1
|
Casini G, Bingman VP, Bagnoli P. Connections of the pigeon dorsomedial forebrain studied with WGA-HRP and 3H-proline. J Comp Neurol 1986; 245:454-70. [PMID: 2422224 DOI: 10.1002/cne.902450403] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The afferent-efferent connections of the pigeon dorsomedial forebrain, which is composed of the "hippocampus" (Hp) and "parahippocampus" (APH), presumed homologues of the mammalian hippocampal complex, were studied. Afferent projections were identified by wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) and efferent projections were identified by 3H-proline and WGA-HRP. In addition to identified intrinsic connections within Hp and APH, both Hp and APH were found to be in receipt of ipsilateral forebrain afferents from each other, the hyperstriatum accessorium, nucleus of the diagonal band, nucleus taeniae, and area corticoidea dorsolateralis. Only Hp received input from the contralateral Hp while only APH received input from the ipsilateral hyperstriatum dorsale and archistriatum, pars ventralis. Both Hp and APH received ipsilateral diencephalic afferents from the nucleus mamillaris lateralis, stratum cellulare internum, nucleus lateralis hypothalami, and nucleus paramedianus internus thalami. Only APH received bilateral input from the nucleus superficialis parvicellularis (this nucleus may send a small projection to Hp) and nucleus dorsolateralis anterior thalami, pars medialis, and an ipsilateral projection from the nucleus subrotundus. Brainstem afferents to Hp and APH included ipsilateral projections from the area ventralis (Tsai) nucleus reticularis pontis oralis, nucleus raphes, nucleus subceruleus dorsalis, and nucleus centralis superior of Bechterew, and bilateral projections from the nucleus linearis caudalis and locus ceruleus, of which the nucleus subceruleus dorsalis, nucleus centralis superior of Bechterew, and locus ceruleus projected to APH only. Forebrain efferents from both Hp and APH were found to project ipsilaterally to the septum, the area of the fasciculus diagonalis Brocae, nucleus taeniae, and area corticoidea dorsolateralis. Only Hp appeared to send efferents to the contralateral septum and Hp, while only APH sent efferents to the hyperstriatum dorsale and the archistriatum. A hypothalamic projection from Hp and APH was found to partially terminate near the nucleus mamillaris lateralis. At the level of pathway connections, the results demonstrate a striking similarity between the avian dorsomedial forebrain and the dorsomedial cortex of reptiles and the mammalian hippocampus.
Collapse
|
|
39 |
161 |
2
|
Shanahan M, Bingman VP, Shimizu T, Wild M, Güntürkün O. Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front Comput Neurosci 2013; 7:89. [PMID: 23847525 PMCID: PMC3701877 DOI: 10.3389/fncom.2013.00089] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/17/2013] [Indexed: 01/08/2023] Open
Abstract
Many species of birds, including pigeons, possess demonstrable cognitive capacities, and some are capable of cognitive feats matching those of apes. Since mammalian cortex is laminar while the avian telencephalon is nucleated, it is natural to ask whether the brains of these two cognitively capable taxa, despite their apparent anatomical dissimilarities, might exhibit common principles of organization on some level. Complementing recent investigations of macro-scale brain connectivity in mammals, including humans and macaques, we here present the first large-scale "wiring diagram" for the forebrain of a bird. Using graph theory, we show that the pigeon telencephalon is organized along similar lines to that of a mammal. Both are modular, small-world networks with a connective core of hub nodes that includes prefrontal-like and hippocampal structures. These hub nodes are, topologically speaking, the most central regions of the pigeon's brain, as well as being the most richly connected, implying a crucial role in information flow. Overall, our analysis suggests that indeed, despite the absence of cortical layers and close to 300 million years of separate evolution, the connectivity of the avian brain conforms to the same organizational principles as the mammalian brain.
