroporous tubes, to allow transport of growth media to the cells within the construct, and cell seeded, aligned fiber mats wrapped around them. The microfibrous mat housed mesenchymal stem cells (MSCs) from human umbilical cord matrix (Wharton's Jelly) aligned in parallel to each other in a similar way to cell organization in native myocardium. Aligned micron-sized fiber mats were obtained by electrospinning a polyester blend (PHBV (5% HV), P(L-D,L)LA (70:30) and poly(glycerol sebacate) (PGS)). The micron-sized electrospun parallel fibers were effective in Wharton's Jelly (WJ) MSCs alignment and the cells were able to retract the mat. The 3D construct was cultured in a microbioreactor by perfusing the growth media transiently through the macroporous tubing for two weeks and examined by fluorescence microscopy for cell distribution and preservation of alignment. The fluorescence images of thin sections of 3D constructs from static and perfused cultures confirmed enhanced cell viability, uniform cell distribution and alignment due to nutrient provision from inside the 3D structure.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
73 |
18
|
Yaylaoğlu MB, Korkusuz P, Ors U, Korkusuz F, Hasirci V. Development of a calcium phosphate-gelatin composite as a bone substitute and its use in drug release. Biomaterials 1999; 20:711-9. [PMID: 10353654 DOI: 10.1016/s0142-9612(98)00199-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was carried out to develop a calcium phosphate-gelatin composite implant that would mimic the structure and function of bone for use in filling voids or gaps and to release bioactive compounds like drugs, growth hormones into the implant site to assist healing. XDS analysis of the synthesized calcium phosphate revealed a calcium to phosphorus molar ratio of ca. 2.30, implying a less erodible material than hydroxyapatite (1.67). Release of the antibiotic gentamicin from the implant was with a burst, whether in situ or in vivo, followed by an almost constant release for about three months. It was found that the release rate could be decreased by increasing the density of the gelatin membrane. Upon implantation into rabbit tibia the release duration was substantially shortened (to about 4 weeks) with respect to the in situ tests basically due to the degradation of gelatin. In vivo studies with rabbits confirmed this degradation. The composite was perfectly biocompatible as shown by the histological studies. It, thus, has a great potential as a bone substitute material.
Collapse
|
|
26 |
73 |
19
|
Hasirci V, Vrana E, Zorlutuna P, Ndreu A, Yilgor P, Basmanav FB, Aydin E. Nanobiomaterials: a review of the existing science and technology, and new approaches. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:1241-68. [PMID: 17176748 DOI: 10.1163/156856206778667442] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nanotechnology has made great strides forward in the creation of new surfaces, new materials and new forms which also find application in the biomedical field. Traditional biomedical applications started benefiting from the use nanotechnology in an array of areas, such as biosensors, tissue engineering, controlled release systems, intelligent systems and nanocomposites used in implant design. In this manuscript a review of developments in these areas will be provided along with some applications from our laboratories.
Collapse
|
|
13 |
70 |
20
|
Bahcecioglu G, Hasirci N, Bilgen B, Hasirci V. A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus. Biofabrication 2019; 11:025002. [PMID: 30530944 DOI: 10.1088/1758-5090/aaf707] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Engineering the meniscus is challenging due to its bizonal structure; the tissue is cartilaginous at the inner portion and fibrous at the outer portion. Here, we constructed an artificial meniscus mimicking the biochemical organization of the native tissue by 3D printing a meniscus shaped PCL scaffold and then impregnating it with agarose (Ag) and gelatin methacrylate (GelMA) hydrogels in the inner and outer regions, respectively. After incubating the constructs loaded with porcine fibrochondrocytes for 8 weeks, we demonstrated that presence of Ag enhanced glycosaminoglycan (GAG) production by about 4 fold (p < 0.001), while GelMA enhanced collagen production by about 50 fold (p < 0.001). In order to mimic the physiological loading environment, meniscus shaped PCL/hydrogel constructs were dynamically stimulated at strain levels gradually increasing from the outer region (2% of initial thickness) towards the inner region (10%). Incorporation of hydrogels protected the cells from the mechanical damage caused by dynamic stress. Dynamic stimulation resulted in increased ratio of collagen type II (COL 2) in the Ag-impregnated inner region (from 50% to 60% of total collagen), and increased ratio of collagen type I (COL 1) in the GelMA-impregnated outer region (from 60% to 70%). We were able to engineer a meniscus, which is cartilage-like at the inner portion and fibrocartilage-like at the outer portion. Our construct has a potential for use as a substitute for total meniscus replacement.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
70 |
21
|
Abstract
A novel implant for the use as an osteochondral graft was designed. This implant was prepared by stepwise formation of calcium phosphate crystals within the matrix of a lyophilised collagen sponge. Chondrocytes were then grown on this material to create the osteochondral implant. The implant was characterized with light microscopy, scanning electron microscopy (SEM), electron diffraction crystallography (EDX), and IR. It was observed with IR that the implant had a peak, that was not found so distinctly in its components, at 1400 cm(-1), implying a strong interaction of the two main ingredients of the implant, calcium phosphate and collagen. This strong interaction was also shown in the graft degradation test while the untreated collagen sponge degraded rapidly (in one day) the mineral loaded implant was able to maintain its integrity for two weeks. In the chondrocyte culture medium degradation of the implant was shown by a decrease of the calcium content and calcium to phosphorous ratio. Also, EDX revealed the presence of sulfur one and two weeks after incubation, an element not found among the components of the implant, possibly due to the development of an extracellular matrix. SEM showed that the form of the crystals of calcium phosphate differed depending on whether they were prepared on the template, collagen, or in the absence of a template. The chondrocytes appeared to be growing in number on the implant and their shapes were morphologically normal. The chondrocyte loaded collagen-calcium phosphate composite could thus be considered a potential tissue engineered osteochondral implant.
