1
|
Bavetsias V, Linardopoulos S. Aurora Kinase Inhibitors: Current Status and Outlook. Front Oncol 2015; 5:278. [PMID: 26734566 PMCID: PMC4685048 DOI: 10.3389/fonc.2015.00278] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/27/2015] [Indexed: 11/24/2022] Open
Abstract
The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions.
Collapse
|
Review |
10 |
196 |
2
|
Sorrentino R, Libertini S, Pallante PL, Troncone G, Palombini L, Bavetsias V, Spalletti-Cernia D, Laccetti P, Linardopoulos S, Chieffi P, Fusco A, Portella G. Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. J Clin Endocrinol Metab 2005; 90:928-35. [PMID: 15562011 DOI: 10.1210/jc.2004-1518] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alterations in chromosome number (aneuploidy) are common in human neoplasias. Loss of mitotic regulation is believed to induce aneuploidy in cancer cells and act as a driving force during the malignant progression. The serine/theronine protein kinases of aurora family genes play a critical role in the regulation of key cell cycle processes. Aurora B mediates chromosome segregation by ensuring orientation of sister chromatids and overexpression of Aurora B in diploid human cells NHDF (normal human diploid fibroblast) induces multinuclearity. We analyzed Aurora B expression in human thyroid carcinomas. Cell lines originating from different histotypes showed an increase in Aurora B expression. Immunohistochemical analysis of archive samples showed a high expression of Aurora B in anaplastic thyroid carcinomas; conversely, Aurora B expression was not detectable in normal thyroid tissue. Real-time PCR analysis confirmed a strong expression of Aurora B in anaplastic thyroid carcinomas. The block of Aurora B expression induced by RNA interference or by using an inhibitor of Aurora kinase activity significantly reduced the growth of thyroid anaplastic carcinoma cells.
Collapse
|
|
20 |
158 |
3
|
Stimson L, Rowlands MG, Newbatt YM, Smith NF, Raynaud FI, Rogers P, Bavetsias V, Gorsuch S, Jarman M, Bannister A, Kouzarides T, McDonald E, Workman P, Aherne GW. Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol Cancer Ther 2005; 4:1521-32. [PMID: 16227401 DOI: 10.1158/1535-7163.mct-05-0135] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone acetylation plays an important role in regulating the chromatin structure and is tightly regulated by two classes of enzyme, histone acetyltransferases (HAT) and histone deacetylases (HDAC). Deregulated HAT and HDAC activity plays a role in the development of a range of cancers. Consequently, inhibitors of these enzymes have potential as anticancer agents. Several HDAC inhibitors have been described; however, few inhibitors of HATs have been disclosed. Following a FlashPlate high-throughput screen, we identified a series of isothiazolone-based HAT inhibitors. Thirty-five N-substituted analogues inhibited both p300/cyclic AMP-responsive element binding protein-binding protein-associated factor (PCAF) and p300 (1 to >50 micromol/L, respectively) and the growth of a panel of human tumor cell lines (50% growth inhibition, 0.8 to >50 micromol/L). CCT077791 and CCT077792 decreased cellular acetylation in a time-dependent manner (2-48 hours of exposure) and a concentration-dependent manner (one to five times, 72 hours, 50% growth inhibition) in HCT116 and HT29 human colon tumor cell lines. CCT077791 reduced total acetylation of histones H3 and H4, levels of specific acetylated lysine marks, and acetylation of alpha-tubulin. Four and 24 hours of exposure to the compounds produced the same extent of growth inhibition as 72 hours of continuous exposure, suggesting that growth arrest was an early event. Chemical reactivity of these compounds, as measured by covalent protein binding and loss of HAT inhibition in the presence of DTT, indicated that reaction with thiol groups might be important in their mechanism of action. As one of the first series of small-molecule inhibitors of HAT activity, further analogue synthesis is being pursued to examine the potential scope for reducing chemical reactivity while maintaining HAT inhibition.
