1
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
|
Review |
7 |
372 |
2
|
Cassagnes LE, Hervé V, Nepveu F, Hureau C, Faller P, Collin F. The catalytically active copper-amyloid-Beta state: coordination site responsible for reactive oxygen species production. Angew Chem Int Ed Engl 2013; 52:11110-3. [PMID: 24038998 DOI: 10.1002/anie.201305372] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Indexed: 12/22/2022]
Abstract
Copper-amyloid-β ROS production: Copper ions (red sphere, see picture) have been found to accumulate in amyloid-β plaques and play a role in the generation of reactive oxygen species (ROS) within this context. Mass spectrometry studies were able to detail the sites of oxidation damage and shed new light on the mechanism of ROS production, important for the understanding of the pathogenicity of amyloid-β peptides.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
89 |
3
|
Fabre M, Koeck JL, Le Flèche P, Simon F, Hervé V, Vergnaud G, Pourcel C. High genetic diversity revealed by variable-number tandem repeat genotyping and analysis of hsp65 gene polymorphism in a large collection of "Mycobacterium canettii" strains indicates that the M. tuberculosis complex is a recently emerged clone of "M. canettii". J Clin Microbiol 2004; 42:3248-55. [PMID: 15243089 PMCID: PMC446256 DOI: 10.1128/jcm.42.7.3248-3255.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed, using complementary molecular methods, the diversity of 43 strains of "Mycobacterium canettii" originating from the Republic of Djibouti, on the Horn of Africa, from 1998 to 2003. Genotyping by multiple-locus variable-number tandem repeat analysis shows that all the strains belong to a single but very distant group when compared to strains of the Mycobacterium tuberculosis complex (MTBC). Thirty-one strains cluster into one large group with little variability and five strains form another group, whereas the other seven are more diverged. In total, 14 genotypes are observed. The DR locus analysis reveals additional variability, some strains being devoid of a direct repeat locus and others having unique spacers. The hsp65 gene polymorphism was investigated by restriction enzyme analysis and sequencing of PCR amplicons. Four new single nucleotide polymorphisms were discovered. One strain was characterized by three nucleotide changes in 441 bp, creating new restriction enzyme polymorphisms. As no sequence variability was found for hsp65 in the whole MTBC, and as a single point mutation separates M. tuberculosis from the closest "M. canettii" strains, this diversity within "M. canettii" subspecies strongly suggests that it is the most probable source species of the MTBC rather than just another branch of the MTBC.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
75 |
4
|
Guilleminault L, Azzopardi N, Arnoult C, Sobilo J, Hervé V, Montharu J, Guillon A, Andres C, Herault O, Le Pape A, Diot P, Lemarié E, Paintaud G, Gouilleux-Gruart V, Heuzé-Vourc'h N. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. J Control Release 2014; 196:344-54. [DOI: 10.1016/j.jconrel.2014.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/18/2022]
|
|
11 |
67 |
5
|
Fretz C, Jeannel D, Stuyver L, Hervé V, Lunel F, Boudifa A, Mathiot C, de Thé G, Fournel JJ. HCV infection in a rural population of the Central African Republic (CAR): evidence for three additional subtypes of genotype 4. J Med Virol 1995; 47:435-7. [PMID: 8636715 DOI: 10.1002/jmv.1890470423] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The prevalence of hepatitis C virus (HCV) antibodies, HCV infection, and genotypes was studied in a rural population of the Central African Republic. In five villages, blood samples were taken from all the inhabitants present during the survey, belonging to Pygmies (299) and to Bantu and Banda ethnic groups (247). Using a second-generation ELISA screening and confirmation by immunoblot assay for the detection of HCV antibodies, all the Pygmies were negative, whereas seven Bantus/Bandas, aged > 35 years and with no familial relationship, were positive, giving a prevalence of 2.8% in this ethnic group. Five samples were also PCR positive; all belonged to genotype 4, but with three new subtypes identified by phylogenic analysis. These results indicate the co-existence of different HCV subtypes and raise questions about the natural transmission of HCV in this secluded population.
