1
|
Markello RD, Hansen JY, Liu ZQ, Bazinet V, Shafiei G, Suárez LE, Blostein N, Seidlitz J, Baillet S, Satterthwaite TD, Chakravarty MM, Raznahan A, Misic B. neuromaps: structural and functional interpretation of brain maps. Nat Methods 2022; 19:1472-1479. [PMID: 36203018 PMCID: PMC9636018 DOI: 10.1038/s41592-022-01625-w] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
Imaging technologies are increasingly used to generate high-resolution reference maps of brain structure and function. Comparing experimentally generated maps to these reference maps facilitates cross-disciplinary scientific discovery. Although recent data sharing initiatives increase the accessibility of brain maps, data are often shared in disparate coordinate systems, precluding systematic and accurate comparisons. Here we introduce neuromaps, a toolbox for accessing, transforming and analyzing structural and functional brain annotations. We implement functionalities for generating high-quality transformations between four standard coordinate systems. The toolbox includes curated reference maps and biological ontologies of the human brain, such as molecular, microstructural, electrophysiological, developmental and functional ontologies. Robust quantitative assessment of map-to-map similarity is enabled via a suite of spatial autocorrelation-preserving null models. neuromaps combines open-access data with transparent functionality for standardizing and comparing brain maps, providing a systematic workflow for comprehensive structural and functional annotation enrichment analysis of the human brain.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
161 |
2
|
Shafiei G, Bazinet V, Dadar M, Manera AL, Collins DL, Dagher A, Borroni B, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Santana I, Butler C, Gerhard A, Danek A, Levin J, Otto M, Sorbi S, Jiskoot LC, Seelaar H, van Swieten JC, Rohrer JD, Misic B, Ducharme S, Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI)
RosenHowardDickersonBradford CDomoto-ReillyKimokoKnopmanDavidBoeveBradley FBoxerAdam LKornakJohnMillerBruce LSeeleyWilliam WGorno-TempiniMaria-LuisaMcGinnisScottMandelliMaria Luisa, GENetic Frontotemporal dementia Initiative (GENFI)
EsteveAitana SogorbNelsonAnnabelBouziguesArabellaHellerCarolinGreavesCaroline VCashDavidThomasDavid LToddEmilyBenotmaneHanyaZetterbergHenrikSwiftImogen JNicholasJenniferSamraKiranRussellLucy LBocchettaMartinaShafeiRachelleConveryRhian STimberlakeCarolynCopeThomasRittmanTimothyBenussiAlbertoPremiEnricoGasparottiRobertoArchettiSilvanaGazzinaStefanoCantoniValentinaArighiAndreaFenoglioChiaraScarpiniElioFumagalliGiorgioBorracciVittoriaRossiGiacominaGiacconeGiorgioFedeGiuseppe DiCaroppoPaolaTiraboschiPietroPrioniSaraRedaelliVeronicaTang-WaiDavidRogaevaEkaterinaCastelo-BrancoMiguelFreedmanMorrisKerenRonBlackSandraMitchellSaraShoesmithChristenBarthaRobartRademakersRosavan der EndeEmmaPoosJackiePapmaJanne MGianniniLuciavan MinkelenRickPijnenburgYolandeNacmiasBenedettaFerrariCamillaPolitoCristinaLombardiGemmaBessiValentinaVeldsmanMicheleAnderssonChristinThonbergHakanÖijerstedtLinnJelicVesnaThompsonPaulLangheinrichTobiasLladóAlbertAntonellAnnaOlivesJaumeBalasaMirceaBargallóNuriaBorrego-EcijaSergiVerdelhoAnaMarutaCarolinaFerreiraCatarina BMiltenbergerGabrieldo CoutoFrederico SimõesGabilondoAlazneGorostidiAnaVillanuaJorgeCañadaMartaTaintaMikelZulaicaMirenBarandiaranMyriamAlvesPatriciaBenderBenjaminWilkeCarloGrafLisaVogelsAnnickVandenbulckeMathieuVan DammePhilipBruffaertsRoseRosa-NetoPedroGauthierSergeCamuzatAgnèsBriceAlexisBertrandAnneFunkiewiezAurélieRinaldiDaisySaracinoDarioColliotOlivierSayahSabrinaPrixCatharinaWlasichElisabethWagemannOliviaLoosliSandraSchöneckerSonjaHoegenTobiasLombardiJolinaAnderl-StraubSarahRollinAdelineKuchcinskiGregoryBertouxMaximeLebouvierThibaudDeramecourtVincentSantiagoBeatrizDuroDianaLeitãoMaria JoãoAlmeidaMaria RosarioTábuas-PereiraMiguelAfonsoSóniaEngelAnnerosePolyakovaMaryna. Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia. Brain 2022; 146:321-336. [PMID: 35188955 PMCID: PMC9825569 DOI: 10.1093/brain/awac069] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 01/30/2022] [Indexed: 01/13/2023] Open
Abstract
Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.
