1
|
Wagner MC, Rhodes G, Wang E, Pruthi V, Arif E, Saleem MA, Wean SE, Garg P, Verma R, Holzman LB, Gattone V, Molitoris BA, Nihalani D. Ischemic injury to kidney induces glomerular podocyte effacement and dissociation of slit diaphragm proteins Neph1 and ZO-1. J Biol Chem 2008; 283:35579-89. [PMID: 18922801 DOI: 10.1074/jbc.m805507200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glomerular injury is often characterized by the effacement of podocytes, loss of slit diaphragms, and proteinuria. Renal ischemia or the loss of blood flow to the kidneys has been widely associated with tubular and endothelial injury but rarely has been shown to induce podocyte damage and disruption of the slit diaphragm. In this study, we have used an in vivo rat ischemic model to demonstrate that renal ischemia induces podocyte effacement with loss of slit diaphragm and proteinuria. Biochemical analysis of the ischemic glomerulus shows that ischemia induces rapid loss of interaction between slit diaphragm junctional proteins Neph1 and ZO-1. To further understand the effect of ischemia on molecular interactions between slit diaphragm proteins, a cell culture model was employed to study the binding between Neph1 and ZO-1. Under physiologic conditions, Neph1 co-localized with ZO-1 at cell-cell contacts in cultured human podocytes. Induction of injury by ATP depletion resulted in rapid loss of Neph1 and ZO-1 binding and redistribution of Neph1 and ZO-1 proteins from cell membrane to the cytoplasm. Recovery resulted in increased Neph1 tyrosine phosphorylation, restoring Neph1 and ZO-1 binding and their localization at the cell membrane. We further demonstrate that tyrosine phosphorylation of Neph1 mediated by Fyn results in significantly increased Neph1 and ZO-1 binding, suggesting a critical role for Neph1 tyrosine phosphorylation in reorganizing the Neph1-ZO-1 complex. This study documents that renal ischemia induces dynamic changes in the molecular interactions between slit diaphragm proteins, leading to podocyte damage and proteinuria.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
67 |
2
|
Salunke GR, Ghosh S, Santosh Kumar RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine 2014; 9:2635-53. [PMID: 24920901 PMCID: PMC4043712 DOI: 10.2147/ijn.s59834] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Nanoparticles (NPs) have gained significance in medical fields due to their high surface-area-to-volume ratio. In this study, we synthesized NPs from a medicinally important plant - Plumbago zeylanica. MATERIALS AND METHODS Aqueous root extract of P. zeylanica (PZRE) was analyzed for the presence of flavonoids, sugars, and organic acids using high-performance thin-layer chromatography (HPTLC), gas chromatography-time of flight-mass spectrometry (GC-TOF-MS), and biochemical methods. The silver NPs (AgNPs), gold NPs (AuNPs), and bimetallic NPs (AgAuNPs) were synthesized from root extract and characterized using ultraviolet-visible spectra, X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The effects of these NPs on Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli biofilms were studied using quantitative biofilm inhibition and disruption assays, as well as using fluorescence, scanning electron microscopy, and atomic force microscopy. RESULTS PZRE showed the presence of phenolics, such as plumbagin, and flavonoids, in addition to citric acid, sucrose, glucose, fructose, and starch, using HPTLC, GC-TOF-MS, and quantitative analysis. Bioreduction of silver nitrate (AgNO₃) and chloroauric acid (HAuCl₄) were confirmed at absorbances of 440 nm (AgNPs), 570 nm (AuNPs), and 540 nm (AgAuNPs), respectively. The maximum rate of synthesis at 50°C was achieved with 5 mM AgNO₃ within 4.5 hours for AgNPs; and with 0.7 mM HAuCl4 within 5 hours for AuNPs. The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest. Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively. TEM micrographs and DLS showed about 60 nm monodispersed Ag nanospheres, 20-30 nm Au nanospheres adhering to form Au nanotriangles, and about 90 nm hexagonal blunt-ended AgAuNPs. These NPs also showed antimicrobial and antibiofilm activity against E. coli, A. baumannii, S. aureus, and a mixed culture of A. baumannii and S. aureus. AgNPs inhibited biofilm in the range of 96%-99% and AgAuNPs from 93% to 98% in single-culture biofilms. AuNPs also showed biofilm inhibition, with the highest of 98% in S. aureus. AgNPs also showed good biofilm disruption, with the highest of 88% in A. baumannii. CONCLUSION This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms.