Collapse
|
Journal Article |
12 |
150 |
3
|
Erichsen JT, Bingman VP, Krebs JR. The distribution of neuropeptides in the dorsomedial telencephalon of the pigeon (Columba livia): a basis for regional subdivisions. J Comp Neurol 1991; 314:478-92. [PMID: 1726107 DOI: 10.1002/cne.903140306] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distribution of six neuropeptides [substance P (SP), leucine (leu5-) enkephalin (LENK), vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), neuropeptide Y (NPY), and somatostatin (SS)] in the dorsomedial telencephalon (hippocampal region) of the pigeon was studied by immunohistochemistry. All six peptides were found in fibers passing through the septo-hippocampal junction and along the medial wall of the hippocampal region. NPY-, SS-, and VIP-like staining of fibers was seen in the hippocampal commissure. NPY and SS had similar distributions within the hippocampal region, both being most conspicuous in cell bodies, terminals, and fibers of the medial hippocampal region. VIP-positive cells were found in an area dorsal to the SS/NPY cell region. CCK-like immunoreactivity was found in terminal baskets surrounding large cells of a v-shaped structure in the ventromedial hippocampal region. SP- and LENK-like immunoreactivity was found in neuropils in a lateral-dorsal region, the two substances showing similar distributions. This region is thought to lie lateral to the limit of the hippocampal region. Parallels with the distribution of immunoreactivity in the mammalian hippocampus are used to suggest possible equivalent subdivisions of the avian and mammalian hippocampal regions.
Collapse
|
Comparative Study |
34 |
129 |
4
|
Krebs JR, Erichsen JT, Bingman VP. The distribution of neurotransmitters and neurotransmitter-related enzymes in the dorsomedial telencephalon of the pigeon (Columba livia). J Comp Neurol 1991; 314:467-77. [PMID: 1687688 DOI: 10.1002/cne.903140305] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immunoreactivity to four neurotransmitters/transmitter-related enzymes was found in the dorsomedial telencephalon (hippocampal region) of the pigeon. Putative afferent fibers containing choline acetyltransferase-like, serotonin-like, and tyrosine hydroxylase-like immunoreactivity were seen in a fiber tract passing through the septo-hippocampal junction and along the medial wall of the hippocampal region. The most intensive labeling of neuropil and terminals of all four substances was found in the dorsomedial area of the hippocampal region. Glutamic acid decarboxylase-like immunoreactivity was seen in sparsely scattered cells throughout the region. These results are discussed in relation to hypotheses about the boundaries and subdivisions of the hippocampal region of the pigeon.
Collapse
|
Comparative Study |
34 |
104 |
5
|
Bingman VP, Bagnoli P, Ioalè P, Casini G. Homing behavior of pigeons after telencephalic ablations. BRAIN, BEHAVIOR AND EVOLUTION 1984; 24:94-108. [PMID: 6466966 DOI: 10.1159/000121308] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In a first experiment, dorsomedial forebrain ablated birds showed similar homeward orientation when compared to untreated controls independent of whether the birds were released from a previous training site or a site they had never been before. However, although all control birds returned to the home loft, only 2 of 28 birds with lesions homed successfully. In a subsequent experiment, both sham operated control birds and birds with lesions of the visual Wulst homed successfully when released only 800 m from and in full view of their respective home lofts. Pigeons with dorsomedial forebrain lesions, however, failed to return to their respective home lofts. The results show that the avian dorsomedial forebrain plays a critical role in that step of the homing process by which a pigeon returns to its home loft once in its vicinity, and that the failure to reassociate with the home loft is a likely result of deficient recognition of the home loft and/or its surrounding area. In an additional experiment, pigeons with Wulst lesions were shown to orient as controls and to successfully return to the home loft when released from two distant sites. This experiment demonstrated that the avian Wulst plays no necessary role in the homing behavior of pigeons.
Collapse
|
Comparative Study |
41 |
86 |
6
|
Bingman VP. The importance of comparative studies and ecological validity for understanding hippocampal structure and cognitive function. Hippocampus 1992; 2:213-9. [PMID: 1308185 DOI: 10.1002/hipo.450020302] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Building from the premise that hippocampal cognitive function has been molded by natural selection under natural environmental conditions, it is argued that traditional laboratory studies likely do not reveal the richness and complexity of hippocampal function. Research on the role of the hippocampal formation in the navigational behavior of homing pigeons is offered as an example to illustrate the advantages of using an ecological approach to understand hippocampal function. It is further proposed that dissimilarities in hippocampal anatomy, physiology, and neurochemistry found between species reflect species differences in the range of functions served by the hippocampal formation, as well as possibly the molecular and cellular mechanisms that support such functions. These differences notwithstanding, it is suggested that, from an evolutionary perspective, the primary function of the hippocampal formation is a role in some aspect of spatial cognition. Dissimilarities in hippocampal structure and function among extant species are viewed as resulting from differences in evolutionary selective pressure and evolutionary history.