Collapse
|
research-article |
3 |
38 |
3
|
Bazinet V, Vos de Wael R, Hagmann P, Bernhardt BC, Misic B. Multiscale communication in cortico-cortical networks. Neuroimage 2021; 243:118546. [PMID: 34478823 DOI: 10.1016/j.neuroimage.2021.118546] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Signaling in brain networks unfolds over multiple topological scales. Areas may exchange information over local circuits, encompassing direct neighbours and areas with similar functions, or over global circuits, encompassing distant neighbours with dissimilar functions. Here we study how the organization of cortico-cortical networks mediate localized and global communication by parametrically tuning the range at which signals are transmitted on the white matter connectome. We show that brain regions vary in their preferred communication scale. By investigating the propensity for brain areas to communicate with their neighbors across multiple scales, we naturally reveal their functional diversity: unimodal regions show preference for local communication and multimodal regions show preferences for global communication. We show that these preferences manifest as region- and scale-specific structure-function coupling. Namely, the functional connectivity of unimodal regions emerges from monosynaptic communication in small-scale circuits, while the functional connectivity of transmodal regions emerges from polysynaptic communication in large-scale circuits. Altogether, the present findings reveal that communication preferences are highly heterogeneous across the cortex, shaping regional differences in structure-function coupling.
Collapse
|
|
4 |
31 |
4
|
Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023; 24:747-760. [PMID: 37848663 DOI: 10.1038/s41583-023-00752-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The brain is a network of interleaved neural circuits. In modern connectomics, brain connectivity is typically encoded as a network of nodes and edges, abstracting away the rich biological detail of local neuronal populations. Yet biological annotations for network nodes - such as gene expression, cytoarchitecture, neurotransmitter receptors or intrinsic dynamics - can be readily measured and overlaid on network models. Here we review how connectomes can be represented and analysed as annotated networks. Annotated connectomes allow us to reconceptualize architectural features of networks and to relate the connection patterns of brain regions to their underlying biology. Emerging work demonstrates that annotated connectomes help to make more veridical models of brain network formation, neural dynamics and disease propagation. Finally, annotations can be used to infer entirely new inter-regional relationships and to construct new types of network that complement existing connectome representations. In summary, biologically annotated connectomes offer a compelling way to study neural wiring in concert with local biological features.
Collapse
|
Review |
2 |
27 |
5
|
Ferraro S, Klugah-Brown B, Tench CR, Bazinet V, Bore MC, Nigri A, Demichelis G, Bruzzone MG, Palermo S, Zhao W, Yao S, Jiang X, Kendrick KM, Becker B. The central autonomic system revisited – Convergent evidence for a regulatory role of the insular and midcingulate cortex from neuroimaging meta-analyses. Neurosci Biobehav Rev 2022; 142:104915. [DOI: 10.1016/j.neubiorev.2022.104915] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
|
|
3 |
27 |
6
|
Bazinet V, Hansen JY, Vos de Wael R, Bernhardt BC, van den Heuvel MP, Misic B. Assortative mixing in micro-architecturally annotated brain connectomes. Nat Commun 2023; 14:2850. [PMID: 37202416 DOI: 10.1038/s41467-023-38585-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The wiring of the brain connects micro-architecturally diverse neuronal populations, but the conventional graph model, which encodes macroscale brain connectivity as a network of nodes and edges, abstracts away the rich biological detail of each regional node. Here, we annotate connectomes with multiple biological attributes and formally study assortative mixing in annotated connectomes. Namely, we quantify the tendency for regions to be connected based on the similarity of their micro-architectural attributes. We perform all experiments using four cortico-cortical connectome datasets from three different species, and consider a range of molecular, cellular, and laminar annotations. We show that mixing between micro-architecturally diverse neuronal populations is supported by long-distance connections and find that the arrangement of connections with respect to biological annotations is associated to patterns of regional functional specialization. By bridging scales of cortical organization, from microscale attributes to macroscale connectivity, this work lays the foundation for next-generation annotated connectomics.
Collapse
|
|
2 |
17 |
7
|
Milisav F, Bazinet V, Betzel RF, Misic B. A simulated annealing algorithm for randomizing weighted networks. NATURE COMPUTATIONAL SCIENCE 2025; 5:48-64. [PMID: 39658626 PMCID: PMC11774763 DOI: 10.1038/s43588-024-00735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024]
Abstract
Scientific discovery in connectomics relies on network null models. The prominence of network features is conventionally evaluated against null distributions estimated using randomized networks. Modern imaging technologies provide an increasingly rich array of biologically meaningful edge weights. Despite the prevalence of weighted graph analysis in connectomics, randomization models that only preserve binary node degree remain most widely used. Here we propose a simulated annealing procedure for generating randomized networks that preserve weighted degree (strength) sequences. We show that the procedure outperforms other rewiring algorithms and generalizes to multiple network formats, including directed and signed networks, as well as diverse real-world networks. Throughout, we use morphospace representation to assess the sampling behavior of the algorithm and the variability of the resulting ensemble. Finally, we show that accurate strength preservation yields different inferences about brain network organization. Collectively, this work provides a simple but powerful method to analyze richly detailed next-generation connectomics datasets.
