1
|
Peltier P, Euzen R, Daniellou R, Nugier-Chauvin C, Ferrières V. Recent knowledge and innovations related to hexofuranosides: structure, synthesis and applications. Carbohydr Res 2008; 343:1897-923. [DOI: 10.1016/j.carres.2008.02.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
|
|
17 |
123 |
2
|
Legentil L, Paris F, Ballet C, Trouvelot S, Daire X, Vetvicka V, Ferrières V. Molecular Interactions of β-(1→3)-Glucans with Their Receptors. Molecules 2015; 20:9745-66. [PMID: 26023937 PMCID: PMC6272582 DOI: 10.3390/molecules20069745] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/20/2015] [Indexed: 12/01/2022] Open
Abstract
β-(1→3)-Glucans can be found as structural polysaccharides in cereals, in algae or as exo-polysaccharides secreted on the surfaces of mushrooms or fungi. Research has now established that β-(1→3)-glucans can trigger different immune responses and act as efficient immunostimulating agents. They constitute prevalent sources of carbons for microorganisms after subsequent recognition by digesting enzymes. Nevertheless, mechanisms associated with both roles are not yet clearly understood. This review focuses on the variety of elucidated molecular interactions that involve these natural or synthetic polysaccharides and their receptors, i.e., Dectin-1, CR3, glycolipids, langerin and carbohydrate-binding modules.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Agaricales/genetics
- Agaricales/metabolism
- Antigens, CD/genetics
- Antigens, CD/immunology
- Edible Grain/genetics
- Edible Grain/metabolism
- Gene Expression Regulation
- Glucan 1,3-beta-Glucosidase/genetics
- Glucan 1,3-beta-Glucosidase/immunology
- Glycolipids/immunology
- Glycolipids/metabolism
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Macrophage-1 Antigen/genetics
- Macrophage-1 Antigen/immunology
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/immunology
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Signal Transduction
- Stramenopiles/genetics
- Stramenopiles/metabolism
- beta-Glucans/metabolism
Collapse
|
Review |
10 |
110 |
3
|
Ferrières V, Bertho JN, Plusquellec D. A new synthesis of O-glycosides from totally O-unprotected glycosyl donors. Tetrahedron Lett 1995. [DOI: 10.1016/0040-4039(95)00356-h] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
30 |
73 |
4
|
Jamois F, Ferrières V, Guégan JP, Yvin JC, Plusquellec D, Vetvicka V. Glucan-like synthetic oligosaccharides: iterative synthesis of linear oligo-beta-(1,3)-glucans and immunostimulatory effects. Glycobiology 2004; 15:393-407. [PMID: 15590774 DOI: 10.1093/glycob/cwi020] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Small reducing and linear oligo-beta-(1,3)-glucans, which are able to act as phytoallexin elicitors or as immunostimulating agents in anticancer therapy, were synthesized according to an iterative strategy that involved a unique key monosaccharidic donor. To avoid anomeric mixtures, the reducing entity of the target oligomers was first locked with benzyl alcohol and further selective deprotection of the 3-OH with DDQ afforded the desired building block as an acceptor. The latter was then used in a second cycle of glycosylation/deprotection to afford the desired disaccharide, and successive reiterations of this process provided the desired oligomers. Unusual conformational behaviors were observed by standard NMR sequences and supported by NOESY studies. Finally, removal of protecting groups afforded free tri-, tetra-, and pentaglucosides in good overall yields. Two oligosaccharides representing linear laminaritetraose and laminaripentaose were compared to the recently described beta-(1,3)-glucan phycarine. Following an intraperitoneal injection, the influx of monocytes and granulocytes into the blood and macrophages into the peritoneal cavity was comparable to that caused by phycarine. Similarly, both oligosaccharides stimulated phagocytic activity of granulocytes and macrophages. Using ELISA, we also demonstrated a significant stimulation of secretion of IL-1beta. Together these results suggest that the synthetic oligosaccharides have similar stimulatory effects as natural beta-(1,3)-glucans.