Collapse
|
Comparative Study |
33 |
78 |
7
|
Bingman VP, Mench JA. Homing behavior of hippocampus and parahippocampus lesioned pigeons following short-distance releases. Behav Brain Res 1990; 40:227-38. [PMID: 2285480 DOI: 10.1016/0166-4328(90)90079-t] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The avian hippocampal formation has been proposed to play a critical role in the neural regulation of a navigational system used by homing pigeons to locate their loft once in the familiar area near home. In support of this hypothesis, the homing performance of pigeons with target lesions of either the hippocampus or parahippocampus was found to be impaired compared to controls following releases of about 10 km. Further, radio tracking revealed that the in-flight behavior of the hippocampal lesioned homing pigeons was characterized by numerous direction changes and generally poor orientation with respect to the home loft. The results identify a local navigational impairment on the part of the hippocampal lesioned pigeons in the vicinity of the loft where landmark cues are thought to be important. Additionally, target lesions of the hippocampus or parahippocampus were found to be similarly effective in causing homing deficits.
Collapse
|
|
35 |
76 |
8
|
Bingman VP, Ioalé P, Casini G, Bagnoli P. Unimpaired acquisition of spatial reference memory, but impaired homing performance in hippocampal-ablated pigeons. Behav Brain Res 1988; 27:179-87. [PMID: 3358854 DOI: 10.1016/0166-4328(88)90043-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hippocampal ablated homing pigeons have been shown to suffer a retrograde spatial reference memory deficit involving a preoperatively acquired homeward orientation response based on local cues around a previously visited release site. Here we report that the postoperative acquisition of such a response is unimpaired. Initially, 25 hippocampal ablated and 11 sham-operated controls were given 5 training releases from each of two sites. In the subsequent experimental releases from the two training sites, the controls and half the hippocampal-ablated pigeons had their navigational maps rendered dysfunctional via an anosmic procedure. Nonetheless, both groups successfully oriented homeward, indicating that the hippocampal-ablated pigeons were unimpaired in the acquisition and implementation of directionally useful information around the training sites to direct a homeward orientation response. The remaining half of the hippocampal-ablated pigeons who were not rendered anosmic, and thus served as controls, also oriented homeward. The data indicate that, for hippocampal-ablated homing pigeons, postoperative acquisition is unimpaired in the same spatial reference memory task where a robust retrograde impairment was observed. However, the hippocampal-ablated pigeons were impaired in the time required to return home, indicating a deficit in homing performance beyond the initial orientation stage.
Collapse
|
|
37 |
74 |
9
|
Vargas JP, Petruso EJ, Bingman VP. Hippocampal formation is required for geometric navigation in pigeons. Eur J Neurosci 2004; 20:1937-44. [PMID: 15380016 DOI: 10.1111/j.1460-9568.2004.03654.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The geometric properties of bounded space have attracted considerable attention as a source of spatial information that can guide goal navigation. Although the use of geometric information to navigate has been observed in every species studied to date, the neural mechanisms that support the representation of geometric information are still debated. With the purpose of investigating this topic, we trained pigeons with lesion to the hippocampal formation to search for food in a rectangular-shaped arena containing one wall of a different color that served as the only distinctive environmental feature. Although lesioned pigeons learned the task even faster than control animals, probe trials showed that they were insensitive to geometric information. Control animals could encode and use both geometric and feature information to locate the goal. By contrast, lesioned pigeons relied exclusively on the feature information provided by the wall of a different color. The results indicate that the avian hippocampal formation is critical for learning the geometric properties of space in homing pigeons.
