1
|
Hontzeas N, Richardson AO, Belimov A, Safronova V, Abu-Omar MM, Glick BR. Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Environ Microbiol 2005; 71:7556-8. [PMID: 16269802 PMCID: PMC1287689 DOI: 10.1128/aem.71.11.7556-7558.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PCR was used to rapidly identify and isolate 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes from bacteria. The Shimodaira-Hasegawa test was used to assess whether phylogenetically anomalous gene placements suggestive of horizontal gene transfer (HGT) were significantly favored over vertical transmission. The best maximum likelihood (ML) ACC deaminase tree was significantly more likely than four alternative ML trees, suggesting HGT.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
65 |
2
|
Safronova VN, Panteleev PV, Sukhanov SV, Toropygin IY, Bolosov IA, Ovchinnikova TV. Mechanism of Action and Therapeutic Potential of the β-Hairpin Antimicrobial Peptide Capitellacin from the Marine Polychaeta Capitella teleta. Mar Drugs 2022; 20:167. [PMID: 35323465 PMCID: PMC8953592 DOI: 10.3390/md20030167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Among the most potent and proteolytically resistant antimicrobial peptides (AMPs) of animal origin are molecules forming a β-hairpin structure stabilized by disulfide bonds. In this study, we investigated the mechanism of action and therapeutic potential of the β-hairpin AMP from the marine polychaeta Capitella teleta, named capitellacin. The peptide exhibits a low cytotoxicity toward mammalian cells and a pronounced activity against a wide range of bacterial pathogens including multi-resistant bacteria, but the mechanism of its antibacterial action is still obscure. In view of this, we obtained analogs of capitellacin and tachyplesin-inspired chimeric variants to identify amino acid residues important for biological activities. A low hydrophobicity of the β-turn region in capitellacin determines its modest membranotropic activity and slow membrane permeabilization. Electrochemical measurements in planar lipid bilayers mimicking the E. coli membrane were consistent with the detergent-like mechanism of action rather than with binding to a specific molecular target in the cell. The peptide did not induce bacterial resistance after a 21-day selection experiment, which also pointed at a membranotropic mechanism of action. We also found that capitellacin can both prevent E. coli biofilm formation and destroy preformed mature biofilms. The marked antibacterial and antibiofilm activity of capitellacin along with its moderate adverse effects on mammalian cells make this peptide a promising scaffold for the development of drugs for the treatment of chronic E. coli infections, in particular those caused by the formation of biofilms.
Collapse
|
research-article |
3 |
19 |
3
|
Panteleev PV, Tsarev AV, Safronova VN, Reznikova OV, Bolosov IA, Sychev SV, Shenkarev ZO, Ovchinnikova TV. Structure Elucidation and Functional Studies of a Novel β-hairpin Antimicrobial Peptide from the Marine Polychaeta Capitella teleta. Mar Drugs 2020; 18:md18120620. [PMID: 33291782 PMCID: PMC7761999 DOI: 10.3390/md18120620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Endogenous antimicrobial peptides (AMPs) are evolutionary ancient molecular factors of innate immunity that play a key role in host defense. Among the most active and stable under physiological conditions AMPs are the peptides of animal origin that adopt a β-hairpin conformation stabilized by disulfide bridges. In this study, a novel BRICHOS-domain related AMP from the marine polychaeta Capitella teleta, named capitellacin, was produced as the recombinant analogue and investigated. The mature capitellacin exhibits high homology with the known β-hairpin AMP family—tachyplesins and polyphemusins from the horseshoe crabs. The β-hairpin structure of the recombinant capitellacin was proved by CD and NMR spectroscopy. In aqueous solution the peptide exists as monomeric right-handed twisted β-hairpin and its structure does not reveal significant amphipathicity. Moreover, the peptide retains this conformation in membrane environment and incorporates into lipid bilayer. Capitellacin exhibits a strong antimicrobial activity in vitro against a wide panel of bacteria including extensively drug-resistant strains. In contrast to other known β-hairpin AMPs, this peptide acts apparently via non-lytic mechanism at concentrations inhibiting bacterial growth. The molecular mechanism of the peptide antimicrobial action does not seem to be related to the inhibition of bacterial translation therefore other molecular targets may be assumed. The reduced cytotoxicity against human cells and high antibacterial cell selectivity as compared to tachyplesin-1 make it an attractive candidate compound for an anti-infective drug design.