Collapse
|
research-article |
1 |
|
8
|
Betzel R, Puxeddu MG, Seguin C, Bazinet V, Luppi A, Podschun A, Singleton SP, Faskowitz J, Parakkattu V, Misic B, Markett S, Kuceyeski A, Parkes L. Controlling the human connectome with spatially diffuse input signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.581006. [PMID: 38463980 PMCID: PMC10925126 DOI: 10.1101/2024.02.27.581006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human brain is never at "rest"; its activity is constantly fluctuating over time, transitioning from one brain state-a whole-brain pattern of activity-to another. Network control theory offers a framework for understanding the effort - energy - associated with these transitions. One branch of control theory that is especially useful in this context is "optimal control", in which input signals are used to selectively drive the brain into a target state. Typically, these inputs are introduced independently to the nodes of the network (each input signal is associated with exactly one node). Though convenient, this input strategy ignores the continuity of cerebral cortex - geometrically, each region is connected to its spatial neighbors, allowing control signals, both exogenous and endogenous, to spread from their foci to nearby regions. Additionally, the spatial specificity of brain stimulation techniques is limited, such that the effects of a perturbation are measurable in tissue surrounding the stimulation site. Here, we adapt the network control model so that input signals have a spatial extent that decays exponentially from the input site. We show that this more realistic strategy takes advantage of spatial dependencies in structural connectivity and activity to reduce the energy (effort) associated with brain state transitions. We further leverage these dependencies to explore near-optimal control strategies such that, on a per-transition basis, the number of input signals required for a given control task is reduced, in some cases by two orders of magnitude. This approximation yields network-wide maps of input site density, which we compare to an existing database of functional, metabolic, genetic, and neurochemical maps, finding a close correspondence. Ultimately, not only do we propose a more efficient framework that is also more adherent to well-established brain organizational principles, but we also posit neurobiologically grounded bases for optimal control.
Collapse
|
Preprint |
1 |
|
9
|
Milisav F, Bazinet V, Iturria-Medina Y, Misic B. Resolving inter-regional communication capacity in the human connectome. Netw Neurosci 2023; 7:1051-1079. [PMID: 37781139 PMCID: PMC10473316 DOI: 10.1162/netn_a_00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/03/2023] [Indexed: 10/03/2023] Open
Abstract
Applications of graph theory to the connectome have inspired several models of how neural signaling unfolds atop its structure. Analytic measures derived from these communication models have mainly been used to extract global characteristics of brain networks, obscuring potentially informative inter-regional relationships. Here we develop a simple standardization method to investigate polysynaptic communication pathways between pairs of cortical regions. This procedure allows us to determine which pairs of nodes are topologically closer and which are further than expected on the basis of their degree. We find that communication pathways delineate canonical functional systems. Relating nodal communication capacity to meta-analytic probabilistic patterns of functional specialization, we also show that areas that are most closely integrated within the network are associated with higher order cognitive functions. We find that these regions' proclivity towards functional integration could naturally arise from the brain's anatomical configuration through evenly distributed connections among multiple specialized communities. Throughout, we consider two increasingly constrained null models to disentangle the effects of the network's topology from those passively endowed by spatial embedding. Altogether, the present findings uncover relationships between polysynaptic communication pathways and the brain's functional organization across multiple topological levels of analysis and demonstrate that network integration facilitates cognitive integration.
Collapse
|
research-article |
2 |
|
10
|
Luppi AI, Liu ZQ, Milisav F, Bazinet V, Hansen J, Misic B. From abstract networks to biological realities. Phys Life Rev 2024; 49:12-14. [PMID: 38471192 DOI: 10.1016/j.plrev.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
|
|
1 |
|
11
|
Shafiei G, Bazinet V, Dadar M, Manera AL, Collins L, Dagher A, Bocchetta M, Todd EG, Peakman G, Cash DM, Convery RS, Russell LL, Thomas DL, Iglesias JE, van Swieten JC, Jiskoot LC, Seelaar H, Borroni B, Galimberti D, Sanchez‐Valle R, Laforce R, Moreno F, Synofzik M, Graff C, Masellis M, Tartaglia MC, Rowe JB, Vandenberghe R, Finger E, Tagliavini F, Mendonca A, Santana I, Butler C, Gerhard A, Danek A, Levin J, Otto M, Sorbi S, Ber IL, Pasquier F, Rohrer JD, Bratislav M, Ducharme S. Atrophy patterns in sporadic and genetic behavioral variant frontotemporal dementia reflect brain network architecture. Alzheimers Dement 2021. [DOI: 10.1002/alz.051221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
4 |
|