Collapse
|
Comparative Study |
11 |
57 |
3
|
Arora N, Patel A, Pruthi PA, Pruthi V. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. BIORESOURCE TECHNOLOGY 2016; 213:79-87. [PMID: 26970694 DOI: 10.1016/j.biortech.2016.02.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
The study synergistically optimized nitrogen and phosphorous concentrations for attainment of maximum lipid productivity in Chlorella minutissima. Nitrogen and phosphorous limited cells (N(L)P(L)) showed maximum lipid productivity (49.1±0.41mg/L/d), 1.47 folds higher than control. Nitrogen depletion resulted in reduced cell size with large sized lipid droplets encompassing most of the intracellular space while discrete lipid bodies were observed under nitrogen sufficiency. Synergistic N/P starvations showed more prominent effect on photosynthetic pigments as to individual deprivations. Phosphorous deficiency along with N starvation exhibited 17.12% decline in carbohydrate while no change in nitrogen sufficient cells were recorded. The optimum N(L)P(L) concentration showed balance between biomass and lipid by maintaining intermediate cell size, pigments, carbohydrate and proteins. FAME profile showed C14-C18 carbon chains in N(L)P(L) cells with biodiesel properties comparable to plant oil methyl esters. Hence, synergistic N/P limitation was effective for enhancing lipid productivity with reduced consumption of nutrients.
Collapse
|
|
9 |
57 |
4
|
Vashisth P, Nikhil K, Roy P, Pruthi PA, Singh RP, Pruthi V. A novel gellan–PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization. Carbohydr Polym 2016; 136:851-9. [PMID: 26572421 DOI: 10.1016/j.carbpol.2015.09.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022]
|
|
9 |
54 |
5
|
Vashisth P, Pruthi V. Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:304-312. [DOI: 10.1016/j.msec.2016.05.049] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/06/2016] [Accepted: 05/12/2016] [Indexed: 01/12/2023]
|
|
9 |
51 |
6
|
Lal P, Sharma D, Pruthi P, Pruthi V. Exopolysaccharide analysis of biofilm-forming Candida albicans. J Appl Microbiol 2009; 109:128-36. [PMID: 20002865 DOI: 10.1111/j.1365-2672.2009.04634.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The major objective of the study was to analyse exopolysaccharide produced by a biofilm forming-clinical strain of Candida albicans. METHODS AND RESULTS The biofilm-forming ability of C. albicans recovered from infected intrauterine devices (IUDs) was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay. The morphological characteristics of the biofilm were assessed using scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). Biochemical characterization of the exopolysaccharide was carried out by gel permeation chromatography, gas chromatography (GC), Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Microscopic studies of C. albicans biofilm revealed complex, heterogeneous three-dimensional structure, in which yeast cells and hyphal elements were entrenched within exopolysaccharides matrix. Chromatographic analysis data indicated C. albicans exopolysaccharide (c. 300 kDa) to be made up of four major sugar units. The FTIR spectrum revealed specific absorbance of O-H, C-H, O=C=O, C=O, C-N and C-C ring stretching. (1) H and (13) C NMR data showed the presence of β (1→6) and β (1→3) linkages in the exopolysaccharide chain that were assigned to α-D-glucose and β-D-glucose, α-D-mannose, α-L-rhamnose and N-acetyl glucosamine (β-D-GlcNAc), respectively. CONCLUSIONS Study suggested the production of a water soluble c. 300 kDa exopolysaccharide by C. albicans made up of glucose, mannose, rhamnose and N-acetyl glucosamine subunits. SIGNIFICANCE AND IMPACT OF THE STUDY The study could assist in the development of novel therapeutics aimed at disrupting C. albicans biofilms that will translate into improved clearance of Candida-related infections.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
51 |
7
|
Deeba F, Pruthi V, Negi YS. Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. BIORESOURCE TECHNOLOGY 2016; 213:96-102. [PMID: 26965670 DOI: 10.1016/j.biortech.2016.02.105] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 05/12/2023]
Abstract
Paper mill sludge (PMS) was assessed as cheap renewable lignocellulosic biomass for lipid production by the oleaginous yeast Cryptococcus vishniaccii (MTCC 232). The sonicated paper mill sludge extract (PMSE) exhibited enhanced lipid yield and lipid content 7.8±0.57g/l, 53.40% in comparison to 5.5±0.8g/l, 40.44% glucose synthetic medium, respectively. The accumulated triglycerides (TAG) inside the lipid droplets (LDs) were converted to biodiesel by transesterification and thoroughly characterized using GC-MS technique. The fatty acid methyl ester (FAME) profile obtained reveals elevated content of oleic acid followed by palmitic acid, linoleic acid and stearic acid with improved oxidative stability related to biodiesel quality.