Collapse
|
|
30 |
48 |
6
|
Saksena NK, Hervé V, Sherman MP, Durand JP, Mathiot C, Müller M, Love JL, LeGuenno B, Sinoussi FB, Dube DK. Sequence and phylogenetic analyses of a new STLV-I from a naturally infected tantalus monkey from Central Africa. Virology 1993; 192:312-20. [PMID: 8390757 DOI: 10.1006/viro.1993.1035] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Simian T-cell leukemia virus (STLV-I) is an oncovirus highly related to human T-cell leukemia virus type I (HTLV-I). To further examine the extent of variability, dissemination patterns, phylogeny, and evolution of these viruses, we analyzed a new STLV-I variant from a naturally infected Cercopithecus aethiops var. tantalus from the Central African Republic. Sequence analyses of its LTR, gag, pol, env, and pX (OrfII) genes indicated that this isolate, STLV-I (Tan 90), is 6% divergent from the prototype HTLV-I (ATK) and is the most divergent African STLV-I characterized to date. Our phylogenetic data indicate that southeast Asian and African STLV-I and HTLV-I strains segregated from each other thousands of years ago and that Japanese HTLV-I strains represent a relatively recent introduction of African or New World isolates. The data also indicate that interspecies transmission occurred several times on different continents over prolonged periods of time.
Collapse
|
Comparative Study |
32 |
43 |
7
|
Arora J, Kinjo Y, Šobotník J, Buček A, Clitheroe C, Stiblik P, Roisin Y, Žifčáková L, Park YC, Kim KY, Sillam-Dussès D, Hervé V, Lo N, Tokuda G, Brune A, Bourguignon T. The functional evolution of termite gut microbiota. MICROBIOME 2022; 10:78. [PMID: 35624491 PMCID: PMC9137090 DOI: 10.1186/s40168-022-01258-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.
Collapse
|
Video-Audio Media |
3 |
38 |
8
|
Hervé V, Le Roux X, Uroz S, Gelhaye E, Frey-Klett P. Diversity and structure of bacterial communities associated with Phanerochaete chrysosporium during wood decay. Environ Microbiol 2013; 16:2238-52. [PMID: 24286477 DOI: 10.1111/1462-2920.12347] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/23/2013] [Indexed: 01/05/2023]
Abstract
Wood recycling is key to forest biogeochemical cycles, largely driven by microorganisms such as white-rot fungi which naturally coexist with bacteria in the environment. We have tested whether and to what extent the diversity of the bacterial community associated with wood decay is determined by wood and/or by white-rot fungus Phanerochaete chrysosporium. We combined a microcosm approach with an enrichment procedure, using beech sawdust inoculated with or without P.chrysosporium. During 18 weeks, we used 16S rRNA gene-based pyrosequencing to monitor the forest bacterial community inoculated into these microcosms. We found bacterial communities associated with wood to be substantially less diverse than the initial forest soil inoculum. The presence of most bacterial operational taxonomic units (OTUs) varied over time and between replicates, regardless of their treatment, suggestive of the stochastic processes. However, we observed two OTUs belonging to Xanthomonadaceae and Rhizobium, together representing 50% of the relative bacterial abundance, as consistently associated with the wood substrate, regardless of fungal presence. Moreover, after 12 weeks, the bacterial community composition based on relative abundance was significantly modified by the presence of the white-rot fungus. Effectively, members of the Burkholderia genus were always associated with P.chrysosporium, representing potential taxonomic bioindicators of the white-rot mycosphere.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
36 |
9
|
Haddad M, Hervé V, Ben Khedher MR, Rabanel JM, Ramassamy C. Glutathione: An Old and Small Molecule with Great Functions and New Applications in the Brain and in Alzheimer's Disease. Antioxid Redox Signal 2021; 35:270-292. [PMID: 33637005 DOI: 10.1089/ars.2020.8129] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Glutathione (GSH) represents the most abundant and the main antioxidant in the body with important functions in the brain related to Alzheimer's disease (AD). Recent Advances: Oxidative stress is one of the central mechanisms in AD. We and others have demonstrated the alteration of GSH levels in the AD brain, its important role in the detoxification of advanced glycation end-products and of acrolein, a by-product of lipid peroxidation. Recent in vivo studies found a decrease of GSH in several areas of the brain from control, mild cognitive impairment, and AD subjects, which are correlated with cognitive decline. Critical Issues: Several strategies were developed to restore its intracellular level with the l-cysteine prodrugs or the oral administration of γ-glutamylcysteine to prevent alterations observed in AD. To date, no benefit on GSH level or on oxidative biomarkers has been reported in clinical trials. Thus, it remains uncertain if GSH could be considered a potential preventive or therapeutic approach or a biomarker for AD. Future Directions: We address how GSH-coupled nanocarriers represent a promising approach for the functionalization of nanocarriers to overcome the blood/brain barrier (BBB) for the brain delivery of GSH while avoiding cellular toxicity. It is also important to address the presence of GSH in exosomes for its potential intercellular transfer or its shuttle across the BBB under certain conditions. Antioxid. Redox Signal. 35, 270-292.