Collapse
|
|
20 |
158 |
4
|
Henderson EA, Bavetsias V, Theti DS, Wilson SC, Clauss R, Jackman AL. Targeting the alpha-folate receptor with cyclopenta[g]quinazoline-based inhibitors of thymidylate synthase. Bioorg Med Chem 2006; 14:5020-42. [PMID: 16554160 DOI: 10.1016/j.bmc.2006.03.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/24/2006] [Accepted: 03/03/2006] [Indexed: 11/18/2022]
Abstract
The alpha-FR has been reported to be overexpressed in many carcinomas, in particular those of the ovary and uterus. The high expression of alpha-FR in some tumours compared with normal tissues has been exploited over the last decade for folate-mediated targeting of macromolecules, anticancer drugs, imaging agents and nucleic acids to cancer cells. CB300638, a cyclopenta[g]quinazoline-based inhibitor of thymidylate synthase (TS), has been reported to have high affinity for the receptor and selectivity for alpha-FR overexpressing tumour cell lines. In this study, the structural features of the molecule, in particular modifications at the 2-position, have been investigated with respect to TS inhibition, affinity for the alpha-FR and reduced folate carrier (RFC) and activity in A431-FBP cells (transfected with human alpha-FR) compared with neo-transfected A431 cells. Compounds 1a,b, 2a,b and 3a,b were synthesised utilising multistep sequences. It was found that the 2-substituent does not affect the affinity for the alpha-FR; however, it greatly affects selectivity for A431-FBP cells, and suggests that there are factors other than TS inhibition and alpha-FR affinity that are important for the activity of these compounds. Compound 2b (2-CH2OH derivative) displayed the highest selectivity for the A431-FBP cells compared with A431 cells.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
121 |
5
|
Moore AS, Faisal A, Gonzalez de Castro D, Bavetsias V, Sun C, Atrash B, Valenti M, de Haven Brandon A, Avery S, Mair D, Mirabella F, Swansbury J, Pearson ADJ, Workman P, Blagg J, Raynaud FI, Eccles SA, Linardopoulos S. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns. Leukemia 2012; 26:1462-70. [PMID: 22354205 PMCID: PMC3523391 DOI: 10.1038/leu.2012.52] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acquired resistance to selective FLT3 inhibitors, is an emerging clinical problem in the treatment of FLT3-ITD+ acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has limited investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD+ human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD+ allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD+ patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13- RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild type allele and duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
94 |
6
|
Gibbs DD, Theti DS, Wood N, Green M, Raynaud F, Valenti M, Forster MD, Mitchell F, Bavetsias V, Henderson E, Jackman AL. BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res 2006; 65:11721-8. [PMID: 16357184 DOI: 10.1158/0008-5472.can-05-2034] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BGC 945 is a cyclopenta[g]quinazoline-based, thymidylate synthase inhibitor specifically transported into alpha-folate receptor (alpha-FR)-overexpressing tumors. Affinity of BGC 945 for the alpha-FR is 70% of the high-affinity ligand folic acid. In contrast to conventional antifolates, BGC 945 has low affinity for the widely expressed reduced-folate carrier (RFC). The K(i) for isolated thymidylate synthase is 1.2 nmol/L and the IC(50) for inhibition of the growth of alpha-FR-negative mouse L1210 or human A431 cells is approximately 7 micromol/L. In contrast, BGC 945 is highly potent in a range of alpha-FR-overexpressing human tumor cell lines (IC(50) approximately 1-300 nmol/L). Pharmacokinetic variables measured following i.v. injection of 100 mg/kg BGC 945 to KB tumor-bearing mice showed rapid plasma clearance (0.021 L/h) and tissue distribution. The terminal half-lives in plasma, liver, kidney, spleen, and tumor were 2, 0.6, 5, 21, and 28 hours, respectively. Tumor BGC 945 concentration at 24 hours was approximately 1 nmol/g tissue, at least 10-fold higher than that in plasma or normal tissues. Inhibition of thymidylate synthase in tissues leads to increased incorporation of 5-[(125)I]-iodo-2'-deoxyuridine ([(125)I]dUrd) into DNA. Forty-eight hours after injection of 100 mg/kg 6RS-BGC 945 ([(125)I]dUrd injected at 24 hours), tumor was the only tissue with incorporation above control level (6-fold). The RFC-mediated thymidylate synthase inhibitor plevitrexed also increased uptake of [(125)I]dUrd in tumor (10-fold) but, in contrast, also caused increased incorporation in other normal tissues such as spleen and small bowel (4.5- and 4.6-fold, respectively). These data suggest that BGC 945 selectively inhibits thymidylate synthase in alpha-FR-overexpressing tumors and should cause minimal toxicity to humans at therapeutic doses.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
81 |
7
|
Bavetsias V, Lanigan RM, Ruda GF, Atrash B, McLaughlin MG, Tumber A, Mok NY, Le Bihan YV, Dempster S, Boxall K, Jeganathan F, Hatch SB, Savitsky P, Velupillai S, Krojer T, England K, Sejberg J, Thai C, Donovan A, Pal A, Scozzafava G, Bennett J, Kawamura A, Johansson C, Szykowska A, Gileadi C, Burgess-Brown N, von Delft F, Oppermann U, Walters Z, Shipley J, Raynaud FI, Westaway SM, Prinjha RK, Fedorov O, Burke R, Schofield C, Westwood IM, Bountra C, Müller S, van Montfort RL, Brennan PE, Blagg J. 8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors. J Med Chem 2016; 59:1388-409. [PMID: 26741168 PMCID: PMC4770324 DOI: 10.1021/acs.jmedchem.5b01635] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Indexed: 11/29/2022]
Abstract
We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay.