Collapse
|
|
9 |
49 |
8
|
Patel A, Sindhu DK, Arora N, Singh RP, Pruthi V, Pruthi PA. Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. BIORESOURCE TECHNOLOGY 2015; 197:91-98. [PMID: 26318927 DOI: 10.1016/j.biortech.2015.08.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
This study explored biodiesel production from a low cost, abundant, non-edible lignocellulosic biomass from aqueous extract of Cassia fistula L. (CAE) fruit pulp. The CAE was utilized as substrate for cultivating novel oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. This oleaginous yeast accumulates high amount of triacylglycerides as large intracellular lipid droplets (4.35±0.54μm) using CAE as sole nutritional source. Total lipids (4.86±0.54g/l) with lipid content of 53.18% (w/w) were produced by R. kratochvilovae HIMPA1 on CAE. The FAME profile obtained revealed palmitic acid (C16:0) 43.06%, stearic acid (C18:0) 28.74%, and oleic acid (C18:1) 17.34% as major fatty acids. High saturated fatty acids content (72.58%) can be blended with high PUFA feedstocks to make it an industrially viable renewable energy product.
Collapse
|
|
10 |
48 |
9
|
Agarwal V, Lal P, Pruthi V. Prevention of Candida albicans biofilm by plant oils. Mycopathologia 2008; 165:13-9. [PMID: 17968673 DOI: 10.1007/s11046-007-9077-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 10/15/2007] [Indexed: 11/25/2022]
Abstract
The inhibitory effect of 30 plant oils was evaluated against biofilm forming Candida albicans strain (CA I) isolated from clinical samples, which was sensitive to 4 microg/ml of fluconazole, used as a positive control. The standard strain (MTCC 227, CA II) used in this study was found to be highly resistant to fluconazole, 3,000 microg/ml of which was required to inhibit the growth of this strain partially, and complete inhibition could not be achieved. Eighteen among the 30 plant oils tested were found to show anti-Candida activity by disc diffusion assay. Effective plant oils were assessed using XTT (2, 3-bis [2-Methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay for biofilm quantification. Four oils eucalyptus, peppermint, ginger grass and clove showed 80.87%, 74.16%, 40.46% and 28.57% biofilm reduction respectively. Minimum inhibitory concentration (MIC) values were calculated using agar dilution assay. Scanning electron microscopic (SEM) analysis further revealed reduction in C. albicans biofilm in response to effective oils. The substantial antifungal activity shown by these plant oils suggests their potential against infections caused by C. albicans.
Collapse
|
|
17 |
46 |
10
|
Arora N, Patel A, Pruthi PA, Pruthi V. Boosting TAG Accumulation with Improved Biodiesel Production from Novel Oleaginous Microalgae Scenedesmus sp. IITRIND2 Utilizing Waste Sugarcane Bagasse Aqueous Extract (SBAE). Appl Biochem Biotechnol 2016; 180:109-21. [PMID: 27093970 DOI: 10.1007/s12010-016-2086-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/11/2016] [Indexed: 11/30/2022]
Abstract
This investigation utilized sugarcane bagasse aqueous extract (SBAE), a nontoxic, cost-effective medium to boost triacylglycerol (TAG) accumulation in novel fresh water microalgal isolate Scenedesmus sp. IITRIND2. Maximum lipid productivity of 112 ± 5.2 mg/L/day was recorded in microalgae grown in SBAE compared to modified BBM (26 ± 3 %). Carotenoid to chlorophyll ratio was 12.5 ± 2 % higher than in photoautotrophic control, indicating an increase in photosystem II activity, thereby increasing growth rate. Fatty acid methyl ester (FAME) profile revealed presence of C14:0 (2.29 %), C16:0 (15.99 %), C16:2 (4.05 %), C18:0 (3.41 %), C18:1 (41.55 %), C18:2 (12.41), and C20:0 (1.21 %) as the major fatty acids. Cetane number (64.03), cold filter plugging property (-1.05 °C), and oxidative stability (12.03 h) indicated quality biodiesel abiding by ASTM D6751 and EN 14214 fuel standards. Results consolidate the candidature of novel freshwater microalgal isolate Scenedesmus sp. IITRIND2 cultivated in SBAE, aqueous extract made from copious, agricultural waste sugarcane bagasse to increase the lipid productivity, and could further be utilized for cost-effective biodiesel production.