Collapse
|
|
21 |
64 |
10
|
Bingman VP, Hough GE, Kahn MC, Siegel JJ. The homing pigeon hippocampus and space: in search of adaptive specialization. BRAIN, BEHAVIOR AND EVOLUTION 2003; 62:117-27. [PMID: 12937350 DOI: 10.1159/000072442] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hippocampus (HF) of birds and mammals is essential for the map-like representation of environmental landmarks used for navigation. However, species with contrasting spatial behaviors and evolutionary histories are likely to display differences, or 'adaptive specializations', in HF organization reflective of those contrasts. In the search for HF specialization in homing pigeons, we are investigating the spatial response properties of isolated HF neurons and possible right-left HF differences in the representation of space. The most notable result from the recording work is that we have yet to find neurons in the homing pigeon HF that display spatial response properties similar to HF 'place cells' of rats. Of interest is the suggestion of neurons that show higher levels of activity when pigeons are near goal locations and neurons that show higher levels of activity when pigeons are in a holding area prior to be being placed in an experimental environment. In contrast to the rat, the homing pigeon HF appears to be functionally lateralized. Results from a current lesion study demonstrate that only the left HF is sensitive to landmarks that are located within the boundaries of an experimental environment, whereas the right HF is indifferent to such landmarks but sensitive to global environmental features (e.g., geometry) of the experimental space. The preliminary electrophysiological and lateralization results offer interesting departure points for better understanding possible HF specialization in homing pigeons. However, the pigeon and rat HF reside in different forebrain environments characterized by a wulst and neocortex, respectively. Differences in the forebrain organization of pigeons and rats, and birds and mammals in general, must be considered in making sense of possible species differences in how HF participates in the representation of space.
Collapse
|
Review |
22 |
64 |
11
|
López JC, Bingman VP, Rodríguez F, Gómez Y, Salas C. Dissociation of place and cue learning by telencephalic ablation in goldfish. Behav Neurosci 2000; 114:687-99. [PMID: 10959527 DOI: 10.1037/0735-7044.114.4.687] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study examined the spatial strategies used by goldfish (Carassius auratus) to find a goal in a 4-arm maze and the involvement of the telencephalon in this spatial learning. Intact and telencephalon-ablated goldfish were trained to find food in an arm placed in a constant room location and signaled by a local visual cue (mixed place-cue procedure). Both groups learned the task, but they used different learning strategies. Telencephalon-ablated goldfish learned the task more quickly and made fewer errors to criterion than controls. Probe trials revealed that intact goldfish could use either a place or a cue strategy, whereas telencephalon-ablated goldfish learned only a cue strategy. The results offer additional evidence that place and cue learning in fish are subserved by different neural substrates and that the telencephalon of the teleost fish, or some unspecified structure within it, is important for spatial learning and memory in a manner similar to the hippocampus of mammals and birds.
Collapse
|
|
25 |
62 |
12
|
Bingman VP, Ioalé P, Casini G, Bagnoli P. The avian hippocampus: Evidence for a role in the development of the homing pigeon navigational map. Behav Neurosci 1990; 104:906-11. [PMID: 2285489 DOI: 10.1037/0735-7044.104.6.906] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Young homing pigeons were subjected to hippocampal lesion before being placed in their permanent loft to examine what effect such treatment may have on the development of their navigational map, which supports homing from distant unfamiliar locations. When later released from 3 distant unfamiliar locations, the hippocampal-lesioned pigeons were impaired in taking up a homeward bearing. The results identify a deficit in the acquisition of navigational ability after hippocampal ablation in homing pigeons. The results strongly suggest a deficit in navigational map acquisition, but alternative interpretations cannot be excluded. The findings offer the first insight into the central neural structures involved in the acquisition of the pigeon navigational map. Further, the results identify the hippocampus as a structure critical for the regulation of navigational behavior that manifests itself in a natural setting.
Collapse
|
|
35 |
61 |
13
|
Bingman VP, Casini G, Nocjar C, Jones TJ. Connections of the piriform cortex in homing pigeons (Columba livia) studied with fast blue and WGA-HRP. BRAIN, BEHAVIOR AND EVOLUTION 1994; 43:206-18. [PMID: 8038984 DOI: 10.1159/000113635] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The piriform cortex in homing pigeons receives a projection from the olfactory bulb and is necessary for the operation of those aspects of the navigational map based on olfactory stimuli in these animals. The afferent and efferent projections of the piriform cortex were studied using retrograde migration of wheat-germ agglutinin horseradish peroxidase (WGA-HRP) and Fast Blue, and anterograde migration of WGA-HRP. The piriform cortex was found to receive projections from, and send projections to, numerous regions and nuclei in the telencephalon, diencephalon and lower brainstem. A reciprocal connection with the parahippocampal region suggests that the piriform cortex and hippocampal formation may be part of a neural system that regulates navigational map learning. The piriform cortex also connects reciprocally with a large portion of the anterior telencephalon, including the cortex prepiriformis and hyperstriatum dorsale. In general, the pathway connections of the piriform cortex in homing pigeons are similar to those of the piriform cortex in mammals.
