Levy WB, Calvert VG. Communication consumes 35 times more energy than computation in the human cortex, but both costs are needed to predict synapse number.
Proc Natl Acad Sci U S A 2021;
118:e2008173118. [PMID:
33906943 PMCID:
PMC8106317 DOI:
10.1073/pnas.2008173118]
[Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Darwinian evolution tends to produce energy-efficient outcomes. On the other hand, energy limits computation, be it neural and probabilistic or digital and logical. Taking a particular energy-efficient viewpoint, we define neural computation and make use of an energy-constrained computational function. This function can be optimized over a variable that is proportional to the number of synapses per neuron. This function also implies a specific distinction between adenosine triphosphate (ATP)-consuming processes, especially computation per se vs. the communication processes of action potentials and transmitter release. Thus, to apply this mathematical function requires an energy audit with a particular partitioning of energy consumption that differs from earlier work. The audit points out that, rather than the oft-quoted 20 W of glucose available to the human brain, the fraction partitioned to cortical computation is only 0.1 W of ATP [L. Sokoloff, Handb. Physiol. Sect. I Neurophysiol. 3, 1843-1864 (1960)] and [J. Sawada, D. S. Modha, "Synapse: Scalable energy-efficient neurosynaptic computing" in Application of Concurrency to System Design (ACSD) (2013), pp. 14-15]. On the other hand, long-distance communication costs are 35-fold greater, 3.5 W. Other findings include 1) a [Formula: see text]-fold discrepancy between biological and lowest possible values of a neuron's computational efficiency and 2) two predictions of N, the number of synaptic transmissions needed to fire a neuron (2,500 vs. 2,000).
Collapse