Collapse
|
Journal Article |
21 |
66 |
5
|
Engel J, Schmalhorst PS, Dörk-Bousset T, Ferrières V, Routier FH. A single UDP-galactofuranose transporter is required for galactofuranosylation in Aspergillus fumigatus. J Biol Chem 2009; 284:33859-68. [PMID: 19840949 DOI: 10.1074/jbc.m109.070219] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galactofuranose (Galf) containing molecules have been described at the cell surface of several eukaryotes and shown to contribute to the virulence of the parasite Leishmania major and the fungus Aspergillus fumigatus. It is anticipated that a number of the surface glycoconjugates such as N-glycans or glycolipids are galactofuranosylated in the Golgi apparatus. This raises the question of how the substrate for galactofuranosylation reactions, UDP-Galf, which is synthesized in the cytosol, translocates into the organelles of the secretory pathway. Here we report the first identification of a Golgi-localized nucleotide sugar transporter, named GlfB, with specificity for a UDP-Galf. In vitro transport assays established binding of UDP-Galf to GlfB and excluded transport of several other nucleotide sugars. Furthermore, the implication of glfB in the galactofuranosylation of A. fumigatus glycoconjugates and galactomannan was demonstrated by a targeted gene deletion approach. Our data reveal a direct connection between galactomannan and the organelles of the secretory pathway that strongly suggests that the cell wall-bound polysaccharide originates from its glycosylphosphatidylinositol-anchored form.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
52 |
6
|
Peltier P, Beláňová M, Dianišková P, Zhou R, Zheng RB, Pearcey JA, Joe M, Brennan PJ, Nugier-Chauvin C, Ferrières V, Lowary TL, Daniellou R, Mikušová K. Synthetic UDP-furanoses as potent inhibitors of mycobacterial galactan biogenesis. ACTA ACUST UNITED AC 2011; 17:1356-66. [PMID: 21168771 DOI: 10.1016/j.chembiol.2010.10.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 11/29/2022]
Abstract
UDP-galactofuranose (UDP-Galf) is a substrate for two types of enzymes, UDP-galactopyranose mutase and galactofuranosyltransferases, which are present in many pathogenic organisms but absent from mammals. In particular, these enzymes are involved in the biosynthesis of cell wall galactan, a polymer essential for the survival of the causative agent of tuberculosis, Mycobacterium tuberculosis. We describe here the synthesis of derivatives of UDP-Galf modified at C-5 and C-6 using a chemoenzymatic route. In cell-free assays, these compounds prevented the formation of mycobacterial galactan, via the production of short "dead-end" intermediates resulting from their incorporation into the growing oligosaccharide chain. Modified UDP-furanoses thus constitute novel probes for the study of the two classes of enzymes involved in mycobacterial galactan assembly, and studies with these compounds may ultimately facilitate the future development of new therapeutic agents against tuberculosis.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
44 |
7
|
Gelin M, Ferrières V, Plusquellec D. A General and Diastereoselective Synthesis of 1,2-cis-Hexofuranosides from 1,2-trans-Thiofuranosyl Donors. European J Org Chem 2000. [DOI: 10.1002/(sici)1099-0690(200004)2000:8<1423::aid-ejoc1423>3.0.co;2-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
25 |
39 |
8
|
Bertho JN, Ferrières V, Plusquellec D. A new synthesis ofD-glycosiduronates from unprotectedD-uronic acids. ACTA ACUST UNITED AC 1995. [DOI: 10.1039/c39950001391] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
30 |
38 |
9
|
Chlubnová I, Sylla B, Nugier-Chauvin C, Daniellou R, Legentil L, Kralová B, Ferrières V. Natural glycans and glycoconjugates as immunomodulating agents. Nat Prod Rep 2011; 28:937-52. [DOI: 10.1039/c1np00005e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
14 |
37 |
10
|
Cabezas Y, Legentil L, Robert-Gangneux F, Daligault F, Belaz S, Nugier-Chauvin C, Tranchimand S, Tellier C, Gangneux JP, Ferrières V. Leishmania cell wall as a potent target for antiparasitic drugs. A focus on the glycoconjugates. Org Biomol Chem 2016; 13:8393-404. [PMID: 26130402 DOI: 10.1039/c5ob00563a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although leishmaniasis has been studied for over a century, the fight against cutaneous, mucocutaneous and visceral forms of the disease remains a hot topic. This review refers to the parasitic cell wall and more particularly to the constitutive glycoconjugates. The structures of the main glycolipids and glycoproteins, which are species-dependent, are described. The focus is on the disturbance of the lipid membrane by existing drugs and possible new ones, in order to develop future therapeutic agents.