Collapse
|
research-article |
9 |
78 |
8
|
Bavetsias V, Marriott JH, Melin C, Kimbell R, Matusiak ZS, Boyle FT, Jackman AL. Design and synthesis of Cyclopenta[g]quinazoline-based antifolates as inhibitors of thymidylate synthase and potential antitumor agents(,). J Med Chem 2000; 43:1910-26. [PMID: 10821704 DOI: 10.1021/jm991119p] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following the development of raltitrexed, the synthesis of nonpolyglutamatable inhibitors of TS that do not use the reduced folate carrier (RFC) for cellular entry should provide compounds which overcome mechanisms of resistance to folate-based inhibitors of TS that are associated with decreased/altered folylpolyglutamate synthetase (FPGS) expression and/or an impaired RFC. Examination of a computer graphics model of the humanized Escherichia coli TS enzyme with quinazoline inhibitors of TS, such as 1 bound in the active site of the enzyme, suggested that conformational restriction introduced by bridging the C9 with C7 to form a pentacycle may be beneficial for binding to TS. That led to the synthesis of a series of potent cyclopenta[g]quinazoline-based inhibitors of the enzyme in which the glutamyl residue associated with classical antifolates was replaced with a variety of glutamate-derived ligands; the most potent inhibitor being the L-Glu-gamma-D-GluT(alpha) derivative 7j. In the mouse L1210:1565 cell line (mutant RFC), the majority of these compounds had activity equal or only slightly greater compared with the parental L1210 cell line, indicating a reduced dependence on the RFC for cellular uptake in the L1210 cell line.
Collapse
|
|
25 |
67 |
9
|
Faisal A, Vaughan L, Bavetsias V, Sun C, Atrash B, Avery S, Jamin Y, Robinson SP, Workman P, Blagg J, Raynaud FI, Eccles SA, Chesler L, Linardopoulos S. The aurora kinase inhibitor CCT137690 downregulates MYCN and sensitizes MYCN-amplified neuroblastoma in vivo. Mol Cancer Ther 2011; 10:2115-23. [PMID: 21885865 PMCID: PMC4298164 DOI: 10.1158/1535-7163.mct-11-0333] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aurora kinases regulate key stages of mitosis including centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. Aurora A and B kinase overexpression has also been associated with various human cancers, and as such, they have been extensively studied as novel antimitotic drug targets. Here, we characterize the Aurora kinase inhibitor CCT137690, a highly selective, orally bioavailable imidazo[4,5-b]pyridine derivative that inhibits Aurora A and B kinases with low nanomolar IC(50) values in both biochemical and cellular assays and exhibits antiproliferative activity against a wide range of human solid tumor cell lines. CCT137690 efficiently inhibits histone H3 and transforming acidic coiled-coil 3 phosphorylation (Aurora B and Aurora A substrates, respectively) in HCT116 and HeLa cells. Continuous exposure of tumor cells to the inhibitor causes multipolar spindle formation, chromosome misalignment, polyploidy, and apoptosis. This is accompanied by p53/p21/BAX induction, thymidine kinase 1 downregulation, and PARP cleavage. Furthermore, CCT137690 treatment of MYCN-amplified neuroblastoma cell lines inhibits cell proliferation and decreases MYCN protein expression. Importantly, in a transgenic mouse model of neuroblastoma that overexpresses MYCN protein and is predisposed to spontaneous neuroblastoma formation, this compound significantly inhibits tumor growth. The potent preclinical activity of CCT137690 suggests that this inhibitor may benefit patients with MYCN-amplified neuroblastoma.