Collapse
|
|
5 |
12 |
4
|
Novikova N, Safronova V. Transconjugants of Agrobacterium radiobacter harbouring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa. FEMS Microbiol Lett 1992; 72:261-8. [PMID: 1499987 DOI: 10.1016/0378-1097(92)90472-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It is known that the Rhizobium galegae genomes contain megaplasmids. The suicide vector pSUP2111 with nifH gene of R. meliloti was introduced into the strains CIAM 0703 and CIAM 0711 of R. galegae inducing effective nodules on Galega orientalis plants. The formation of self-transmissible megaplasmids was observed. The megaplasmid transfer into non-nodulating R. meliloti mutants resulted in partial complementation of the nodulation defect in recipient strains though only one transconjugant showed the nitrogen-fixing activity in symbiosis with alfalfa and another one in symbiosis with G. orientalis plants. Among the Agrobacterium strains harbouring R. galegae megaplasmids there were four classes of transconjugants: (1) Nod+ Fix- in symbiosis with goat's rue plants (three strains); (2) Nod+ Fix- on Medicago sativa (two strains); (3) Nod+ Fix+ on M. sativa (five strains); (4) Nod- with both plant hosts (11 strains).
Collapse
|
|
33 |
6 |
5
|
Panteleev PV, Safronova VN, Kruglikov RN, Bolosov IA, Bogdanov IV, Ovchinnikova TV. A Novel Proline-Rich Cathelicidin from the Alpaca Vicugna pacos with Potency to Combat Antibiotic-Resistant Bacteria: Mechanism of Action and the Functional Role of the C-Terminal Region. MEMBRANES 2022; 12:membranes12050515. [PMID: 35629841 PMCID: PMC9146984 DOI: 10.3390/membranes12050515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023]
Abstract
Over recent years, a growing number of bacterial species have become resistant to clinically relevant antibiotics. Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a negligible toxicity toward mammalian cells attract attention as new templates for the development of antibiotic drugs. Here, we mined genomes of all living Camelidae species and found a novel family of Bac7-like proline-rich cathelicidins which inhibited bacterial protein synthesis. The N-terminal region of a novel peptide from the alpaca Vicugna pacos named VicBac is responsible for inhibition of bacterial protein synthesis with an IC50 value of 0.5 µM in the E. coli cell-free system whereas the C-terminal region allows the peptide to penetrate bacterial membranes effectively. We also found that the full-length VicBac did not induce bacterial resistance after a two-week selection experiment, unlike the N-terminal truncated analog, which depended on the SbmA transport system. Both pro- and anti-inflammatory action of VicBac and its N-terminal truncated variant on various human cell types was found by multiplex immunoassay. The presence of the C-terminal tail in the natural VicBac does not provide for specific immune-modulatory effects in vitro but enhances the observed impact compared with the truncated analog. The pronounced antibacterial activity of VicBac, along with its moderate adverse effects on mammalian cells, make this molecule a promising scaffold for the development of peptide antibiotics.