Collapse
|
|
31 |
56 |
14
|
Kahn MC, Hough GE, Ten Eyck GR, Bingman VP. Internal connectivity of the homing pigeon (Columba livia) hippocampal formation: an anterograde and retrograde tracer study. J Comp Neurol 2003; 459:127-41. [PMID: 12640665 DOI: 10.1002/cne.10601] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avian hippocampal formation (HF) is a structure necessary for learning and remembering aspects of environmental space. Therefore, understanding the connections between different HF regions is important for determining how spatial learning processes are organized within the avian brain. The prevailing feed-forward, trisynaptic internal connectivity of the mammalian hippocampus and its importance for cognition have been well described, but the internal connectivity of the avian HF has only recently been investigated. To examine further the connectivity within the avian HF, small amounts of cholera toxin subunit B, primarily a retrograde tracer (n = 15), or biotinylated dextran amine, primarily an anterograde tracer (n = 10), were injected into localized regions of the HF. Examination of the immunohistochemically labeled tissue showed projections from extrinsic sensory processing areas into dorsolateral HF and the dorsal portion of the dorsomedial HF (DMd). DMd in turn projected into the medial (VM) and lateral (VL) ventral cell layers. A projection from VM into VL was found, and together these areas and DM provided input into the contralateral ventral cell layers. Ipsilaterally, a ventral portion of dorsomedial HF (DMv) received input from VL and VM. From DMv, projections exited HF laterally. The highlighted projections formed a discernible feed-forward processing network through the avian HF that resembled the trisynaptic circuit of the mammalian HF.
Collapse
|
|
22 |
54 |
15
|
Bingman VP. Magnetic Field Orientation of Migratory Savannah Sparrows With Different First Summer Experience. BEHAVIOUR 1983. [DOI: 10.1163/156853983x00110] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
|
42 |
53 |
16
|
Leutgeb S, Husband S, Riters LV, Shimizu T, Bingman VP. Telencephalic afferents to the caudolateral neostriatum of the pigeon. Brain Res 1996; 730:173-81. [PMID: 8883901 DOI: 10.1016/0006-8993(96)00444-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The pigeon caudolateral neostriatum (NCL) shares a dopaminergic innervation with mammalian frontal cortical areas and is implicated in the regulation of avian cognitive behavior. Retrograde tracing methods were used to identify forebrain projections to NCL and to suggest a possible role of this area in mediating spatial behavior. NCL receives telencephalic projections from the hyperstriatum accessorium, cells along the border of hyperstriatum dorsale and hyperstriatum ventrale, anterolateral hyperstriatum adjacent to the vallecula, confined cell groups within the anterior neostriatum, and subdivisions of the archistriatum. In addition, labeling of a small number of large cells near the fasciculus prosencephali lateralis was observed at the level of the anterior commissure. In accordance with previous studies, projections of subtelencephalic areas were revealed to originate from the thalamic posterior dorsolateral nucleus and nucleus subrotundus, as well as from the tegmental nucleus pedunculopontinus and locus coeruleus. Forebrain connections of NCL show that somatosensory, visual, and olfactory information can combine in this division of the neostriatum. NCL is therefore suited to participate in a neural circuit that regulates spatial behavior. Moreover, the present study reveals that NCL is reached by a limbic projection from the nucleus taeniae. This projection also suggests similarity between NCL and mammalian frontal cortical areas.