Collapse
|
research-article |
14 |
67 |
10
|
Bavetsias V, Large JM, Sun C, Bouloc N, Kosmopoulou M, Matteucci M, Wilsher NE, Martins V, Reynisson J, Atrash B, Faisal A, Urban F, Valenti M, de Haven Brandon A, Box G, Raynaud FI, Workman P, Eccles SA, Bayliss R, Blagg J, Linardopoulos S, McDonald E. Imidazo[4,5-b]pyridine derivatives as inhibitors of Aurora kinases: lead optimization studies toward the identification of an orally bioavailable preclinical development candidate. J Med Chem 2010; 53:5213-28. [PMID: 20565112 DOI: 10.1021/jm100262j] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lead optimization studies using 7 as the starting point led to a new class of imidazo[4,5-b]pyridine-based inhibitors of Aurora kinases that possessed the 1-benzylpiperazinyl motif at the 7-position, and displayed favorable in vitro properties. Cocrystallization of Aurora-A with 40c (CCT137444) provided a clear understanding into the interactions of this novel class of inhibitors with the Aurora kinases. Subsequent physicochemical property refinement by the incorporation of solubilizing groups led to the identification of 3-((4-(6-bromo-2-(4-(4-methylpiperazin-1-yl)phenyl)-3H-imidazo[4,5-b]pyridin-7-yl)piperazin-1-yl)methyl)-5-methylisoxazole (51, CCT137690) which is a potent inhibitor of Aurora kinases (Aurora-A IC(50) = 0.015 +/- 0.003 muM, Aurora-B IC(50) = 0.025 muM, Aurora-C IC(50) = 0.019 muM). Compound 51 is highly orally bioavailable, and in in vivo efficacy studies it inhibited the growth of SW620 colon carcinoma xenografts following oral administration with no observed toxicities as defined by body weight loss.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
65 |
11
|
Bavetsias V, Sun C, Bouloc N, Reynisson J, Workman P, Linardopoulos S, McDonald E. Hit generation and exploration: Imidazo[4,5-b]pyridine derivatives as inhibitors of Aurora kinases. Bioorg Med Chem Lett 2007; 17:6567-71. [PMID: 17933533 DOI: 10.1016/j.bmcl.2007.09.076] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/21/2007] [Accepted: 09/23/2007] [Indexed: 11/16/2022]
|
|
18 |
65 |
12
|
Naud S, Westwood IM, Faisal A, Sheldrake P, Bavetsias V, Atrash B, Cheung KMJ, Liu M, Hayes A, Schmitt J, Wood A, Choi V, Boxall K, Mak G, Gurden M, Valenti M, de Haven Brandon A, Henley A, Baker R, McAndrew C, Matijssen B, Burke R, Hoelder S, Eccles SA, Raynaud FI, Linardopoulos S, van Montfort RLM, Blagg J. Structure-based design of orally bioavailable 1H-pyrrolo[3,2-c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1). J Med Chem 2013; 56:10045-65. [PMID: 24256217 PMCID: PMC3873811 DOI: 10.1021/jm401395s] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
protein kinase MPS1 is a crucial component of the spindle assembly
checkpoint signal and is aberrantly overexpressed in many human cancers.
MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal
instability and aneuploidy. PTEN-deficient breast tumor cells are
particularly dependent upon MPS1 for their survival, making it a target
of significant interest in oncology. We report the discovery and optimization
of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based
design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes
an inactive conformation of MPS1 with the activation loop ordered
in a manner incompatible with ATP and substrate-peptide binding; it
displays a favorable oral pharmacokinetic profile, shows dose-dependent
inhibition of MPS1 in an HCT116 human tumor xenograft model, and is
an attractive tool compound to elucidate further the therapeutic potential
of MPS1 inhibition.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
60 |
13
|
Bavetsias V, Faisal A, Crumpler S, Brown N, Kosmopoulou M, Joshi A, Atrash B, Pérez-Fuertes Y, Schmitt JA, Boxall KJ, Burke R, Sun C, Avery S, Bush K, Henley A, Raynaud FI, Workman P, Bayliss R, Linardopoulos S, Blagg J. Aurora isoform selectivity: design and synthesis of imidazo[4,5-b]pyridine derivatives as highly selective inhibitors of Aurora-A kinase in cells. J Med Chem 2013; 56:9122-35. [PMID: 24195668 PMCID: PMC3848336 DOI: 10.1021/jm401115g] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Indexed: 12/12/2022]
Abstract
Aurora-A differs from Aurora-B/C at three positions in the ATP-binding pocket (L215, T217, and R220). Exploiting these differences, crystal structures of ligand-Aurora protein interactions formed the basis of a design principle for imidazo[4,5-b]pyridine-derived Aurora-A-selective inhibitors. Guided by a computational modeling approach, appropriate C7-imidazo[4,5-b]pyridine derivatization led to the discovery of highly selective inhibitors, such as compound 28c, of Aurora-A over Aurora-B. In HCT116 human colon carcinoma cells, 28c and 40f inhibited the Aurora-A L215R and R220K mutants with IC50 values similar to those seen for the Aurora-A wild type. However, the Aurora-A T217E mutant was significantly less sensitive to inhibition by 28c and 40f compared to the Aurora-A wild type, suggesting that the T217 residue plays a critical role in governing the observed isoform selectivity for Aurora-A inhibition. These compounds are useful small-molecule chemical tools to further explore the function of Aurora-A in cells.