Collapse
|
Journal Article |
9 |
42 |
11
|
Kumar N, Gupta S, Chand Yadav T, Pruthi V, Kumar Varadwaj P, Goel N. Extrapolation of phenolic compounds as multi-target agents against cancer and inflammation. J Biomol Struct Dyn 2018; 37:2355-2369. [PMID: 30047324 DOI: 10.1080/07391102.2018.1481457] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural products acquire massive structural and chemical diversity, which cannot be coordinated by any synthetic libraries for small molecules and they are continuing to inspire novel discoveries in health sciences. We have performed the computational calculations for geometry optimization and prediction of electronic and structural properties of some plant phenolic compounds through Gaussian 09 program. Energies of molecular orbitals were computed, to mimic out the stabilities arising from charge delocalization and intramolecular interactions. This process indicated the eventual charge transfer within the molecules. The molecular docking and ADMET properties of these compounds with a novel anticancer (HER2) and anti-inflammatory (COX-2) targets revealed that two molecules were capable of inhibiting both the targets, and could be used as multi target inhibitors. Furthermore, molecular dynamics simulation studies were performed to elucidate the binding mechanism and the comparison of inhibitor's binding mode with diverse biological activities as anticancer and anti-inflammatory agents. A high-quality association was reported among quantum chemical, ADMET, docking, dynamics and MMGBSA results. Communicated By Ramaswamy H. Sarma.
Collapse
|
Journal Article |
7 |
41 |
12
|
Arora N, Pienkos PT, Pruthi V, Poluri KM, Guarnieri MT. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnol Adv 2018; 36:1274-1292. [PMID: 29678388 DOI: 10.1016/j.biotechadv.2018.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023]
Abstract
Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.
Collapse
|
Review |
7 |
40 |
13
|
Vashisth P, Pruthi PA, Singh RP, Pruthi V. Process optimization for fabrication of gellan based electrospun nanofibers. Carbohydr Polym 2014; 109:16-21. [DOI: 10.1016/j.carbpol.2014.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/28/2022]
|
|
11 |
39 |
14
|
Gupta P, Gupta S, Sharma M, Kumar N, Pruthi V, Poluri KM. Effectiveness of Phytoactive Molecules on Transcriptional Expression, Biofilm Matrix, and Cell Wall Components of Candida glabrata and Its Clinical Isolates. ACS OMEGA 2018; 3:12201-12214. [PMID: 31459295 PMCID: PMC6645245 DOI: 10.1021/acsomega.8b01856] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/14/2018] [Indexed: 05/20/2023]
Abstract
Toxicity challenges by antifungal arsenals and emergence of multidrug resistance scenario has posed a serious threat to global community. To cope up with this alarming situation, phytoactive molecules are richest, safest, and most effective source of broad spectrum antimicrobial compounds. In the present investigation, six phytoactive molecules [cinnamaldehyde (CIN), epigallocatechin, vanillin, eugenol (EUG), furanone, and epigallocatechin gallate] were studied against Candida glabrata and its clinical isolates. Among these, CIN and EUG which are active components of cinnamon and clove essential oils, respectively, exhibited maximum inhibition against planktonic growth of C. glabrata at a concentration of 64 and 128 μg mL-1, respectively. These two molecules effectively inhibited and eradicated approximately 80% biofilm of C. glabrata and its clinical isolates from biomaterials. CIN and EUG increased reactive oxygen species generation, cell lysis, and ergosterol content in plasma membrane and reduced virulence attributes (phospholipase and proteinase) as well as catalase activity of C. glabrata cells. Reduction of mitochondrial membrane potential with increased release of cytochrome c from mitochondria to cytosol indicated initiation of early apoptosis in CIN- and EUG-treated C. glabrata cells. Transcriptional analysis showed that multidrug transporter (CDR1) and ergosterol biosynthesis genes were downregulated in the presence of CIN, while getting upregulated in EUG-treated cells. Interestingly, genes such as 1,3-β-glucan synthase (FKS1), GPI-anchored protein (KRE1), and sterol importer (AUS1) were downregulated upon treatment of CIN/EUG. These results provided molecular-level insights about the antifungal mechanism of CIN and EUG against C. glabrata including its resistant clinical isolate. The current data established that CIN and EUG can be potentially formulated in new antifungal strategies.