Collapse
|
Review |
9 |
36 |
11
|
Chlubnova I, Legentil L, Dureau R, Pennec A, Almendros M, Daniellou R, Nugier-Chauvin C, Ferrières V. Specific and non-specific enzymes for furanosyl-containing conjugates: biosynthesis, metabolism, and chemo-enzymatic synthesis. Carbohydr Res 2012; 356:44-61. [PMID: 22554502 DOI: 10.1016/j.carres.2012.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/27/2022]
Abstract
There is no doubt now that the synthesis of compounds of varying complexity such as saccharides and derivatives thereof continuously grows with enzymatic methods. This review focuses on recent basic knowledge on enzymes specifically involved in the biosynthesis and degradation of furanosyl-containing polysaccharides and conjugates. Moreover, and when possible, biocatalyzed approaches, alternative to standard synthesis, will be detailed in order to strengthen the high potential of these biocatalysts to go further with the preparation of rare furanosides. Interesting results will be also proposed with chemo-enzymatic processes based on nonfuranosyl-specific enzymes.
Collapse
|
Review |
13 |
35 |
12
|
Goodby JW, Haley JA, Mackenzie G, Watson MJ, Plusquellec D, Ferrières V. Amphitropic liquid-crystalline properties of some novel alkyl furanosides. ACTA ACUST UNITED AC 1995. [DOI: 10.1039/jm9950502209] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
30 |
34 |
13
|
Descroix K, Ferrières V, Jamois F, Yvin JC, Plusquellec D. Recent Progress in the Field of β-(1,3)-Glucans and New Applications. Mini Rev Med Chem 2006; 6:1341-9. [PMID: 17168810 DOI: 10.2174/138955706778993058] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-(1,3)-glucans are widely distributed within microorganisms or seaweeds in which they act as membrane components or for energy storage, respectively. Since these glucans are not biosynthesized by mammals, they are likely to activate the immune system of their host. Since the discovery of their positive involvement as immunomodulator agents, numerous studies were published all around the glycosciences. These works deal with purification procedures, analytical chemistry, synthetic processes, chemical modification of the natural polysaccharides, determination of their physicochemical properties, and assessment of their biological and medicinal effects through in vitro and in vivo studies. This article aims at presenting some recent results linked to beta-(1,3)-glucans through two closely connected points of view, i.e. biology and chemistry. Biological aspects will be focused more particularly on discovery of some receptors present on immunocompetent cells and scope and limitations of chemical synthesis and/or modifications will be described. Moreover, this paper will also introduce some new chemo-enzymatic synthetic methods using wild-type or mutant glycosidases and will be extended to novel opportunities of applications of beta-(1,3)-glucans in nanotechnology resulting from a better understanding of their self-assembling propensity in aqueous media.
Collapse
|
|
19 |
32 |
14
|
Labourel A, Jam M, Legentil L, Sylla B, Hehemann JH, Ferrières V, Czjzek M, Michel G. Structural and biochemical characterization of the laminarinaseZgLamCGH16fromZobellia galactanivoranssuggests preferred recognition of branched laminarin. ACTA ACUST UNITED AC 2015; 71:173-84. [DOI: 10.1107/s139900471402450x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/07/2014] [Indexed: 05/28/2023]
Abstract
Laminarin is a β-1,3-D-glucan displaying occasional β-1,6 branches. This storage polysaccharide of brown algae constitutes an abundant source of carbon for marine bacteria such asZobellia galactanivorans. This marine member of the Bacteroidetes possesses five putative β-1,3-glucanases [four belonging to glycosyl hydrolase family 16 (GH16) and one to GH64] with various modular architectures. Here, the characterization of the β-glucanaseZgLamC is reported. The catalytic GH16 module (ZgLamCGH16) was produced inEscherichia coliand purified. This recombinant enzyme has a preferential specificity for laminarin but also a significant activity on mixed-linked glucan (MLG). The structure of an inactive mutant ofZgLamCGH16in complex with a thio-β-1,3-hexaglucan substrate unravelled a straight active-site cleft with three additional pockets flanking subsites −1, −2 and −3. These lateral pockets are occupied by a glycerol, an acetate ion and a chloride ion, respectively. The presence of these molecules in the vicinity of the O6 hydroxyl group of each glucose moiety suggests thatZgLamCGH16accommodates branched laminarins as substrates. Altogether,ZgLamC is a secreted laminarinase that is likely to be involved in the initial step of degradation of branched laminarin, while the previously characterizedZgLamA efficiently degrades unbranched laminarin and oligo-laminarins.