Collapse
|
research-article |
12 |
58 |
14
|
Bavetsias V, Crumpler S, Sun C, Avery S, Atrash B, Faisal A, Moore AS, Kosmopoulou M, Brown N, Sheldrake PW, Bush K, Henley A, Box G, Valenti M, de Haven Brandon A, Raynaud FI, Workman P, Eccles SA, Bayliss R, Linardopoulos S, Blagg J. Optimization of imidazo[4,5-b]pyridine-based kinase inhibitors: identification of a dual FLT3/Aurora kinase inhibitor as an orally bioavailable preclinical development candidate for the treatment of acute myeloid leukemia. J Med Chem 2012; 55:8721-34. [PMID: 23043539 PMCID: PMC3483018 DOI: 10.1021/jm300952s] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Optimization of the imidazo[4,5-b]pyridine-based
series of Aurora kinase inhibitors led to the identification of 6-chloro-7-(4-(4-chlorobenzyl)piperazin-1-yl)-2-(1,3-dimethyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine (27e), a potent inhibitor of Aurora
kinases (Aurora-A Kd = 7.5 nM, Aurora-B Kd = 48 nM), FLT3 kinase (Kd = 6.2 nM), and FLT3 mutants including FLT3-ITD (Kd = 38 nM) and FLT3(D835Y) (Kd = 14 nM). FLT3-ITD causes constitutive FLT3 kinase
activation and is detected in 20–35% of adults and 15% of children
with acute myeloid leukemia (AML), conferring a poor prognosis in
both age groups. In an in vivo setting, 27e strongly
inhibited the growth of a FLT3-ITD-positive AML human
tumor xenograft (MV4–11) following oral administration, with
in vivo biomarker modulation and plasma free drug exposures consistent
with dual FLT3 and Aurora kinase inhibition. Compound 27e, an orally bioavailable dual FLT3 and Aurora kinase inhibitor, was
selected as a preclinical development candidate for the treatment
of human malignancies, in particular AML, in adults and children.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
55 |
15
|
Gorsuch S, Bavetsias V, Rowlands MG, Aherne GW, Workman P, Jarman M, McDonald E. Synthesis of isothiazol-3-one derivatives as inhibitors of histone acetyltransferases (HATs). Bioorg Med Chem 2008; 17:467-74. [PMID: 19101154 DOI: 10.1016/j.bmc.2008.11.079] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/07/2008] [Accepted: 11/26/2008] [Indexed: 02/06/2023]
Abstract
High-throughput screening led to the identification of isothiazolones 1 and 2 as inhibitors of histone acetyltransferase (HAT) with IC50s of 3 microM and 5 microM, respectively. Analogues of these hit compounds with variations of the N-phenyl group, and with variety of substituents at C-4, C-5 of the thiazolone ring, were prepared and assayed for inhibition of the HAT enzyme PCAF. Potency is modestly favoured when the N-aryl group is electron deficient (4-pyridyl derivative 10 has IC(50)=1.5 microM); alkyl substitution at C-4 has little effect, whilst similar substitution at C-5 causes a significant drop in potency. The ring-fused compound 38 has activity (IC(50)=6.1 microM) to encourage further exploration of this bicyclic structure. The foregoing SAR is consistent with an inhibitory mechanism involving cleavage of the S-N bond of the isothiazolone ring by a catalytically important thiol residue.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
39 |
16
|
Hatch SB, Yapp C, Montenegro RC, Savitsky P, Gamble V, Tumber A, Ruda GF, Bavetsias V, Fedorov O, Atrash B, Raynaud F, Lanigan R, Carmichael L, Tomlin K, Burke R, Westaway SM, Brown JA, Prinjha RK, Martinez ED, Oppermann U, Schofield CJ, Bountra C, Kawamura A, Blagg J, Brennan PE, Rossanese O, Müller S. Assessing histone demethylase inhibitors in cells: lessons learned. Epigenetics Chromatin 2017; 10:9. [PMID: 28265301 PMCID: PMC5333395 DOI: 10.1186/s13072-017-0116-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/21/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Histone lysine demethylases (KDMs) are of interest as drug targets due to their regulatory roles in chromatin organization and their tight associations with diseases including cancer and mental disorders. The first KDM inhibitors for KDM1 have entered clinical trials, and efforts are ongoing to develop potent, selective and cell-active 'probe' molecules for this target class. Robust cellular assays to assess the specific engagement of KDM inhibitors in cells as well as their cellular selectivity are a prerequisite for the development of high-quality inhibitors. Here we describe the use of a high-content cellular immunofluorescence assay as a method for demonstrating target engagement in cells. RESULTS A panel of assays for the Jumonji C subfamily of KDMs was developed to encompass all major branches of the JmjC phylogenetic tree. These assays compare compound activity against wild-type KDM proteins to a catalytically inactive version of the KDM, in which residues involved in the active-site iron coordination are mutated to inactivate the enzyme activity. These mutants are critical for assessing the specific effect of KDM inhibitors and for revealing indirect effects on histone methylation status. The reported assays make use of ectopically expressed demethylases, and we demonstrate their use to profile several recently identified classes of KDM inhibitors and their structurally matched inactive controls. The generated data correlate well with assay results assessing endogenous KDM inhibition and confirm the selectivity observed in biochemical assays with isolated enzymes. We find that both cellular permeability and competition with 2-oxoglutarate affect the translation of biochemical activity to cellular inhibition. CONCLUSIONS High-content-based immunofluorescence assays have been established for eight KDM members of the 2-oxoglutarate-dependent oxygenases covering all major branches of the JmjC-KDM phylogenetic tree. The usage of both full-length, wild-type and catalytically inactive mutant ectopically expressed protein, as well as structure-matched inactive control compounds, allowed for detection of nonspecific effects causing changes in histone methylation as a result of compound toxicity. The developed assays offer a histone lysine demethylase family-wide tool for assessing KDM inhibitors for cell activity and on-target efficacy. In addition, the presented data may inform further studies to assess the cell-based activity of histone lysine methylation inhibitors.