Collapse
|
research-article |
7 |
39 |
15
|
Panwar R, Sharma AK, Kaloti M, Dutt D, Pruthi V. Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0502-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
|
10 |
37 |
16
|
Vashisth P, Raghuwanshi N, Srivastava AK, Singh H, Nagar H, Pruthi V. Ofloxacin loaded gellan/PVA nanofibers - Synthesis, characterization and evaluation of their gastroretentive/mucoadhesive drug delivery potential. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:611-619. [DOI: 10.1016/j.msec.2016.10.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/23/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
|
|
8 |
36 |
17
|
Wadhwani SA, Shedbalkar UU, Singh R, Vashisth P, Pruthi V, Chopade BA. Kinetics of Synthesis of Gold Nanoparticles by Acinetobacter sp. SW30 Isolated from Environment. Indian J Microbiol 2016; 56:439-444. [PMID: 27784940 DOI: 10.1007/s12088-016-0598-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 05/17/2016] [Indexed: 01/18/2023] Open
Abstract
Cell biomass and metal salt concentration have great influence on morphology of biosynthesized nanoparticle. The aim of present study was to evaluate the effect of varying cell density and gold salt concentrations on synthesis of nanoparticles and its morphology, which has not been studied in bacteria till now. When cells of Acinetobacter sp. SW30 were incubated with different cell density and gold chloride concentrations, tremendous variation in color of colloidal solution containing gold nanoparticles (AuNP) was observed indicating variation in their size and shapes. Surprisingly, monodispersed spherical AuNP of size ~19 nm were observed at lowest cell density and HAuCl4 salt concentration while increase in cell number resulted in formation of polyhedral AuNP (~39 nm). Significance of this study lays in the fact that the shape and dispersity of AuNP can be customized depending up on the requirement. FTIR spectrum revealed shift from 3221 to 3196 cm-1 indicating the presence and role of amino acids in Au3+ reduction while possible involvement of amide I and II groups in stabilization of AuNP. The rate constant was calculated for cell suspension of 2.1 × 109 cfu/ml challenged with 1.0 mM HAuCl4, incubated at 30 °C and pH 7 using the slopes of initial part of the plot log (Aα - At) versus time as 1.99 × 10-8 M. Also, this is the first study to report the kinetics of gold nanoparticle synthesis by Acinetobacter sp. SW30.
Collapse
|
Journal Article |
9 |
36 |
18
|
Patel A, Sartaj K, Arora N, Pruthi V, Pruthi PA. Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynthesis pathway in oleaginous yeast. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:47-56. [PMID: 28711832 DOI: 10.1016/j.jhazmat.2017.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 05/17/2023]
Abstract
Phenol is reported to be one of the most toxic environmental pollutants present in the discharge of various industrial effluents causing a serious threat to the existing biome. Biodegradation of phenol by oleaginous yeast Rhodosporidium kratochvilovae HIMPA1 was found to degrade 1000mg/l phenol. The pathways for phenol degradation by both ortho and meta-cleavage were proposed by the identification of metabolites and enzymatic assays of ring cleavage enzymes in the cell extracts. Results suggest that this oleaginous yeast degrade phenol via meta-cleavage pathway and accumulates a high quantity of lipid content (64.92%; wt/wt) as compared to control glucose synthetic medium (GSM). Meta-cleavage pathway of phenol degradation leads to formation of pyruvate and acetaldehyde. Both these end products feed as precursors for de novo triacylglycerols (TAG) biosynthesis pathway which causes accumulation of TAG in the lipid droplets (LD) of 6.12±0.78μm grown on phenol while 2.38±0.52μm observed on GSM. This was confirmed by fluorescence microscopic images of BODIPY505-515nm stained live yeast cells. GC-MS analysis of extracted total lipid showed enhanced amount of monounsaturated fatty acid (MUFA) which was as 51.87%, 58.33% and 62.98% in presence of 0.5, 0.75 and 1g/l of phenol.