Collapse
|
Review |
4 |
35 |
10
|
Hervé V, Derr J, Douady S, Quinet M, Moisan L, Lopez PJ. Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms. PLoS One 2012; 7:e46722. [PMID: 23144697 PMCID: PMC3483172 DOI: 10.1371/journal.pone.0046722] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022] Open
Abstract
Diatoms, the major contributors of the global biogenic silica cycle in modern oceans, account for about 40% of global marine primary productivity. They are an important component of the biological pump in the ocean, and their assemblage can be used as useful climate proxies; it is therefore critical to better understand the changes induced by environmental pH on their physiology, silicification capability and morphology. Here, we show that external pH influences cell growth of the ubiquitous diatom Thalassiosira weissflogii, and modifies intracellular silicic acid and biogenic silica contents per cell. Measurements at the single-cell level reveal that extracellular pH modifications lead to intracellular acidosis. To further understand how variations of the acid-base balance affect silicon metabolism and theca formation, we developed novel imaging techniques to measure the dynamics of valve formation. We demonstrate that the kinetics of valve morphogenesis, at least in the early stages, depends on pH. Analytical modeling results suggest that acidic conditions alter the dynamics of the expansion of the vesicles within which silica polymerization occurs, and probably its internal pH. Morphological analysis of valve patterns reveals that acidification also reduces the dimension of the nanometric pores present on the valves, and concurrently overall valve porosity. Variations in the valve silica network seem to be more correlated to the dynamics and the regulation of the morphogenesis process than the silicon incorporation rate. These multiparametric analyses from single-cell to cell-population levels demonstrate that several higher-level processes are sensitive to the acid-base balance in diatoms, and its regulation is a key factor for the control of pattern formation and silicon metabolism.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
34 |
11
|
Hervé V, Liu P, Dietrich C, Sillam-Dussès D, Stiblik P, Šobotník J, Brune A. Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ 2020; 8:e8614. [PMID: 32095380 PMCID: PMC7024585 DOI: 10.7717/peerj.8614] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
"Higher" termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different gut compartments of eight higher termite species that encompass 17 prokaryotic phyla. By iteratively building genome trees for each clade, we significantly improved the initial automated assignment, frequently up to the genus level. We recovered MAGs from most of the termite-specific clusters in the radiation of, for example, Planctomycetes, Fibrobacteres, Bacteroidetes, Euryarchaeota, Bathyarchaeota, Spirochaetes, Saccharibacteria, and Firmicutes, which to date contained only few or no representative genomes. Moreover, the MAGs included abundant members of the termite gut microbiota. This dataset represents the largest genomic resource for arthropod-associated microorganisms available to date and contributes substantially to populating the tree of life. More importantly, it provides a backbone for studying the metabolic potential of the termite gut microbiota, including the key members involved in carbon and nitrogen biogeochemical cycles, and important clues that may help cultivating representatives of these understudied clades.