Collapse
|
research-article |
8 |
37 |
17
|
Collins I, Caldwell J, Fonseca T, Donald A, Bavetsias V, Hunter LJK, Garrett MD, Rowlands MG, Aherne GW, Davies TG, Berdini V, Woodhead SJ, Davis D, Seavers LCA, Wyatt PG, Workman P, McDonald E. Structure-based design of isoquinoline-5-sulfonamide inhibitors of protein kinase B. Bioorg Med Chem 2005; 14:1255-73. [PMID: 16249095 DOI: 10.1016/j.bmc.2005.09.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/08/2005] [Accepted: 09/23/2005] [Indexed: 11/28/2022]
Abstract
Structure-based drug design of novel isoquinoline-5-sulfonamide inhibitors of PKB as potential antitumour agents was investigated. Constrained pyrrolidine analogues that mimicked the bound conformation of linear prototypes were identified and investigated by co-crystal structure determinations with the related protein PKA. Detailed variation in the binding modes between inhibitors with similar overall conformations was observed. Potent PKB inhibitors from this series inhibited GSK3beta phosphorylation in cellular assays, consistent with inhibition of PKB kinase activity in cells.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
31 |
18
|
Bouloc N, Large JM, Kosmopoulou M, Sun C, Faisal A, Matteucci M, Reynisson J, Brown N, Atrash B, Blagg J, McDonald E, Linardopoulos S, Bayliss R, Bavetsias V. Structure-based design of imidazo[1,2-a]pyrazine derivatives as selective inhibitors of Aurora-A kinase in cells. Bioorg Med Chem Lett 2010; 20:5988-93. [PMID: 20833547 DOI: 10.1016/j.bmcl.2010.08.091] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 12/11/2022]
Abstract
Co-crystallisation of the imidazo[1,2-a]pyrazine derivative 15 (3-chloro-N-(4-morpholinophenyl)-6-(pyridin-3-yl)imidazo[1,2-a]pyrazin-8-amine) with Aurora-A provided an insight into the interactions of this class of compound with Aurora kinases. This led to the design and synthesis of potent Aurora-A inhibitors demonstrating up to 70-fold selectivity in cell-based Aurora kinase pharmacodynamic biomarker assays.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
26 |
19
|
Bavetsias V, Jackman AL, Kimbell R, Gibson W, Boyle FT, Bisset GM. Quinazoline antifolate thymidylate synthase inhibitors: gamma-linked L-D, D-D, and D-L dipeptide analogues of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583). J Med Chem 1996; 39:73-85. [PMID: 8568829 DOI: 10.1021/jm950471+] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The syntheses of gamma-linked L-D, D-D, and D-L dipeptide analogues of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583) are described. The general methodology for the synthesis of these molecules involved the preparation of the dipeptide derivatives employing solution phase peptide synthesis followed by condensation of the dipeptide free bases with the appropriate pteroic acid analogue via diethyl cyanophosphoridate (DEPC) activation. In the final step, tert-butyl esters were removed by trifluoroacetic acid (TFA) hydrolysis. Z-L-Glu-OBut-gamma-D-Ala-OBut, for example, was prepared from alpha-tert-butyl N-(benzyloxycarbonyl)-L-glutamate and tert-butyl D-alaninate via isobutyl-mixed anhydride coupling. The Z-group was removed by catalytic hydrogenolysis and the resulting dipeptide free base condensed with 2-desamino-2-methyl-N10-propargyl-5,8-dideazapteroic acid via DEPC coupling. Finally, tert-butyl esters were removed by TFA hydrolysis to give ICI 198583-gamma-D-Ala. The compounds were tested as inhibitors of thymidylate synthase and L1210 cell growth. Good enzyme and growth inhibitory activity were found with gamma-linked L-D dipeptides, the best examples being the Glu-gamma-D-Glu derivative 35 (Ki = 0.19 nM, L1210 IC50 = 0.20 +/- 0.017 microM) and the Glu-gamma-D-alpha-aminoadipate derivative 39 (Ki = 0.12 nM, L1210 IC50 = 0.13 +/- 0.063 microM). In addition, ICI 198583 L-gamma-D-linked dipeptides were resistant to enzymatic degradation in mice.
