1
|
Kovtun O, Tillu VA, Ariotti N, Parton RG, Collins BM. Cavin family proteins and the assembly of caveolae. J Cell Sci 2016; 128:1269-78. [PMID: 25829513 DOI: 10.1242/jcs.167866] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Caveolae are an abundant feature of the plasma membrane in many cells. Until recently, they were generally considered to be membrane invaginations whose formation primarily driven by integral membrane proteins called caveolins. However, the past decade has seen the emergence of the cavin family of peripheral membrane proteins as essential coat components and regulators of caveola biogenesis. In this Commentary, we summarise recent data on the role of cavins in caveola formation, highlighting structural studies that provide new insights into cavin coat assembly. In mammals, there are four cavin family members that associate through homo- and hetero-oligomerisation to form distinct subcomplexes on caveolae, which can be released into the cell in response to stimuli. Studies from several labs have provided a better understanding of cavin stoichiometry and the molecular basis for their oligomerisation, as well as identifying interactions with membrane phospholipids that may be important for caveola function. We propose a model in which coincident, low-affinity electrostatically controlled protein-protein and protein-lipid interactions allow the formation of caveolae, generating a meta-stable structure that can respond to plasma membrane stress by release of cavins.
Collapse
|
Review |
9 |
154 |
2
|
Kovtun O, Tillu VA, Jung W, Leneva N, Ariotti N, Chaudhary N, Mandyam RA, Ferguson C, Morgan GP, Johnston WA, Harrop SJ, Alexandrov K, Parton RG, Collins BM. Structural insights into the organization of the cavin membrane coat complex. Dev Cell 2014; 31:405-19. [PMID: 25453557 DOI: 10.1016/j.devcel.2014.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/29/2014] [Accepted: 10/02/2014] [Indexed: 01/10/2023]
Abstract
Caveolae are cell-surface membrane invaginations that play critical roles in cellular processes including signaling and membrane homeostasis. The cavin proteins, in cooperation with caveolins, are essential for caveola formation. Here we show that a minimal N-terminal domain of the cavins, termed HR1, is required and sufficient for their homo- and hetero-oligomerization. Crystal structures of the mouse cavin1 and zebrafish cavin4a HR1 domains reveal highly conserved trimeric coiled-coil architectures, with intersubunit interactions that determine the specificity of cavin-cavin interactions. The HR1 domain contains a basic surface patch that interacts with polyphosphoinositides and coordinates with additional membrane-binding sites within the cavin C terminus to facilitate membrane association and remodeling. Electron microscopy of purified cavins reveals the existence of large assemblies, composed of a repeating rod-like structural element, and we propose that these structures polymerize through membrane-coupled interactions to form the unique striations observed on the surface of caveolae in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
57 |
3
|
Das Gupta K, Shakespear MR, Curson JEB, Murthy AMV, Iyer A, Hodson MP, Ramnath D, Tillu VA, von Pein JB, Reid RC, Tunny K, Hohenhaus DM, Moradi SV, Kelly GM, Kobayashi T, Gunter JH, Stevenson AJ, Xu W, Luo L, Jones A, Johnston WA, Blumenthal A, Alexandrov K, Collins BM, Stow JL, Fairlie DP, Sweet MJ. Class IIa Histone Deacetylases Drive Toll-like Receptor-Inducible Glycolysis and Macrophage Inflammatory Responses via Pyruvate Kinase M2. Cell Rep 2021; 30:2712-2728.e8. [PMID: 32101747 DOI: 10.1016/j.celrep.2020.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 09/30/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases (HDACs) drive innate immune cell-mediated inflammation. Here we identify class IIa HDACs as key molecular links between Toll-like receptor (TLR)-inducible aerobic glycolysis and macrophage inflammatory responses. A proteomic screen identified the glycolytic enzyme pyruvate kinase M isoform 2 (Pkm2) as a partner of proinflammatory Hdac7 in murine macrophages. Myeloid-specific Hdac7 overexpression in transgenic mice amplifies lipopolysaccharide (LPS)-inducible lactate and promotes a glycolysis-associated inflammatory signature. Conversely, pharmacological or genetic targeting of Hdac7 and other class IIa HDACs attenuates LPS-inducible glycolysis and accompanying inflammatory responses in macrophages. We show that an Hdac7-Pkm2 complex acts as an immunometabolism signaling hub, whereby Pkm2 deacetylation at lysine 433 licenses its proinflammatory functions. Disrupting this complex suppresses inflammatory responses in vitro and in vivo. Class IIa HDACs are thus pivotal intermediates connecting TLR-inducible glycolysis to inflammation via Pkm2.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