Collapse
|
research-article |
5 |
34 |
12
|
Hervé V, Ketter E, Pierrat JC, Gelhaye E, Frey-Klett P. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood. PLoS One 2016; 11:e0147100. [PMID: 26824755 PMCID: PMC4732817 DOI: 10.1371/journal.pone.0147100] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022] Open
Abstract
Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
26 |
13
|
Hervé V, Junier T, Bindschedler S, Verrecchia E, Junier P. Diversity and ecology of oxalotrophic bacteria. World J Microbiol Biotechnol 2016; 32:28. [PMID: 26748805 DOI: 10.1007/s11274-015-1982-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/16/2015] [Indexed: 11/27/2022]
Abstract
Oxalate is present in environments as diverse as soils or gastrointestinal tracts. This organic acid can be found as free acid or forming metal salts (e.g. calcium, magnesium). Oxalotrophy, the ability to use oxalate as carbon and energy sources, is mainly the result of bacterial catabolism, which can be either aerobic or anaerobic. Although some oxalotrophic bacterial strains are commonly used as probiotics, little is known about the diversity and ecology of this functional group. This review aims at exploring the taxonomic distribution and the phylogenetic diversity of oxalotrophic bacteria across biomes. In silico analyses were conducted using the two key enzymes involved in oxalotrophy: formyl-coenzyme A (CoA) transferase (EC 2.8.3.16) and oxalyl-CoA decarboxylase (EC 4.1.1.8), encoded by the frc and oxc genes, respectively. Our analyses revealed that oxalate-degrading bacteria are restricted to three phyla, namely Actinobacteria, Firmicutes and Proteobacteria and originated from terrestrial, aquatic and clinical environments. Diversity analyses at the protein level suggest that total Oxc diversity is more constrained than Frc diversity and that bacterial oxalotrophic diversity is not yet fully described. Finally, the contribution of oxalotrophic bacteria to ecosystem functioning as well as to the carbon cycle is discussed.
Collapse
|
Review |
9 |
25 |
14
|
Hervé V, Duruflé H, San Clemente H, Albenne C, Balliau T, Zivy M, Dunand C, Jamet E. An enlarged cell wall proteome ofArabidopsis thalianarosettes. Proteomics 2016; 16:3183-3187. [DOI: 10.1002/pmic.201600290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/28/2016] [Accepted: 10/21/2016] [Indexed: 11/05/2022]
|
|
9 |
23 |
15
|
Cassagnes LE, Hervé V, Nepveu F, Hureau C, Faller P, Collin F. The Catalytically Active Copper-Amyloid-Beta State: Coordination Site Responsible for Reactive Oxygen Species Production. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305372] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
|
12 |
21 |
16
|
Simon A, Hervé V, Al-Dourobi A, Verrecchia E, Junier P. An in situ inventory of fungi and their associated migrating bacteria in forest soils using fungal highway columns. FEMS Microbiol Ecol 2016; 93:fiw217. [PMID: 27797964 DOI: 10.1093/femsec/fiw217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/04/2016] [Accepted: 10/18/2016] [Indexed: 11/13/2022] Open
Abstract
Soils are complex ecosystems in which fungi and bacteria co-exist and interact. Fungal highways are a kind of interaction by which bacteria use fungal hyphae to disperse in soils. Despite the fact that fungal highways have been studied in laboratory models, the diversity of fungi and bacteria interacting in this way in soils is still unknown. Fungal highway columns containing two different culture media were used as a selective method to study the identity of fungi and bacteria able to migrate along the hyphae in three forest soils. Regardless of the soil type, fungi of the genus Mortierella (phylum Zygomycota) were selected inside the columns. In contrast, a diverse community of bacteria dominated by Firmicutes and Proteobacteria was observed. The results confirm the importance of bacteria affiliated to Burkholderia as potentially associated migrating bacteria in soils and indicate that other groups such as Bacillus and Clostridium are also highly enriched in the co-colonization of a new habitat (columns) associated to Mortierella. The diversity of potentially associated migrating bacteria brings a novel perspective on the indirect metabolic capabilities that could be favored by r-strategist fungi and supports the fact that these fungi should be considered as crucial actors in soil functioning.