Collapse
|
|
29 |
25 |
20
|
Bavetsias V, Skelton LA, Yafai F, Mitchell F, Wilson SC, Allan B, Jackman AL. The design and synthesis of water-soluble analogues of CB30865, a quinazolin-4-one-based antitumor agent. J Med Chem 2002; 45:3692-702. [PMID: 12166942 DOI: 10.1021/jm011081s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-[N-[7-Bromo-2-methyl-4-oxo-3,4-dihydroquinazolin-6-ylmethyl]-N-(prop-2-ynyl)amino]-N-(3-pyridylmethyl)benzamide (CB30865) is a quinazolin-4-one antitumor agent whose high growth-inhibitory activity (W1L2 IC(50) = 2.8 +/- 0.50 nM) is believed to have a folate-independent locus of action. In addition, CB30865 represents a class of compounds with unique biochemical characteristics such as a delayed, non-phase specific, cell-cycle arrest. The low aqueous solubility of CB30865 prompted a search for more water-soluble analogues for in vivo evaluation of this class of compounds. It was thought that aqueous solubility could be increased by the introduction of amino functionalities at the 2-position of the quinazolin-4-one ring. A variety of compounds (5a-j, 31a-c, 32, and 33) were synthesized in a linear fashion starting from 3-chloro-4-methylaniline. Most of these compounds (e.g., 5a, 5b, 5g) were significantly more water-soluble than CB30865 (636 microM for 5a at pH 6 and 992 microM for 5g at pH 6). In addition, some of them were up to 6-fold more cytotoxic than CB30865 (e.g., for 5a, W1L2 IC(50) = 0.49 +/- 0.24 nM) and retained its novel biochemical characteristics.
Collapse
|
|
23 |
22 |
21
|
Vazquez‐Rodriguez S, Wright M, Rogers CM, Cribbs AP, Velupillai S, Philpott M, Lee H, Dunford JE, Huber KVM, Robers MB, Vasta JD, Thezenas M, Bonham S, Kessler B, Bennett J, Fedorov O, Raynaud F, Donovan A, Blagg J, Bavetsias V, Oppermann U, Bountra C, Kawamura A, Brennan PE. Design, Synthesis and Characterization of Covalent KDM5 Inhibitors. Angew Chem Int Ed Engl 2019; 58:515-519. [PMID: 30431220 PMCID: PMC6391970 DOI: 10.1002/anie.201810179] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/30/2018] [Indexed: 01/05/2023]
Abstract
Histone lysine demethylases (KDMs) are involved in the dynamic regulation of gene expression and they play a critical role in several biological processes. Achieving selectivity over the different KDMs has been a major challenge for KDM inhibitor development. Here we report potent and selective KDM5 covalent inhibitors designed to target cysteine residues only present in the KDM5 sub-family. The covalent binding to the targeted proteins was confirmed by MS and time-dependent inhibition. Additional competition assays show that compounds were non 2-OG competitive. Target engagement and ChIP-seq analysis showed that the compounds inhibited the KDM5 members in cells at nano- to micromolar levels and induce a global increase of the H3K4me3 mark at transcriptional start sites.
Collapse
|
brief-report |
6 |
20 |
22
|
Macdonald J, Oldfield V, Bavetsias V, Blagg J. Regioselective C2-arylation of imidazo[4,5-b]pyridines. Org Biomol Chem 2013; 11:2335-47. [PMID: 23429655 DOI: 10.1039/c3ob27477b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show that N3-MEM-protected imidazo[4,5-b]pyridines undergo efficient C2-functionalisation via direct C-H arylation. Twenty-two substituted imidazo[4,5-b]pyridines are prepared and iterative, selective elaboration of functionalised imidazo[4,5-b]pyridines gives 2,7- and 2,6-disubstituted derivatives in good yields from common intermediates. Mechanistic observations are consistent with a concerted-metallation-deprotonation mechanism facilitated by coordination of copper(I)iodide to the imidazo[4,5-b]pyridine.