50 |
4
|
Zhou Y, Ariotti N, Rae J, Liang H, Tillu V, Tee S, Bastiani M, Bademosi AT, Collins BM, Meunier FA, Hancock JF, Parton RG. Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae. J Cell Biol 2021; 220:211716. [PMID: 33496726 PMCID: PMC7844427 DOI: 10.1083/jcb.202005138] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
Caveolae are specialized domains of the vertebrate cell surface with a well-defined morphology and crucial roles in cell migration and mechanoprotection. Unique compositions of proteins and lipids determine membrane architectures. The precise caveolar lipid profile and the roles of the major caveolar structural proteins, caveolins and cavins, in selectively sorting lipids have not been defined. Here, we used quantitative nanoscale lipid mapping together with molecular dynamic simulations to define the caveolar lipid profile. We show that caveolin-1 (CAV1) and cavin1 individually sort distinct plasma membrane lipids. Intact caveolar structures composed of both CAV1 and cavin1 further generate a unique lipid nano-environment. The caveolar lipid sorting capability includes selectivities for lipid headgroups and acyl chains. Because lipid headgroup metabolism and acyl chain remodeling are tightly regulated, this selective lipid sorting may allow caveolae to act as transit hubs to direct communications among lipid metabolism, vesicular trafficking, and signaling.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
35 |
5
|
Parton RG, Tillu V, McMahon KA, Collins BM. Key phases in the formation of caveolae. Curr Opin Cell Biol 2021; 71:7-14. [PMID: 33677149 DOI: 10.1016/j.ceb.2021.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Caveolae are abundant plasma membrane pits formed by the coordinated action of peripheral and integral membrane proteins and membrane lipids. Here, we discuss recent studies that are starting to provide a glimpse of how filamentous cavin proteins, membrane-embedded caveolin proteins, and specific plasma membrane lipids are brought together to make the unique caveola surface domain. Protein assembly involves multiple low-affinity interactions that are dependent on 'fuzzy' charge-dependent interactions mediated in part by disordered cavin and caveolin domains. We propose that cavins help generate a lipid domain conducive to full insertion of caveolin into the bilayer to promote caveola formation. The synergistic assembly of these dynamic protein complexes supports the formation of a metastable membrane domain that can be readily disassembled both in response to cellular stress and during endocytic trafficking. We present a mechanistic model for generation of caveolae based on these new insights.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
27 |
6
|
Healy MD, Hospenthal MK, Hall RJ, Chandra M, Chilton M, Tillu V, Chen KE, Celligoi DJ, McDonald FJ, Cullen PJ, Lott JS, Collins BM, Ghai R. Structural insights into the architecture and membrane interactions of the conserved COMMD proteins. eLife 2018; 7:e35898. [PMID: 30067224 PMCID: PMC6089597 DOI: 10.7554/elife.35898] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
The COMMD proteins are a conserved family of proteins with central roles in intracellular membrane trafficking and transcription. They form oligomeric complexes with each other and act as components of a larger assembly called the CCC complex, which is localized to endosomal compartments and mediates the transport of several transmembrane cargos. How these complexes are formed however is completely unknown. Here, we have systematically characterised the interactions between human COMMD proteins, and determined structures of COMMD proteins using X-ray crystallography and X-ray scattering to provide insights into the underlying mechanisms of homo- and heteromeric assembly. All COMMD proteins possess an α-helical N-terminal domain, and a highly conserved C-terminal domain that forms a tightly interlocked dimeric structure responsible for COMMD-COMMD interactions. The COMM domains also bind directly to components of CCC and mediate non-specific membrane association. Overall these studies show that COMMD proteins function as obligatory dimers with conserved domain architectures.