Collapse
|
|
3 |
5 |
6
|
Bolosov IA, Panteleev PV, Sychev SV, Khokhlova VA, Safronova VN, Toropygin IY, Kombarova TI, Korobova OV, Pereskokova ES, Borzilov AI, Ovchinnikova TV, Balandin SV. Design of Protegrin-1 Analogs with Improved Antibacterial Selectivity. Pharmaceutics 2023; 15:2047. [PMID: 37631261 PMCID: PMC10458893 DOI: 10.3390/pharmaceutics15082047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Protegrin-1 (PG-1) is a cationic β-hairpin pore-forming antimicrobial peptide having a membranolytic mechanism of action. It possesses in vitro a potent antimicrobial activity against a panel of clinically relevant MDR ESKAPE pathogens. However, its extremely high hemolytic activity and cytotoxicity toward mammalian cells prevent the further development of the protegrin-based antibiotic for systemic administration. In this study, we rationally modulated the PG-1 charge and hydrophobicity by substituting selected residues in the central β-sheet region of PG-1 to design its analogs, which retain a high antimicrobial activity but have a reduced toxicity toward mammalian cells. In this work, eight PG-1 analogs with single amino acid substitutions and five analogs with double substitutions were obtained. These analogs were produced as thioredoxin fusions in Escherichia coli. It was shown that a significant reduction in hemolytic activity without any loss of antimicrobial activity could be achieved by a single amino acid substitution, V16R in the C-terminal β-strand, which is responsible for the PG-1 oligomerization. As the result, a selective analog with a ≥30-fold improved therapeutic index was obtained. FTIR spectroscopy analysis of analog, [V16R], revealed that the peptide is unable to form oligomeric structures in a membrane-mimicking environment, in contrast to wild-type PG-1. Analog [V16R] showed a reasonable efficacy in septicemia infection mice model as a systemic antibiotic and could be considered as a promising lead for further drug design.
Collapse
|
research-article |
2 |
5 |
7
|
Safronova VN, Bolosov IA, Kruglikov RN, Korobova OV, Pereskokova ES, Borzilov AI, Panteleev PV, Ovchinnikova TV. Novel β-Hairpin Peptide from Marine Polychaeta with a High Efficacy against Gram-Negative Pathogens. Mar Drugs 2022; 20:md20080517. [PMID: 36005520 PMCID: PMC9410094 DOI: 10.3390/md20080517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, new antibiotics targeting multidrug resistant Gram-negative bacteria have become urgently needed. Therefore, antimicrobial peptides are considered to be a novel perspective class of antibacterial agents. In this study, a panel of novel BRICHOS-related β-hairpin antimicrobial peptides were identified in transcriptomes of marine polychaeta species. Two of them—abarenicin from Abarenicola pacifica and UuBRI-21 from Urechis unicinctus—possess strong antibacterial potential in vitro against a wide panel of Gram-negative bacteria including drug-resistant strains. Mechanism of action assays demonstrate that peptides disrupt bacterial and mammalian membrane integrity. Considering the stronger antibacterial potential and a low ability of abarenicin to be bound by components of serum, this peptide was selected for further modification. We conducted an alanine and arginine scanning of abarenicin by replacing individual amino acids and modulating hydrophobicity so as to improve its antibacterial potency and membrane selectivity. This design approach allowed us to obtain the Ap9 analog displaying a high efficacy in vivo in the mice septicemia and neutropenic mice peritonitis models. We demonstrated that abarenicin analogs did not significantly induce bacterial resistance after a four-week selection experiment and acted on different steps of the biofilm formation: (a) killing bacteria at their planktonic stage and preventing biofilm formation and (b) degrading pre-formed biofilm and killing embedded bacteria. The potent antibacterial and antibiofilm activity of the abarenicin analog Ap9 with its high efficacy in vivo against Gram-negative infection in mice models makes this peptide an attractive candidate for further preclinical investigation.
Collapse
|
|
3 |
5 |
8
|
Panteleev PV, Safronova VN, Kruglikov RN, Bolosov IA, Ovchinnikova TV. Genomic Insights into Bacterial Resistance to Proline-Rich Antimicrobial Peptide Bac7. MEMBRANES 2023; 13:438. [PMID: 37103865 PMCID: PMC10145973 DOI: 10.3390/membranes13040438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a modest toxicity toward mammalian cells attract much attention as new templates for the development of antibiotic drugs. However, a comprehensive understanding of mechanisms of bacterial resistance development to PrAMPs is necessary before their clinical application. In this study, development of the resistance to the proline-rich bovine cathelicidin Bac71-22 derivative was characterized in the multidrug-resistant Escherichia coli clinical isolate causing the urinary tract infection. Three Bac71-22-resistant strains with ≥16-fold increase in minimal inhibitory concentrations (MICs) were selected by serially passaging after four-week experimental evolution. It was shown that in salt-containing medium, the resistance was mediated by inactivation of the SbmA transporter. The absence of salt in the selection media affected both dynamics and main molecular targets under selective pressure: a point mutation leading to the amino acid substitution N159H in the WaaP kinase responsible for heptose I phosphorylation in the LPS structure was also found. This mutation led to a phenotype with a decreased susceptibility to both the Bac71-22 and polymyxin B. Screening of antimicrobial activities with the use of a wide panel of known AMPs, including the human cathelicidin LL-37 and conventional antibiotics, against selected strains indicated no significant cross-resistance effects.