Collapse
|
|
10 |
32 |
15
|
Ferrières V, Blanchard S, Fischer D, Plusquellec D. A novel synthesis of D-galactofuranosyl, D-glucofuranosyl and D-mannofuranosyl 1-phosphates based on remote activation of new and free hexofuranosyl donors. Bioorg Med Chem Lett 2002; 12:3515-8. [PMID: 12443765 DOI: 10.1016/s0960-894x(02)00822-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The selective synthesis of 1,2-cis-hexofuranosyl 1-phosphates was readily accomplished according to a procedure based on the 'Remote Activation Concept'. This approach required (i) the preparation of suitable 1,2-trans-hexofuranosyl donors, so that new heterocyclic thiofuranosides were designed and synthesized, (ii) the stereocontrolled phosphorylation of the corresponding unprotected donors and (iii) the simple and fast purification of the resulting anomeric phosphates. This approach showed to be equally efficient in the galactose, glucose and mannose series.
Collapse
|
|
23 |
32 |
16
|
Euzen R, Ferrières V, Plusquellec D. General one-step synthesis of free hexofuranosyl 1-phosphates using unprotected 1-thioimidoyl hexofuranosides. J Org Chem 2005; 70:847-55. [PMID: 15675842 DOI: 10.1021/jo0484934] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general one-step strategy is developed for the synthesis of hexofuranosyl 1-phosphates starting from new unprotected glycofuranosyl donors. It required first the preparation of new 1-thiohexofuranosides bearing a thioimidoyl heterocycle as a leaving group. The presence of sulfur and/or nitrogen atom(s) on the aglycon allowed remote activation of these thioglycofuranosides by anhydrous phosphoric acid and led to the target phosphates 9, 27, 29, and 30 in good to excellent selectivities and, more importantly, with very limited or no ring expansion. Moreover, this one-step phosphorylation reaction could be significantly improved by avoiding any tedious protecting group manipulations on negatively charged compounds and by focusing on a simple but general procedure of purification. This approach was applied to the diastereocontrolled synthesis of d-galacto- and d-glucofuranosyl 1-phosphates and also to the preparation of rare epimer and/or deoxy counterparts, that is, d-manno- and d-fucofuranosyl derivatives.