Collapse
|
research-article |
7 |
26 |
7
|
Sheokand N, Malhotra H, Kumar S, Tillu VA, Chauhan AS, Raje CI, Raje M. Moonlighting cell surface GAPDH recruits Apo Transferrin to effect iron egress from mammalian cells. J Cell Sci 2014; 127:4279-91. [DOI: 10.1242/jcs.154005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Iron homeostasis is a tightly regulated process with precise control of its influx and egress from cells. Though mechanisms of its import into cells via iron carrier molecules are well characterized, iron export remains poorly understood. The current paradigm envisages unique functions associated with specialized macromolecules for its cellular import (transferrin receptors) or export (ferroportin) Earlier studies have revealed that, iron depleted cells recruit Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a moonlighting protein to their surface for internalization of the iron carrier holo transferrin (holo Tf). Here we report that under the contrary condition of intracellular iron excess, cells switch the isoform of GAPDH on their surface which now recruits iron free apo transferrin in close association with ferroportin to facilitate efflux of iron. Increased surface GAPDH expression synchronized with increased apo Tf binding and enhanced iron export from cells, a capability lost in GAPDH knockdown cells. These findings were confirmed in vivo utilizing a rodent model of iron overload. Besides identifying for the first time an apo transferrin receptor, our work uncovers two-way switching of multifunctional molecules for managing cellular micronutrient requirements.
Collapse
|
|
11 |
23 |
8
|
Tillu VA, Kovtun O, McMahon KA, Collins BM, Parton RG. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation. Mol Biol Cell 2015; 26:3561-9. [PMID: 26269585 PMCID: PMC4603927 DOI: 10.1091/mbc.e15-06-0359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022] Open
Abstract
Cavin1 degradation is primarily mediated by the ubiquitin proteasome system. The phosphoinositide-binding region in cavin1 acts as a molecular switch for cavin1 degradation upon release of cavins in cytosol. This mechanism may help to maintain low levels of free cytosolic cavins at steady state. Caveolae are abundant surface organelles implicated in a range of cellular processes. Two classes of proteins work together to generate caveolae: integral membrane proteins termed caveolins and cytoplasmic coat proteins called cavins. Caveolae respond to membrane stress by releasing cavins into the cytosol. A crucial aspect of this model is tight regulation of cytosolic pools of cavin under resting conditions. We now show that a recently identified region of cavin1 that can bind phosphoinositide (PI) lipids is also a major site of ubiquitylation. Ubiquitylation of lysines within this site leads to rapid proteasomal degradation. In cells that lack caveolins and caveolae, cavin1 is cytosolic and rapidly degraded as compared with cells in which cavin1 is associated with caveolae. Membrane stretching causes caveolar disassembly, release of cavin complexes into the cytosol, and increased proteasomal degradation of wild-type cavin1 but not mutant cavin1 lacking the major ubiquitylation site. Release of cavin1 from caveolae thus leads to exposure of key lysine residues in the PI-binding region, acting as a trigger for cavin1 ubiquitylation and down-regulation. This mutually exclusive PI-binding/ubiquitylation mechanism may help maintain low levels of cytosolic cavin1 in resting cells, a prerequisite for cavins acting as signaling modules following release from caveolae.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
23 |
9
|
Lo HP, Lim YW, Xiong Z, Martel N, Ferguson C, Ariotti N, Giacomotto J, Rae J, Floetenmeyer M, Moradi SV, Gao Y, Tillu VA, Xia D, Wang H, Rahnama S, Nixon SJ, Bastiani M, Day RD, Smith KA, Palpant NJ, Johnston WA, Alexandrov K, Collins BM, Hall TE, Parton RG. Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle. J Cell Biol 2021; 220:e201905065. [PMID: 34633413 PMCID: PMC8513623 DOI: 10.1083/jcb.201905065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/02/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule-associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.