Collapse
|
research-article |
2 |
1 |
9
|
Bolosov IA, Finkina EI, Bogdanov IV, Safronova VN, Panteleev PV, Ovchinnikova TV. Natural Gomesin-like Peptides with More Selective Antifungal Activities. Pharmaceutics 2024; 16:1606. [PMID: 39771584 PMCID: PMC11678162 DOI: 10.3390/pharmaceutics16121606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Antimicrobial peptides are generally considered promising drug candidates for combating resistant bacterial infections. However, the selectivity of their action may vary significantly. Natural gomesin, isolated from haemocytes of the tarantula Acanthoscurria gomesiana, demonstrates a broad spectrum of antimicrobial activities, being the most effective against pathogenic fungi. Methods: Here, we searched for variants of natural gomesin-like peptides and produced their recombinant analogs in the bacterial expression system. The antimicrobial activities of the obtained peptides were tested against a panel of bacterial and yeast strains, and their toxicity towards human cells was examined. Results: Most of the new analogs of gomesin have primary structures homologous to that of the natural gomesin; however, they have fewer amino acid residues and post-translational modifications. One of the discovered analogs, the His-rich shorter peptide from the spider Dysdera sylvatica, designated as DsGom, displays antifungal activity comparable with that of natural gomesin. In the process of the structural-functional study of DsGom, it was shown that this analog retains a basic mechanism of action similar to that of natural gomesin. The DsGom analog has a significantly better toxicity profile as compared to gomesin. At the same time, the loss of the first Arg residue reduces, but does not annul, the antifungal activity of DsGom. Moreover, the acidification of the growth medium reduces the loss of the antifungal activity of this analog. Conclusions: The discovered natural gomesin-like peptides display more selective antifungal activities as compared to gomesin. The low cytotoxicity of DsGom, combined with its high antifungal activity and stability, allows us to consider it a promising drug candidate for the treatment of fungal infections, especially those caused by fungi of the Candida genus.
Collapse
|
research-article |
1 |
|
10
|
Panteleev PV, Teplovodskaya JS, Utkina AD, Smolina AA, Kruglikov RN, Safronova VN, Bolosov IA, Korobova OV, Borzilov AI, Ovchinnikova TV. Discovery of Novel Thanatin-like Antimicrobial Peptides from Bean Bug Riptortus pedestris. Pharmaceutics 2024; 16:1453. [PMID: 39598576 PMCID: PMC11597323 DOI: 10.3390/pharmaceutics16111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Endogenous antimicrobial peptides (AMPs) are evolutionarily ancient molecular factors of innate immunity that play a key role in host defense. The study of the diversity of animal defense peptides has important applications in the context of the growing global antimicrobial resistance. Methods: In this study using a transcriptome mining approach, we found three novel thanatin-like β-hairpin AMPs in the bean bug Riptortus pedestris, named Rip-2, Rip-3, and Rip-4. The peptides were expressed in the bacterial system, and their antimicrobial activities were evaluated both in vitro and in vivo. Results: Homologs of the discovered AMPs are widely distributed among different members of the infraorder Pentatomomorpha. Rip-2 was shown to have the most similar structure and LptA-targeting mechanism of action to those of thanatin, but the former peptides demonstrated a higher activity against key Gram-negative ESKAPE pathogens and also displayed a significant efficacy in a lethal model of septicemia caused by E. coli in mice at daily doses greater than 5 mg/kg. In contrast, Rip-3 and Rip-4 peptides caused bacterial membrane damage, did not induce bacterial resistance, and exhibited a strong selectivity against Bacillus and Mycobacterium spp. Conclusions: This study extends the knowledge of the structure and functions of insect host defense AMPs. Each of the novel β-hairpin peptides has a potential to be a template for the development of selective antibiotic drugs.