Collapse
|
Journal Article |
20 |
31 |
17
|
Timmons SC, Hui JPM, Pearson JL, Peltier P, Daniellou R, Nugier-Chauvin C, Soo EC, Syvitski RT, Ferrières V, Jakeman DL. Enzyme-catalyzed synthesis of furanosyl nucleotides. Org Lett 2007; 10:161-3. [PMID: 18092787 DOI: 10.1021/ol7023949] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bacterial alpha-d-glucopyranosyl-1-phosphate thymidylyltransferase was found to couple four hexofuranosyl-1-phosphates, as well as a pentofuranosyl-1-phosphate, with deoxythymidine 5'-triphosphate, providing access to furanosyl nucleotides. The enzymatic reaction mixtures were analyzed by electrospray ionization mass spectrometry and NMR spectroscopy to determine the anomeric stereochemistry of furanosyl nucleotide products. This is the first demonstration of a nucleotidylyltransferase discriminating between diastereomeric mixtures of sugar-1-phosphates to produce stereopure, biologically relevant furanosyl nucleotides.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
31 |
18
|
Gelin M, Ferrières V, Lefeuvre M, Plusquellec D. First Intramolecular Aglycon Delivery onto a D-Fucofuranosyl Entity for the Synthesis of α-D-Fucofuranose-Containing Disaccharides. European J Org Chem 2003. [DOI: 10.1002/ejoc.200390184] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
22 |
31 |
19
|
Chlubnová I, Filipp D, Spiwok V, Dvořáková H, Daniellou R, Nugier-Chauvin C, Králová B, Ferrières V. Enzymatic synthesis of oligo-d-galactofuranosides and l-arabinofuranosides: from molecular dynamics to immunological assays. Org Biomol Chem 2010; 8:2092-102. [DOI: 10.1039/b926988f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
15 |
31 |
20
|
Peltier P, Daniellou R, Nugier-Chauvin C, Ferrières V. Versatile synthesis of rare nucleotide furanoses. Org Lett 2007; 9:5227-30. [PMID: 17997566 DOI: 10.1021/ol702392x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct activation of unprotected thioimidoyl furanosides yielded in only one step and few minutes a panel of rare uridine 5'-diphospho-furanoses. Diastereoselectivity of the reaction was tightly connected with reaction time, temperature, and nature of the furanosyl donor. This approach was totally selective since no ring expansion from the initial five-membered ring to the more stable pyranose form was observed.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
31 |
21
|
Ferrières V, Gelin M, Boulch R, Toupet L, Plusquellec D. An efficient route to per-O-acetylated hexofuranoses. Carbohydr Res 1998. [DOI: 10.1016/s0008-6215(98)00290-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
27 |
30 |
22
|
Eppe G, Peltier P, Daniellou R, Nugier-Chauvin C, Ferrières V, Vincent SP. Probing UDP-galactopyranose mutase binding pocket: a dramatic effect on substitution of the 6-position of UDP-galactofuranose. Bioorg Med Chem Lett 2008; 19:814-6. [PMID: 19119008 DOI: 10.1016/j.bmcl.2008.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 11/16/2022]
Abstract
UDP-galactopyranose mutase (UGM) catalyzes the isomerization of UDP-galactopyranose (UDP-Galp) into UDP-galactofuranose (UDP-Galf), an essential step of the mycobacterial cell wall biosynthesis. UDP-(6-deoxy-6-fluoro)-D-galactofuranose 1 was tested as substrate of UGM. Turnover could be observed by HPLC. The k(cat) (7.4s(-1)) and the K(m) (24 mM) of 1 were thus measured and compared with those of UDP-Galf and other fluorinated analogs. The presence of the fluorine atom at the 6-position had a moderate effect on the rate of the reaction but a huge one on the interactions between the enzyme and its substrate. This result demonstrated that key interactions occur at the vicinity of the 6-position of UDP-galactose in the Michaelis complex.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
30 |
23
|
Tailler D, Ferrières V, Pekari K, Schmidt RR. Synthesis of the glycosyl phosphatidyl inositol anchor of rat brain Thy-1. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(98)02579-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
|
26 |
27 |
24
|
Descroix K, Větvička V, Laurent I, Jamois F, Yvin JC, Ferrières V. New oligo-β-(1,3)-glucan derivatives as immunostimulating agents. Bioorg Med Chem 2010; 18:348-57. [DOI: 10.1016/j.bmc.2009.10.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 11/15/2022]
|
|
15 |
26 |
25
|
Sylla B, Guégan JP, Wieruszeski JM, Nugier-Chauvin C, Legentil L, Daniellou R, Ferrières V. Probing β-(1→3)-D-glucans interactions with recombinant human receptors using high-resolution NMR studies. Carbohydr Res 2011; 346:1490-4. [PMID: 21546004 DOI: 10.1016/j.carres.2011.03.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/18/2011] [Accepted: 03/29/2011] [Indexed: 01/21/2023]
Abstract
A full characterization of the high-resolution NMR spectrum of the laminarihexaose is described and used for the determination of the binding epitope of the more complex but structurally related laminarin. These biophysical data extend the current knowledge of β-glucans/Dectin-1 interactions and suggest different biological mechanisms in close relation with the size of the saccharidic chain.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
23 |