Collapse
|
|
26 |
69 |
22
|
Kok FN, Hasirci V. Determination of binary pesticide mixtures by an acetylcholinesterase–choline oxidase biosensor. Biosens Bioelectron 2004; 19:661-5. [PMID: 14709383 DOI: 10.1016/j.bios.2003.07.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, acetylcholinesterase (AChE) and choline oxidase (ChO) were co-immobilized on poly(2-hydroxyethyl methacrylate) (pHEMA) membranes to construct a biosensor for the detection of anti-cholinesterase compounds. pHEMA membranes were prepared with the addition of SnCl(4) to achieve the desired porosity. Immobilization of the enzymes was done by surface attachment via epichlorohydrin (Epi) and Cibacron Blue F3G-A (CB) activation. Enzyme immobilized membrane was used in the detection of anti-cholinesterase activity of aldicarb (AS), carbofuran (CF) and carbaryl (CL), as well as two mixtures, (AS+CF) and (AS+CL). The total anti-cholinesterase activity of binary pesticide mixtures was found to be lower than the sum of the individual inhibition values.
Collapse
|
|
21 |
68 |
23
|
Yilgor P, Sousa RA, Reis RL, Hasirci N, Hasirci V. 3D Plotted PCL Scaffolds for Stem Cell Based Bone Tissue Engineering. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/masy.200850911] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
17 |
66 |
24
|
Arica M, Alaeddinoğlu N, Hasirci V. Immobilization of glucoamylase onto activated pHEMA/EGDMA microspheres: properties and application to a packed-bed reactor. Enzyme Microb Technol 1998. [DOI: 10.1016/s0141-0229(97)00139-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
|
27 |
66 |
25
|
Vrana NE, Builles N, Justin V, Bednarz J, Pellegrini G, Ferrari B, Damour O, Hulmes DJS, Hasirci V. Development of a reconstructed cornea from collagen-chondroitin sulfate foams and human cell cultures. Invest Ophthalmol Vis Sci 2008; 49:5325-31. [PMID: 18708614 DOI: 10.1167/iovs.07-1599] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To develop an artificial cornea, the ability to coculture the different cell types present in the cornea is essential. Here the goal was to develop a full-thickness artificial cornea using an optimized collagen-chondroitin sulfate foam, with a thickness close to that of human cornea, by coculturing human corneal epithelial and stromal cells and transfected human endothelial cells. METHODS Corneal extracellular matrix was simulated by a porous collagen/glycosaminoglycan-based scaffold seeded with stromal keratocytes and then, successively, epithelial and endothelial cells. Scaffolds were characterized for bulk porosity and pore size distribution. The performance of the three-dimensional construct was studied by histology, immunofluorescence, and immunohistochemistry. RESULTS The scaffold had 85% porosity and an average pore size of 62.1 microm. Keratocytes populated the scaffold and produced a newly synthesized extracellular matrix as characterized by immunohistochemistry. Even though the keratocytes lost their CD34 phenotype marker, the absence of smooth muscle actin fibers showed that these cells had not differentiated into myofibroblasts. The epithelial cells formed a stratified epithelium and began basement membrane deposition. An endothelial cell monolayer beneath the foam was also apparent. CONCLUSIONS These results demonstrate that collagen-chondroitin sulfate scaffolds are good substrates for artificial cornea construction with good resilience, long-term culture capability, and handling properties.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
64 |