Collapse
|
|
8 |
35 |
19
|
Goel A, Meher MK, Gupta P, Gulati K, Pruthi V, Poluri KM. Microwave assisted κ-carrageenan capped silver nanocomposites for eradication of bacterial biofilms. Carbohydr Polym 2018; 206:854-862. [PMID: 30553393 DOI: 10.1016/j.carbpol.2018.11.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/12/2022]
Abstract
Maturation of bacterial biofilms and their resistance to recurrent antimicrobial agents results in convoluted infectious diseases. In the current study, kappa-Carrageenan (κ-Carrageenan/CRG), was used to formulate CRG-silver nanocomposites through a facile microwave green synthesis approach. CRG-Ag nanoparticles of size 50 ± 10 nm were obtained by using CRG as a reducing and stabilizing agent. CRG-Ag nanoparticles were highly effective against both S. aureus and P. aeruginosa mediated biofilms and acted as a broad spectrum antibacterial agent even after six months. CRG-Ag nanoparticles encapsulated in KCl cross-linked hydrogel also exhibited excellent thermal stability, and antimicrobial potency. All these results depict that CRG-Ag nanocomposites appear as a promising approach to eradicate bacterial biofilms in food packaging and biomedical applications.
Collapse
|
Journal Article |
7 |
35 |
20
|
Vashisth P, Kumar N, Sharma M, Pruthi V. Biomedical applications of ferulic acid encapsulated electrospun nanofibers. ACTA ACUST UNITED AC 2015; 8:36-44. [PMID: 28352571 PMCID: PMC4980756 DOI: 10.1016/j.btre.2015.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/08/2023]
Abstract
Ferulic acid is a ubiquitous phytochemical that holds enormous therapeutic potential but has not gained much consideration in biomedical sector due to its less bioavailability, poor aqueous solubility and physiochemical instability. In present investigation, the shortcomings associated with agro-waste derived ferulic acid were addressed by encapsulating it in electrospun nanofibrous matrix of poly (d,l-lactide-co-glycolide)/polyethylene oxide. Fluorescent microscopic analysis revealed that ferulic acid predominantly resides in the core of PLGA/PEO nanofibers. The average diameters of the PLGA/PEO and ferulic acid encapsulated PLGA/PEO nanofibers were recorded as 125 ± 65.5 nm and 150 ± 79.0 nm, respectively. The physiochemical properties of fabricated nanofibers are elucidated by IR, DSC and NMR studies. Free radical scavenging activity of fabricated nanofibers were estimated using di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed the cytotoxicity of ferulic acid encapsulated nanofibers against hepatocellular carcinoma (HepG2) cells. These ferulic acid encapsulated nanofibers could be potentially explored for therapeutic usage in biomedical sector.
Collapse
|
Journal Article |
10 |
33 |
21
|
Arora N, Patel A, Mehtani J, Pruthi PA, Pruthi V, Poluri KM. Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16952-16973. [PMID: 31030399 DOI: 10.1007/s11356-019-05138-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Oleaginous microalgae and yeast are the two major propitious factories which are sustainable sources for biodiesel production, as they can accumulate high quantities of lipids inside their bodies. To date, various microalgal and yeast species have been exploited singly for biodiesel production. However, despite the ongoing efforts, their low lipid productivity and the high cost of cultivation are still the major bottlenecks hindering their large-scale deployment. Co-culturing of microalgae and yeast has the potential to increase the overall lipid productivity by minimizing its production cost as both these organisms can utilize each other's by-products. Microalgae act as an O2 generator for yeast while consuming the CO2 and organic acids released by the yeast cells. Further, yeast can break complex sugars in the medium, which can then be utilized by microalgae thereby opening new options for copious and low-cost feedstocks such as agricultural residues. The current review provides a historical and technical overview of the existing studies on co-culturing of yeast and microalgae and elucidates the crucial factors that affect the symbiotic relationship between these two organisms. Furthermore, the review also highlighted the advantages and the future perspectives for paving a path towards a sustainable biodiesel product.