Collapse
|
research-article |
4 |
19 |
10
|
Tillu VA, Lim YW, Kovtun O, Mureev S, Ferguson C, Bastiani M, McMahon KA, Lo HP, Hall TE, Alexandrov K, Collins BM, Parton RG. A variable undecad repeat domain in cavin1 regulates caveola formation and stability. EMBO Rep 2018; 19:e45775. [PMID: 30021837 PMCID: PMC6123655 DOI: 10.15252/embr.201845775] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 11/09/2022] Open
Abstract
Caveolae are plasma membrane invaginations involved in transport, signalling and mechanical membrane sensing in metazoans. Their formation depends upon multiple interactions between membrane-embedded caveolins, lipids and cytosolic cavin proteins. Of the four cavin family members, only cavin1 is strictly required for caveola formation. Here, we demonstrate that an eleven residue (undecad) repeat sequence (UC1) exclusive to cavin1 is essential for caveolar localization and promotes membrane remodelling through binding to phosphatidylserine. In the notochord of mechanically stimulated zebrafish embryos, the UC1 domain is required for caveolar stability and resistance to membrane stress. The number of undecad repeats in the cavin1 UC1 domain varies throughout evolution, and we find that an increased number also correlates with increased caveolar stability. Lastly, we show that the cavin1 UC1 domain induces dramatic remodelling of the plasma membrane when grafted into cavin2 suggesting an important role in membrane sculpting. Overall, our work defines a novel conserved cavin1 modular domain that controls caveolar assembly and stability.
Collapse
|
research-article |
7 |
16 |
11
|
Paul B, Weeratunga S, Tillu VA, Hariri H, Henne WM, Collins BM. Structural Predictions of the SNX-RGS Proteins Suggest They Belong to a New Class of Lipid Transfer Proteins. Front Cell Dev Biol 2022; 10:826688. [PMID: 35223850 PMCID: PMC8864675 DOI: 10.3389/fcell.2022.826688] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Recent advances in protein structure prediction using machine learning such as AlphaFold2 and RosettaFold presage a revolution in structural biology. Genome-wide predictions of protein structures are providing unprecedented insights into their architecture and intradomain interactions, and applications have already progressed towards assessing protein complex formation. Here we present detailed analyses of the sorting nexin proteins that contain regulator of G-protein signalling domains (SNX-RGS proteins), providing a key example of the ability of AlphaFold2 to reveal novel structures with previously unsuspected biological functions. These large proteins are conserved in most eukaryotes and are known to associate with lipid droplets (LDs) and sites of LD-membrane contacts, with key roles in regulating lipid metabolism. They possess five domains, including an N-terminal transmembrane domain that anchors them to the endoplasmic reticulum, an RGS domain, a lipid interacting phox homology (PX) domain and two additional domains named the PXA and PXC domains of unknown structure and function. Here we report the crystal structure of the RGS domain of sorting nexin 25 (SNX25) and show that the AlphaFold2 prediction closely matches the experimental structure. Analysing the full-length SNX-RGS proteins across multiple homologues and species we find that the distant PXA and PXC domains in fact fold into a single unique structure that notably features a large and conserved hydrophobic pocket. The nature of this pocket strongly suggests a role in lipid or fatty acid binding, and we propose that these molecules represent a new class of conserved lipid transfer proteins.