Collapse
|
Journal Article |
9 |
19 |
17
|
Robinson AJ, House GL, Morales DP, Kelliher JM, Gallegos-Graves LV, LeBrun ES, Davenport KW, Palmieri F, Lohberger A, Bregnard D, Estoppey A, Buffi M, Paul C, Junier T, Hervé V, Cailleau G, Lupini S, Nguyen HN, Zheng AO, Gimenes LJ, Bindschedller S, Rodrigues DF, Werner JH, Young JD, Junier P, Chain PSG. Widespread bacterial diversity within the bacteriome of fungi. Commun Biol 2021; 4:1168. [PMID: 34621007 PMCID: PMC8497576 DOI: 10.1038/s42003-021-02693-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Knowledge of associations between fungal hosts and their bacterial associates has steadily grown in recent years as the number and diversity of examinations have increased, but current knowledge is predominantly limited to a small number of fungal taxa and bacterial partners. Here, we screened for potential bacterial associates in over 700 phylogenetically diverse fungal isolates, representing 366 genera, or a tenfold increase compared with previously examined fungal genera, including isolates from several previously unexplored phyla. Both a 16 S rDNA-based exploration of fungal isolates from four distinct culture collections spanning North America, South America and Europe, and a bioinformatic screen for bacterial-specific sequences within fungal genome sequencing projects, revealed that a surprisingly diverse array of bacterial associates are frequently found in otherwise axenic fungal cultures. We demonstrate that bacterial associations with diverse fungal hosts appear to be the rule, rather than the exception, and deserve increased consideration in microbiome studies and in examinations of microbial interactions.
Collapse
|
research-article |
4 |
16 |
18
|
Loh HQ, Hervé V, Brune A. Metabolic Potential for Reductive Acetogenesis and a Novel Energy-Converting [NiFe] Hydrogenase in Bathyarchaeia From Termite Guts - A Genome-Centric Analysis. Front Microbiol 2021; 11:635786. [PMID: 33613473 PMCID: PMC7886697 DOI: 10.3389/fmicb.2020.635786] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Symbiotic digestion of lignocellulose in the hindgut of higher termites is mediated by a diverse assemblage of bacteria and archaea. During a large-scale metagenomic study, we reconstructed 15 metagenome-assembled genomes of Bathyarchaeia that represent two distinct lineages in subgroup 6 (formerly MCG-6) unique to termite guts. One lineage (TB2; Candidatus Termitimicrobium) encodes all enzymes required for reductive acetogenesis from CO2 via an archaeal variant of the Wood–Ljungdahl pathway, involving tetrahydromethanopterin as C1 carrier and an (ADP-forming) acetyl-CoA synthase. This includes a novel 11-subunit hydrogenase, which possesses the genomic architecture of the respiratory Fpo-complex of other archaea but whose catalytic subunit is phylogenetically related to and shares the conserved [NiFe] cofactor-binding motif with [NiFe] hydrogenases of subgroup 4 g. We propose that this novel Fpo-like hydrogenase provides part of the reduced ferredoxin required for CO2 reduction and is driven by the electrochemical membrane potential generated from the ATP conserved by substrate-level phosphorylation; the other part may require the oxidation of organic electron donors, which would make members of TB2 mixotrophic acetogens. Members of the other lineage (TB1; Candidatus Termiticorpusculum) are definitely organotrophic because they consistently lack hydrogenases and/or methylene-tetrahydromethanopterin reductase, a key enzyme of the archaeal Wood–Ljungdahl pathway. Both lineages have the genomic capacity to reduce ferredoxin by oxidizing amino acids and might conduct methylotrophic acetogenesis using unidentified methylated compound(s). Our results indicate that Bathyarchaeia of subgroup 6 contribute to acetate formation in the guts of higher termites and substantiate the genomic evidence for reductive acetogenesis from organic substrates, possibly including methylated compounds, in other uncultured representatives of the phylum.
Collapse
|
|
4 |
16 |
19
|
Duruflé H, Hervé V, Ranocha P, Balliau T, Zivy M, Chourré J, San Clemente H, Burlat V, Albenne C, Déjean S, Jamet E, Dunand C. Cell wall modifications of two Arabidopsis thaliana ecotypes, Col and Sha, in response to sub-optimal growth conditions: An integrative study. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:183-193. [PMID: 28818374 DOI: 10.1016/j.plantsci.2017.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 05/20/2023]
Abstract
With the global temperature change, plant adaptations are predicted, but little is known about the molecular mechanisms underlying them. Arabidopsis thaliana is a model plant adapted to various environmental conditions, in particular able to develop along an altitudinal gradient. Two ecotypes, Columbia (Col) growing at low altitude, and Shahdara (Sha) growing at 3400m, have been studied at optimal and sub-optimal growth temperature (22°C vs 15°C). Macro- and micro-phenotyping, cell wall monosaccharides analyses, cell wall proteomics, and transcriptomics have been performed in order to accomplish an integrative analysis. The analysis has been focused on cell walls (CWs) which are assumed to play roles in response to environmental changes. At 15°C, both ecotypes presented characteristic morphological traits of low temperature growth acclimation such as reduced rosette diameter, increased number of leaves, modifications of their CW composition and cuticle reinforcement. Altogether, the integrative analysis has allowed identifying several candidate genes/proteins possibly involved in the cell wall modifications observed during the temperature acclimation response.