Collapse
|
|
6 |
32 |
22
|
Vashisth P, Nikhil K, Pemmaraju SC, Pruthi PA, Mallick V, Singh H, Patel A, Mishra NC, Singh RP, Pruthi V. Antibiofilm activity of quercetin-encapsulated cytocompatible nanofibers against Candida albicans. J BIOACT COMPAT POL 2013; 28:652-665. [DOI: 10.1177/0883911513502279] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In this study, nanofibers against pro dimorphic fungal sessile growth were developed. Quercetin was successfully encapsulated within poly(d,l-lactide- co-glycolide)–poly(ε-caprolactone) nanofibers using an electrospinning technique. Field emission scanning electron microscopy, fluorescent microscopy, and Fourier-transformed infrared spectrometer were used to confirm the formation as well as encapsulation of quercetin within the nanofibers. These fabricated nanofibers were further evaluated to determine the effectiveness of the antibiofilm activity against Candida albicans. The cytocompatibility of quercetin-encapsulated nanofibers was found to be similar to control and pure polymeric nanofibers based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay against human embryonic kidney (HEK-293) cell lines. These fabricated nanofibers potentially could be used as coatings on biomedical devices to inhibit microbial contaminations.
Collapse
|
|
12 |
32 |
23
|
Pruthi V, Al-Janabi A, Pereira BMJ. CHARACTERIZATION OF BIOFILM FORMED ON INTRAUTERINE DEVICES. Indian J Med Microbiol 2003. [DOI: 10.1016/s0255-0857(21)03065-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
22 |
30 |
24
|
Arora S, Rajpal A, Bhargava R, Pruthi V, Bhatia A, Kazmi AA. Antibacterial and enzymatic activity of microbial community during wastewater treatment by pilot scale vermifiltration system. BIORESOURCE TECHNOLOGY 2014; 166:132-141. [PMID: 24907572 DOI: 10.1016/j.biortech.2014.05.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
The present study investigated microbial community diversity and antibacterial and enzymatic properties of microorganisms in a pilot-scale vermifiltration system during domestic wastewater treatment. The study included isolation and identification of diverse microbial community by culture-dependent method from a vermifilter (VF) with earthworms and a conventional geofilter (GF) without earthworms. The results of the four months study revealed that presence of earthworms in VF could efficiently remove biochemical oxygen demand (BOD), chemical oxygen demand (COD), total and fecal coliforms, fecal streptococci and other pathogens. Furthermore, the burrowing activity of earthworms promoted the aeration conditions in VF which led to the predominance of the aerobic microorganisms, accounting for complex microbial community diversity. Antibacterial activity of the isolated microorganisms revealed the mechanism behind the removal of pathogens, which is reported for the first time. Specifically, cellulase, amylase and protease activity is responsible for biodegradation and stabilization of organic matter.
Collapse
|
Comparative Study |
11 |
30 |
25
|
Kumari P, Arora N, Chatrath A, Gangwar R, Pruthi V, Poluri KM, Prasad R. Delineating the Biofilm Inhibition Mechanisms of Phenolic and Aldehydic Terpenes against Cryptococcus neoformans. ACS OMEGA 2019; 4:17634-17648. [PMID: 31681870 PMCID: PMC6822124 DOI: 10.1021/acsomega.9b01482] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/25/2019] [Indexed: 05/31/2023]
Abstract
The recalcitrant biofilm formed by fungus Cryptococcus neoformans is a life-threatening pathogenic condition responsible for further intensifying cryptococcosis. Considering the enhanced biofilm resistance and toxicity of synthetic antifungal drugs, the search for efficient, nontoxic, and cost-effective natural therapeutics has received a major boost. Phenolic (thymol and carvacrol) and aldehydic (citral) terpenes are natural and safe alternatives capable of efficient microbial biofilm inhibition. However, the biofilm inhibition mechanism of these terpenes still remains unclear. In this study, we adopted an integrative biophysical and biochemical approach to elucidate the hierarchy of their action against C. neoformans biofilm cells. The microscopic analysis revealed disruption of the biofilm cell surface with elevation in surface roughness and reduction in cell height. Although all terpenes acted through ergosterol biosynthesis inhibition, the phenolic terpenes also selectively interacted via ergosterol binding. Further, the alterations in the fatty acid profile in response to terpenes attenuated the cell membrane fluidity with enhanced permeability, resulting in pore formation and efflux of the K+/intracellular content. Additionally, mitochondrial depolarization caused higher levels of reactive oxygen species, which led to increased lipid peroxidation and activation of the antioxidant defense system. Indeed, the oxidative stress caused a significant decline in the amount of extracellular polymeric matrix and capsule sugars (mannose, xylose, and glucuronic acid), leading to a reduced capsule size and an overall negative charge on the cell surface. This comprehensive data revealed the mechanistic insights into the mode of action of terpenes on biofilm inhibition, which could be exploited for formulating novel anti-biofilm agents.
Collapse
|
research-article |
6 |
30 |