Collapse
|
research-article |
3 |
16 |
12
|
Pande AH, Tillu VA. Membrane lipid composition differentially modulates the function of human plasma platelet activating factor-acetylhydrolase. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:46-56. [DOI: 10.1016/j.bbalip.2010.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/16/2010] [Accepted: 09/16/2010] [Indexed: 11/24/2022]
|
|
14 |
12 |
13
|
Kar S, Tillu VA, Meena SC, Pande AH. Closely related oxidized phospholipids differentially modulate the physicochemical properties of lipid particles. Chem Phys Lipids 2011; 164:54-61. [DOI: 10.1016/j.chemphyslip.2010.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/21/2010] [Accepted: 10/26/2010] [Indexed: 01/08/2023]
|
|
14 |
6 |
14
|
McMahon KA, Stroud DA, Gambin Y, Tillu V, Bastiani M, Sierecki E, Polinkovsky ME, Hall TE, Gomez GA, Wu Y, Parat MO, Martel N, Lo HP, Khanna KK, Alexandrov K, Daly R, Yap A, Ryan MT, Parton RG. Cavin3 released from caveolae interacts with BRCA1 to regulate the cellular stress response. eLife 2021; 10:61407. [PMID: 34142659 PMCID: PMC8279762 DOI: 10.7554/elife.61407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Caveolae-associated protein 3 (cavin3) is inactivated in most cancers. We characterized how cavin3 affects the cellular proteome using genome-edited cells together with label-free quantitative proteomics. These studies revealed a prominent role for cavin3 in DNA repair, with BRCA1 and BRCA1 A-complex components being downregulated on cavin3 deletion. Cellular and cell-free expression assays revealed a direct interaction between BRCA1 and cavin3 that occurs when cavin3 is released from caveolae that are disassembled in response to UV and mechanical stress. Overexpression and RNAi-depletion revealed that cavin3 sensitized various cancer cells to UV-induced apoptosis. Supporting a role in DNA repair, cavin3-deficient cells were sensitive to PARP inhibition, where concomitant depletion of 53BP1 restored BRCA1-dependent sensitivity to PARP inhibition. We conclude that cavin3 functions together with BRCA1 in multiple cancer-related pathways. The loss of cavin3 function may provide tumor cell survival by attenuating apoptotic sensitivity and hindering DNA repair under chronic stress conditions.
Collapse
|
Journal Article |
4 |
5 |
15
|
Tillu VA, Redpath GMI, Rae J, Ruan J, Yao Y, Cagigas ML, Whan R, Hardeman EC, Gunning PW, Ananthanarayanan V, Parton RG, Ariotti N. Precision in situ cryogenic correlative light and electron microscopy of optogenetically positioned organelles. J Cell Sci 2024; 137:jcs262163. [PMID: 39308425 DOI: 10.1242/jcs.262163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/12/2024] [Indexed: 11/01/2024] Open
Abstract
Unambiguous targeting of cellular structures for in situ cryo-electron microscopy in the heterogeneous, dense and compacted environment of the cytoplasm remains challenging. Here, we have developed a cryogenic correlative light and electron microscopy (cryo-CLEM) workflow that utilizes thin cells grown on a mechanically defined substratum for rapid analysis of organelles and macromolecular complexes by cryo-electron tomography (cryo-ET). We coupled these advancements with optogenetics to redistribute perinuclear-localised organelles to the cell periphery, allowing visualisation of organelles that would otherwise be positioned in cellular regions too thick for cryo-ET. This reliable and robust workflow allows for fast in situ analyses without the requirement for cryo-focused ion beam milling. Using this protocol, cells can be frozen, imaged by cryo-fluorescence microscopy and be ready for batch cryo-ET within a day.