Collapse
|
|
8 |
14 |
20
|
Maurel MC, Roy F, Hervé V, Bertin J, Vaiman D, Cribiu E, Manfredi E, Bouvier F, Lantier I, Boue P, Guillou F. Réponse immunitaire à la eCG utilisée dans le traitement de l’induction d’ovulation chez la chèvre et la brebis. ACTA ACUST UNITED AC 2003; 31:766-9. [PMID: 14499724 DOI: 10.1016/s1297-9589(03)00214-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In dairy goats and ewes the use of equine Chorionic Gonadotropin (eCG) as a convenient hormone for the induction of ovulation is necessary for out-of-season breeding and artificial insemination (AI). Treatment for induction and synchronization of ovulation consists of a progestagen delivered by vaginal sponge, followed by an eCG injection. In some females, the first injection of eCG induces a humoral response with high concentrations of anti-eCG antibodies in contrast to other females displaying a very low concentration of anti-eCG antibodies. Females eliciting a low response were also poor responders after the following treatments. Conversely, high responders at the first treatment systematically yielded high immune responses upon the following treatment. By a molecular genetic approach using microsatellites we showed that the anti-eCG immune response phenotypes were associated with MHC class II polymorphism. Females with high residual antibody concentrations at the time of eCG injection exhibited a much lower kidding rate than other females did. Lower fertility of these females, inseminated at a fixed time after eCG treatment (43H for goats and 55H for ewes), might be due to the delay in estrus occurrence and the pre ovulatory LH surge. Consequently, under field conditions old females selected for AI are only those with low residual anti-eCG antibody concentrations and old females with high residual antibody concentration are culled from AI breeding because of their low fertility during the previous year. So we have undertaken comparative studies to establish if the anti-eCG immune response is correlated with the global immunity in animals.
Collapse
|
|
22 |
13 |
21
|
Guibourdenche M, Caugant DA, Hervé V, Debonne JM, Lanckriet C, Merlin M, Mathiot C, Roungou JB, Martet G, Riou JY. Characteristics of serogroup A Neisseria meningitidis strains isolated in the Central African Republic in February 1992. Eur J Clin Microbiol Infect Dis 1994; 13:174-7. [PMID: 8013493 DOI: 10.1007/bf01982194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A severe epidemic of serogroup A meningococcus meningitis occurred in the northwest Central African Republic from January to March 1992. Strains from 24 patients were characterized using serotyping, testing of susceptibility to antibiotics, and multilocus enzyme electrophoresis. In 23 of the 24 patients the causal strain was found to be 4:P1.9/clone III-1. These results indicate that such strains continue to spread in Africa and have taken hold in areas outside the "meningitis belt." This may be a consequence of changing climatic conditions.
Collapse
|
|
31 |
12 |
22
|
Hervé V, Leroy B, Da Silva Pires A, Lopez PJ. Aquatic urban ecology at the scale of a capital: community structure and interactions in street gutters. ISME JOURNAL 2017; 12:253-266. [PMID: 29027996 PMCID: PMC5739019 DOI: 10.1038/ismej.2017.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022]
Abstract
In most cities, streets are designed for collecting and transporting dirt, litter, debris, storm water and other wastes as a municipal sanitation system. Microbial mats can develop on street surfaces and form microbial communities that have never been described. Here, we performed the first molecular inventory of the street gutter-associated eukaryotes across the entire French capital of Paris and the non-potable waters sources. We found that the 5782 OTUs (operational taxonomic units) present in the street gutters which are dominated by diatoms (photoautotrophs), fungi (heterotrophs), Alveolata and Rhizaria, includes parasites, consumers of phototrophs and epibionts that may regulate the dynamics of gutter mat microbial communities. Network analyses demonstrated that street microbiome present many species restricted to gutters, and an overlapping composition between the water sources used for street cleaning (for example, intra-urban aquatic networks and the associated rivers) and the gutters. We propose that street gutters, which can cover a significant surface area of cities worldwide, potentially have important ecological roles in the remediation of pollutants or downstream wastewater treatments, might also be a niche for growth and dissemination of putative parasite and pathogens.