Collapse
|
|
12 |
18 |
23
|
Bavetsias V, Jackman AL, Marriott JH, Kimbell R, Gibson W, Boyle FT, Bisset GM. Folate-based inhibitors of thymidylate synthase: synthesis and antitumor activity of gamma-linked sterically hindered dipeptide analogues of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583). J Med Chem 1997; 40:1495-510. [PMID: 9154971 DOI: 10.1021/jm960878u] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an effort to synthesize inhibitors of thymidylate synthase (TS) that do not undergo polyglutamation, a series of gamma-linked sterically hindered dipeptide analogues of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583) was prepared. A methyl, ethyl, or propargyl group was incorporated into the gamma-glutamyl amide bond of gamma-linked L,L dipeptide derivatives of ICI 198583, such as ICI 198583-gamma-L-Glu. In addition, steric bulk was introduced on either side of the gamma-glutamyl bond of ICI 198583-gamma-L-Glu or ICI 198583-gamma-L-Ala. The resulting dipeptide analogues, e.g., ICI 198583-gamma-MeGlu and ICI 198583-gamma-Aib, were apparently stable to in vivo hydrolysis but poorer inhibitors of TS and L1210 cell growth. However, introduction of 7-Me, 2'-F substitution into the quinazoline nucleus gave significant improvement in the inhibitory activity against thymidylate synthase. Compounds 28-30, the 7-Me, 2'-F derivatives of ICI 198583-gamma-MeGlu, ICI 198583-gamma-EtGlu, and ICI 198583-gamma-PgGlu, respectively, were potent inhibitors of TS (K(iapp) = 0.21-1.1 nM) and L1210 cell growth (IC50 = 0.05-0.34 microM) and were similar to that seen with the most potent gamma-linked L,D dipeptide derivatives of ICI 198583 previously synthesized. Furthermore, the low cross-resistance ratios for the L1210:R(D1694)/L1210 cell line indicated that 28-30 do not undergo polyglutamation.
Collapse
|
|
28 |
18 |
24
|
Bisset GM, Bavetsias V, Thornton TJ, Pawelczak K, Calvert AH, Hughes LR, Jackman AL. The synthesis and thymidylate synthase inhibitory activity of L-gamma-L-linked dipeptide and L-gamma-amide analogues of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583). J Med Chem 1994; 37:3294-302. [PMID: 7932557 DOI: 10.1021/jm00046a014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sixteen gamma-linked dipeptide and four L-Glu-gamma-amide analogues of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583) have been synthesized and evaluated as inhibitors of thymidylate synthase (TS). Z-blocked L-Glu-gamma-L-linked dipeptides and L-Glu-gamma-amides were prepared by condensing alpha-tert-butyl-N-(benzyloxycarbonyl)-L-glutamic acid with the appropriate tert-butyl-protected L-amino acid or amine. The Z group was removed by catalytic hydrogenolysis, and the resulting dipeptides or L-Glu-gamma-amides were condensed with the appropriate pteroic acid analogue trifluoroacetate salt using diethyl cyanophosphoridate as coupling reagent. Deprotection with trifluoroacetic acid in the final step gave the desired quinazoline gamma-linked dipeptides and L-Glu-gamma-amides as their trifluoroacetate salts. Nearly all the dipeptide analogues were potent inhibitors of TS, the best being ICI 198583-gamma-L-2-aminoadipate (IC50 = 2 nM). Several of these dipeptides were found to be susceptible to enzymatic hydrolysis in mice. The quinazoline monocarboxylate L-Glu-gamma-amides, lacking an alpha'-carboxyl group, are less active against TS and L1210 cell growth but are also not susceptible to enzymatic hydrolysis in mice.
Collapse
|
Comparative Study |
31 |
15 |
25
|
Bavetsias V, Pérez-Fuertes Y, McIntyre PJ, Atrash B, Kosmopoulou M, O'Fee L, Burke R, Sun C, Faisal A, Bush K, Avery S, Henley A, Raynaud FI, Linardopoulos S, Bayliss R, Blagg J. 7-(Pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine-based derivatives for kinase inhibition: Co-crystallisation studies with Aurora-A reveal distinct differences in the orientation of the pyrazole N1-substituent. Bioorg Med Chem Lett 2015; 25:4203-9. [PMID: 26296477 PMCID: PMC4577729 DOI: 10.1016/j.bmcl.2015.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022]
Abstract
Introduction of a 1-benzyl-1H-pyrazol-4-yl moiety at C7 of the imidazo[4,5-b]pyridine scaffold provided 7a which inhibited a range of kinases including Aurora-A. Modification of the benzyl group in 7a, and subsequent co-crystallisation of the resulting analogues with Aurora-A indicated distinct differences in binding mode dependent upon the pyrazole N-substituent. Compounds 7a and 14d interact with the P-loop whereas 14a and 14b engage with Thr217 in the post-hinge region. These crystallographic insights provide options for the design of compounds interacting with the DFG motif or with Thr217.
Collapse
|
brief-report |
10 |
13 |