Collapse
|
|
1 |
|
16
|
Brooks JW, Tillu V, Eckert J, Verma S, Collins BM, Parton RG, Yap AS. Caveola mechanotransduction reinforces the cortical cytoskeleton to promote epithelial resilience. Mol Biol Cell 2023; 34:ar120. [PMID: 37672337 PMCID: PMC10846620 DOI: 10.1091/mbc.e23-05-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
As physical barriers, epithelia must preserve their integrity when challenged by mechanical stresses. Cell-cell junctions linked to the cortical cytoskeleton play key roles in this process, often with mechanotransduction mechanisms that reinforce tissues. Caveolae are mechanosensitive organelles that buffer tension via disassembly. Loss of caveolae, through caveolin-1 or cavin1 depletion, causes activation of PtdIns(4, 5)P2 signaling, recruitment of FMNL2 formin, and enhanced-cortical actin assembly. How this equates to physiological responses in epithelial cells containing endogenous caveolae is unknown. Here we examined the effect of mechanically inducing acute disassembly of caveolae in epithelia. We show that perturbation of caveolae, through direct mechanical stress, reinforces the actin cortex at adherens junctions. Increasing interactions with membrane lipids by introducing multiple phosphatidylserine-binding undecad cavin1 (UC1) repeat domains into cavin1 rendered caveolae more stable to mechanical stimuli. This molecular stabilization blocked cortical reinforcement in response to mechanical stress. Cortical reinforcement elicited by the mechanically induced disassembly of caveolae increased epithelial resilience against tensile stresses. These findings identify the actin cortex as a target of caveola mechanotransduction that contributes to epithelial integrity.
Collapse
|
research-article |
2 |
|
17
|
Gao Y, Tillu VA, Wu Y, Rae J, Hall TE, Chen KE, Weeratunga S, Guo Q, Livingstone E, Tham WH, Parton RG, Collins BM. Nanobodies against Cavin1 reveal structural flexibility and regulated interactions of its N-terminal coiled-coil domain. J Cell Sci 2025; 138:jcs263756. [PMID: 40260863 DOI: 10.1242/jcs.263756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
Caveolae are abundant plasma membrane structures that regulate signalling, membrane homeostasis and mechanoprotection. Their formation is driven by caveolins and cavins and their coordinated interactions with lipids. Here, we developed nanobodies against the trimeric HR1 coiled-coil domain of Cavin1. We identified specific nanobodies that do not perturb Cavin1 membrane binding and localise to caveolae when expressed in cells. The crystal structure of a nanobody-Cavin 1 HR1 complex reveals a symmetric 3:3 architecture as validated by mutagenesis. In this structure, the C-terminal half of the HR1 domain is disordered, suggesting that the nanobody stabilises an open conformation of Cavin1, which has previously been identified as important for membrane interactions. A phosphomimic mutation in a threonine-serine pair proximal to this region reveals selective regulation of Cavin2 and Cavin3 association. These studies provide new insights into cavin domains required for assembly of multiprotein caveolar assemblies and describe new nanobody tools for structural and functional studies of caveolae.
Collapse
|
|
1 |
|
18
|
Chen KE, Tillu VA, Gopaldass N, Chowdhury SR, Leneva N, Kovtun O, Ruan J, Guo Q, Ariotti N, Mayer A, Collins BM. Molecular basis for the assembly of the Vps5-Vps17 SNX-BAR proteins with Retromer. Nat Commun 2025; 16:3568. [PMID: 40234461 PMCID: PMC12000511 DOI: 10.1038/s41467-025-58846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Retromer mediates endosomal retrieval of transmembrane proteins in all eukaryotes and was first discovered in yeast in complex with the Vps5 and Vps17 sorting nexins (SNXs). Cryoelectron tomography (cryoET) studies of Retromer-Vps5 revealed a pseudo-helical coat on membrane tubules where dimers of the Vps26 subunit bind Vps5 membrane-proximal domains. However, the Vps29 subunit is also required for Vps5-Vps17 association despite being far from the membrane. Here, we show that Vps5 binds both Vps29 and Vps35 subunits through its unstructured N-terminal domain. A Pro-Leu (PL) motif in Vps5 binds Vps29 and is required for association with Retromer on membrane tubules in vitro, and for the proper recycling of the Vps10 cargo in Saccharomyces cerevisiae. CryoET of Retromer tubules with Vps5-Vps17 heterodimers show a similar architecture to the coat with Vps5-Vps5 homodimers, however, the spatial relationship between Retromer units is highly restricted, likely due to more limited orientations for docking. These results provide mechanistic insights into how Retromer and SNX-BAR association has evolved across species.
Collapse
|
research-article |
1 |
|