Collapse
|
Journal Article |
8 |
11 |
23
|
Diouf M, Miambi E, Mora P, Frechault S, Robert A, Rouland-Lefèvre C, Hervé V. Variations in the relative abundance of Wolbachia in the gut of Nasutitermes arborum across life stages and castes. FEMS Microbiol Lett 2019; 365:4904115. [PMID: 29579215 DOI: 10.1093/femsle/fny046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
There are multiple forms of interactions between termites and bacteria. In addition to their gut microbiota, which has been intensively studied, termites host intracellular symbionts such as Wolbachia. These distinct symbioses have been so far approached independently and mostly in adult termites. We addressed the dynamics of Wolbachia and the microbiota of the eggs and gut for various life stages and castes of the wood-feeding termite, Nasutitermes arborum, using deep-sequencing of the 16S rRNA gene. Wolbachia was dominant in eggs as expected. Unexpectedly, it persisted in the gut of nearly all stages and castes, indicating a wide somatic distribution in termites. Wolbachia-related sequences clustered into few operational taxonomic units, but these were within the same genotype, acquired maternally. Wolbachia was largely dominant in DNA extracts from the guts of larvae and pre-soldiers (59.1%-99.1% of reads) where gut-resident lineages were less represented and less diverse. The reverse was true for the adult castes. This is the first study reporting the age-dependency of the relative abundance of Wolbachia in the termite gut and its negative correlation with the diversity of the microbiota. The possible mechanisms underlying this negative interaction are discussed.
Collapse
|
Journal Article |
6 |
11 |
24
|
Song Y, Hervé V, Radek R, Pfeiffer F, Zheng H, Brune A. Characterization and phylogenomic analysis of Breznakiella homolactica gen. nov. sp. nov. indicate that termite gut treponemes evolved from non-acetogenic spirochetes in cockroaches. Environ Microbiol 2021; 23:4228-4245. [PMID: 33998119 DOI: 10.1111/1462-2920.15600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023]
Abstract
Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of 'termite gut treponemes' from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse 'termite cluster I', a deep-branching sister group of Treponemataceae (fam. 'Termitinemataceae') that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.
Collapse
|
Journal Article |
4 |
8 |
25
|
Sandoz FA, Bindschedler S, Dauphin B, Farinelli L, Grant JR, Hervé V. Biotic and abiotic factors shape arbuscular mycorrhizal fungal communities associated with the roots of the widespread fern Botrychium lunaria (Ophioglossaceae). ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:342-354. [PMID: 32216046 DOI: 10.1111/1758-2229.12840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) play central roles in terrestrial ecosystems by interacting with both above and belowground communities as well as by influencing edaphic properties. The AMF communities associated with the roots of the fern Botrychium lunaria (Ophioglossaceae) were sampled in four transects at 2400 m a.s.l. in the Swiss Alps and analyzed using metabarcoding. Members of five Glomeromycota genera were identified across the 71 samples. Our analyses revealed the existence of a core microbiome composed of four abundant Glomus operational taxonomic units (OTUs), as well as a low OTU turnover between samples. The AMF communities were not spatially structured, which contrasts with most studies on AMF associated with angiosperms. pH, microbial connectivity and humus cover significantly shaped AMF beta diversity but only explained a minor fraction of variation in beta diversity. AMF OTUs associations were found to be significant by both cohesion and co-occurrence analyses, suggesting a role for fungus-fungus interactions in AMF community assembly. In particular, OTU co-occurrences were more frequent between different genera than among the same genus, rising the hypothesis of functional complementarity among the AMF associated to B. lunaria. Altogether, our results provide new insights into the ecology of fern symbionts in alpine grasslands.
Collapse
|
|
5 |
8 |