Collapse
|
research-article |
1 |
|
11
|
Panteleev PV, Pichkur EB, Kruglikov RN, Paleskava A, Shulenina OV, Bolosov IA, Bogdanov IV, Safronova VN, Balandin SV, Marina VI, Kombarova TI, Korobova OV, Shamova OV, Myasnikov AG, Borzilov AI, Osterman IA, Sergiev PV, Bogdanov AA, Dontsova OA, Konevega AL, Ovchinnikova TV. Rumicidins are a family of mammalian host-defense peptides plugging the 70S ribosome exit tunnel. Nat Commun 2024; 15:8925. [PMID: 39414793 PMCID: PMC11484942 DOI: 10.1038/s41467-024-53309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
The antimicrobial resistance crisis along with challenges of antimicrobial discovery revealed the vital necessity to develop new antibiotics. Many of the animal proline-rich antimicrobial peptides (PrAMPs) inhibit the process of bacterial translation. Genome projects allowed to identify immune-related genes encoding animal host defense peptides. Here, using genome mining approach, we discovered a family of proline-rich cathelicidins, named rumicidins. The genes encoding these peptides are widespread among ruminant mammals. Biochemical studies indicated that rumicidins effectively inhibited the elongation stage of bacterial translation. The cryo-EM structure of the Escherichia coli 70S ribosome in complex with one of the representatives of the family revealed that the binding site of rumicidins span the ribosomal A-site cleft and the nascent peptide exit tunnel interacting with its constriction point by the conservative Trp23-Phe24 dyad. Bacterial resistance to rumicidins is mediated by knockout of the SbmA transporter or modification of the MacAB-TolC efflux pump. A wide spectrum of antibacterial activity, a high efficacy in the animal infection model, and lack of adverse effects towards human cells in vitro make rumicidins promising molecular scaffolds for development of ribosome-targeting antibiotics.
Collapse
|
research-article |
1 |
|
12
|
Panteleev PV, Safronova VN, Duan S, Komlev AS, Bolosov IA, Kruglikov RN, Kombarova TI, Korobova OV, Pereskokova ES, Borzilov AI, Dyachenko IA, Shamova OV, Huang Y, Shi Q, Ovchinnikova TV. Novel BRICHOS-Related Antimicrobial Peptides from the Marine Worm Heteromastus filiformis: Transcriptome Mining, Synthesis, Biological Activities, and Therapeutic Potential. Mar Drugs 2023; 21:639. [PMID: 38132960 PMCID: PMC10745061 DOI: 10.3390/md21120639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Marine polychaetes represent an extremely rich and underexplored source of novel families of antimicrobial peptides (AMPs). The rapid development of next generation sequencing technologies and modern bioinformatics approaches allows us to apply them for characterization of AMP-derived genes and the identification of encoded immune-related peptides with the aid of genome and transcriptome mining. Here, we describe a universal bioinformatic approach based on the conserved BRICHOS domain as a search query for the identification of novel structurally unique AMP families in annelids. In this paper, we report the discovery of 13 novel BRICHOS-related peptides, ranging from 18 to 91 amino acid residues in length, in the cosmopolitan marine worm Heteromastus filiformis with the assistance of transcriptome mining. Two characteristic peptides with a low homology in relation to known AMPs-the α-helical amphiphilic linear peptide, consisting of 28 amino acid residues and designated as HfBRI-28, and the 25-mer β-hairpin peptide, specified as HfBRI-25 and having a unique structure stabilized by two disulfide bonds-were obtained and analyzed as potential antimicrobials. Interestingly, both peptides showed the ability to kill bacteria via membrane damage, but mechanisms of their action and spectra of their activity differed significantly. Being non-cytotoxic towards mammalian cells and stable to proteolysis in the blood serum, HfBRI-25 was selected for further in vivo studies in a lethal murine model of the Escherichia coli infection, where the peptide contributed to the 100% survival rate in animals. A high activity against uropathogenic strains of E. coli (UPEC) as well as a strong ability to kill bacteria within biofilms allow us to consider the novel peptide HfBRI-25 as a promising candidate for the clinical therapy of urinary tract infections (UTI) associated with UPEC.
Collapse
|
research-article |
2 |
|