Collapse
|
|
29 |
51 |
17
|
Gagliardo A, Ioalè P, Odetti F, Bingman VP, Siegel JJ, Vallortigara G. Hippocampus and homing in pigeons: left and right hemispheric differences in navigational map learning. Eur J Neurosci 2001; 13:1617-24. [PMID: 11328355 DOI: 10.1046/j.0953-816x.2001.01522.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One-month-old, inexperienced homing pigeons, prior to any opportunity to learn a navigational map, were subjected to either right or left unilateral ablation of the hippocampal formation (HF). These pigeons were then held together with a group of age-matched control birds in an outdoor aviary, where they were kept for about 3 months with the opportunity to learn a navigational map. When subsequently tested for navigational map learning at about 4 months of age posthatching, control and right HF-ablated pigeons were equally good at orienting homeward from distant, unfamiliar locations, indicating successful navigational map learning. By contrast, left HF-ablated pigeons were impaired in orienting homeward, indicating a failure to learn a navigational map. Interestingly, both right and left HF-ablated pigeons displayed impaired homing performance relative to controls. These results suggest that different aspects of homing pigeon navigation may be lateralized to different hemispheres, and in particular, the HF of the different hemispheres. The left HF appears critical for navigational map learning, i.e. determining an approximate direction home from distant, unfamiliar locations. The right HF, and possibly the left HF as well, appear to play an important role in local navigation near the loft, which is likely based on familiar landmarks.
Collapse
|
|
24 |
49 |
18
|
Abstract
The authors investigated lateralization of spatial learning within the avian hippocampal formation (HF). In Experiment 1, homing pigeons (Columba livia) with unilateral lesions of the right or left HF were trained to locate a goal in a square room containing local landmarks and global room cues. All groups learned the task. During probe trials, when landmarks were rotated or removed, intact pigeons and left HF-lesioned pigeons relied exclusively on global room cues to locate the food goal. Pigeons with right HF lesions were the only group to demonstrably use the landmarks. The results suggest that the right HF is preferentially involved in the representation of global environmental space, whereas only the left HF may be sensitive to local landmarks for navigation.
Collapse
|
|
21 |
49 |
19
|
Herold C, Bingman VP, Ströckens F, Letzner S, Sauvage M, Palomero-Gallagher N, Zilles K, Güntürkün O. Distribution of neurotransmitter receptors and zinc in the pigeon (Columba livia) hippocampal formation: A basis for further comparison with the mammalian hippocampus. J Comp Neurol 2015; 522:2553-75. [PMID: 24477871 DOI: 10.1002/cne.23549] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 12/29/2022]
Abstract
The avian hippocampal formation (HF) and mammalian hippocampus share a similar functional role in spatial cognition, but the underlying neuronal mechanisms allowing the functional similarity are incompletely understood. To understand better the organization of the avian HF and its transmitter receptors, we analyzed binding site densities for glutamatergic AMPA, NMDA, and kainate receptors; GABAA receptors; muscarinic M1 , M2 and nicotinic (nACh) acetylcholine receptors; noradrenergic α1 and α2 receptors; serotonergic 5-HT1A receptors; dopaminergic D1/5 receptors by using quantitative in vitro receptor autoradiography. Additionally, we performed a modified Timm staining procedure to label zinc. The regionally different receptor densities mapped well onto seven HF subdivisions previously described. Several differences in receptor expression highlighted distinct HF subdivisions. Notable examples include 1) high GABAA and α1 receptor expression, which rendered distinctive ventral subdivisions; 2) high α2 receptor expression, which rendered distinctive a dorsomedial subdivision; 3) distinct kainate, α2 , and muscarinic receptor densities that rendered distinctive the two dorsolateral subdivisions; and 4) a dorsomedial region characterized by high kainate receptor density. We further observed similarities in receptor binding densities between subdivisions of the avian and mammalian HF. Despite the similarities, we propose that 300 hundred million years of independent evolution has led to a mosaic of similarities and differences in the organization of the avian HF and mammalian hippocampus and that thinking about the avian HF in terms of the strict organization of the mammalian hippocampus is likely insufficient to understand the HF of birds.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
49 |
20
|
Able KP, Bingman VP. The Development of Orientation and Navigation Behavior in Birds. QUARTERLY REVIEW OF BIOLOGY 1987. [DOI: 10.1086/415265] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
38 |
48 |
21
|
Herold C, Coppola VJ, Bingman VP. The maturation of research into the avian hippocampal formation: Recent discoveries from one of the nature's foremost navigators. Hippocampus 2015; 25:1193-211. [DOI: 10.1002/hipo.22463] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 02/06/2023]
|
|
10 |
48 |
22
|
Bingman VP, Able KP, Kerlinger P. Wind drift, compensation, and the use of landmarks by nocturnal bird migrants. Anim Behav 1982. [DOI: 10.1016/s0003-3472(82)80236-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
43 |
47 |
23
|
Guilford T, Åkesson S, Gagliardo A, Holland RA, Mouritsen H, Muheim R, Wiltschko R, Wiltschko W, Bingman VP. Migratory navigation in birds: new opportunities in an era of fast-developing tracking technology. ACTA ACUST UNITED AC 2012; 214:3705-12. [PMID: 22031734 DOI: 10.1242/jeb.051292] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Birds have remained the dominant model for studying the mechanisms of animal navigation for decades, with much of what has been discovered coming from laboratory studies or model systems. The miniaturisation of tracking technology in recent years now promises opportunities for studying navigation during migration itself (migratory navigation) on an unprecedented scale. Even if migration tracking studies are principally being designed for other purposes, we argue that attention to salient environmental variables during the design or analysis of a study may enable a host of navigational questions to be addressed, greatly enriching the field. We explore candidate variables in the form of a series of contrasts (e.g. land vs ocean or night vs day migration), which may vary naturally between migratory species, populations or even within the life span of a migrating individual. We discuss how these contrasts might help address questions of sensory mechanisms, spatiotemporal representational strategies and adaptive variation in navigational ability. We suggest that this comparative approach may help enrich our knowledge about the natural history of migratory navigation in birds.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
46 |
24
|
Siegel JJ, Nitz D, Bingman VP. Spatial-specificity of single-units in the hippocampal formation of freely moving homing pigeons. Hippocampus 2005; 15:26-40. [PMID: 15390167 DOI: 10.1002/hipo.20025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The importance of space-specific single-unit activity for hippocampal formation (HF)-mediated learning and memory in rodents has been extensively studied, yet little is known about how the unit findings in rodents generalize to other vertebrate species. We report a first assessment of the space-specific single-unit activity recorded from the HF of homing pigeons as they moved through a plus maze for food reward. Rate maps of pigeon HF single-unit activity typically revealed multiple regions (2-5 per cell) of increased activity (on average, 2.5 times higher than other regions of the maze) that in 27% of slow-firing cells was reliably space-specific over time. The qualitative appearance of rate maps and the degree of spatial-specificity observed for most all pigeon HF cells suggests more modest space-specific activity than typically reported for rat hippocampal cells. The nature of space-specific activity in the pigeon HF includes (1) often transiently reliable regions of increased activity for many cells, (2) multiple patches of activity that were sometimes observed in analogous maze areas, and (3) cells displaying substantial decreases in firing rate between baseline and maze-run conditions that could not be explained by a simple relationship between firing rate and a pigeon's speed. These observations suggest that pigeon HF cells may be coding for an unspecified behavioral/motivational/environmental factors in addition to a pigeon's momentary location. The data further suggest that the spatial ecology and evolutionary history of different species may be a critical feature shaping how HF neurons capture properties of space.
Collapse
|
|
20 |
45 |
25
|
Hough GE, Bingman VP. Spatial response properties of homing pigeon hippocampal neurons: correlations with goal locations, movement between goals, and environmental context in a radial-arm arena. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:1047-62. [PMID: 15449093 DOI: 10.1007/s00359-004-0562-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 08/05/2004] [Accepted: 08/05/2004] [Indexed: 11/24/2022]
Abstract
The amniote hippocampal formation plays an evolutionarily-conserved role in the neural representation of environmental space. However, species differences in spatial ecology nurture the expectation of species differences in how hippocampal neurons represent space. To determine the spatial response properties of homing pigeon ( Columba livia) HFneurons, we recorded from isolated units in birds freely navigating a radial arena in search of food present at four goal locations. Fifty of 76 neurons displayed firing rate variations that could be placed into three response categories. Location cells ( n=25) displayed higher firing rates at restricted locations in the arena space, often in proximity to goal locations. Path cells ( n=13) displayed higher firing rates as a pigeon moved between a subset of goal locations. Arena-off cells ( n=12) were more active when a pigeon was in a baseline holding space compared to inside the arena. Overall, reliability and coherence scores of the recorded neurons were lower compared to rat place cells. The differences in the spatial response profiles of pigeon hippocampal formation neurons, when compared to rats, provide a departure point for better understanding the relationship between spatial behavior and how hippocampal formation neurons participate in the representation of space.
Collapse
|
|
21 |
43 |