1
|
Valeri N, Braconi C, Gasparini P, Murgia C, Lampis A, Paulus-Hock V, Hart JR, Ueno L, Grivennikov SI, Lovat F, Paone A, Cascione L, Sumani KM, Veronese A, Fabbri M, Carasi S, Alder H, Lanza G, Gafa' R, Moyer MP, Ridgway RA, Cordero J, Nuovo GJ, Frankel WL, Rugge M, Fassan M, Groden J, Vogt PK, Karin M, Sansom OJ, Croce CM. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 2014; 25:469-83. [PMID: 24735923 PMCID: PMC3995091 DOI: 10.1016/j.ccr.2014.03.006] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/14/2013] [Accepted: 03/06/2014] [Indexed: 02/07/2023]
Abstract
MicroRNA deregulation is frequent in human colorectal cancers (CRCs), but little is known as to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b overexpression is triggered in mice and humans by APC loss, PTEN/PI3K pathway deregulation, and SRC overexpression and promotes tumor transformation and progression. We show that miR-135b upregulation is common in sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth by controlling genes involved in proliferation, invasion, and apoptosis. We identify miR-135b as a key downsteam effector of oncogenic pathways and a potential target for CRC treatment.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
243 |
2
|
Hutton C, Heider F, Blanco-Gomez A, Banyard A, Kononov A, Zhang X, Karim S, Paulus-Hock V, Watt D, Steele N, Kemp S, Hogg EKJ, Kelly J, Jackstadt RF, Lopes F, Menotti M, Chisholm L, Lamarca A, Valle J, Sansom OJ, Springer C, Malliri A, Marais R, Pasca di Magliano M, Zelenay S, Morton JP, Jørgensen C. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 2021; 39:1227-1244.e20. [PMID: 34297917 PMCID: PMC8443274 DOI: 10.1016/j.ccell.2021.06.017] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/19/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022]
Abstract
Fibroblasts display extensive transcriptional heterogeneity, yet functional annotation and characterization of their heterocellular relationships remains incomplete. Using mass cytometry, we chart the stromal composition of 18 murine tissues and 5 spontaneous tumor models, with an emphasis on mesenchymal phenotypes. This analysis reveals extensive stromal heterogeneity across tissues and tumors, and identifies coordinated relationships between mesenchymal and immune cell subsets in pancreatic ductal adenocarcinoma. Expression of CD105 demarks two stable and functionally distinct pancreatic fibroblast lineages, which are also identified in murine and human healthy tissues and tumors. Whereas CD105-positive pancreatic fibroblasts are permissive for tumor growth in vivo, CD105-negative fibroblasts are highly tumor suppressive. This restrictive effect is entirely dependent on functional adaptive immunity. Collectively, these results reveal two functionally distinct pancreatic fibroblast lineages and highlight the importance of mesenchymal and immune cell interactions in restricting tumor growth.
Collapse
|
research-article |
4 |
203 |
3
|
Bouchard C, Lee S, Paulus-Hock V, Loddenkemper C, Eilers M, Schmitt CA. FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of Arf. Genes Dev 2008; 21:2775-87. [PMID: 17974917 DOI: 10.1101/gad.453107] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FoxO transcription factors play critical roles in cell cycle control and cellular stress responses, and abrogation of FoxO function promotes focus formation by Myc in vitro. Here we show that stable introduction of a dominant-negative FoxO moiety (dnFoxO) into Emu-myc transgenic hematopoietic stem cells accelerates lymphoma development in recipient mice by attenuating Myc-induced apoptosis. When expressed in Emu-myc; p53(+/-) progenitor cells, dnFoxO alleviates the pressure to inactivate the remaining p53 allele in upcoming lymphomas. Expression of the p53 upstream regulator p19(Arf) is virtually undetectable in most dnFoxO-positive Myc-driven lymphomas. We find that FoxO proteins bind to a distinct site within the Ink4a/Arf locus and activate Arf expression. Moreover, constitutive Myc signaling induces a marked increase in nuclear FoxO levels and stimulates binding of FoxO proteins to the Arf locus. These data demonstrate that FoxO factors mediate Myc-induced Arf expression and provide direct genetic evidence for their tumor-suppressive capacity.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
102 |
4
|
Dreyer SB, Upstill-Goddard R, Paulus-Hock V, Paris C, Lampraki EM, Dray E, Serrels B, Caligiuri G, Rebus S, Plenker D, Galluzzo Z, Brunton H, Cunningham R, Tesson M, Nourse C, Bailey UM, Jones M, Moran-Jones K, Wright DW, Duthie F, Oien K, Evers L, McKay CJ, McGregor GA, Gulati A, Brough R, Bajrami I, Pettitt S, Dziubinski ML, Candido J, Balkwill F, Barry ST, Grützmann R, Rahib L, Johns A, Pajic M, Froeling FE, Beer P, Musgrove EA, Petersen GM, Ashworth A, Frame MC, Crawford HC, Simeone DM, Lord C, Mukhopadhyay D, Pilarsky C, Tuveson DA, Cooke SL, Jamieson NB, Morton JP, Sansom OJ, Bailey PJ, Biankin AV, Chang DK. Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology 2021; 160:362-377.e13. [PMID: 33039466 PMCID: PMC8167930 DOI: 10.1053/j.gastro.2020.09.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarker-driven therapeutic strategy targeting DDR and replication stress in PC. METHODS We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
90 |
5
|
Brunton H, Caligiuri G, Cunningham R, Upstill-Goddard R, Bailey UM, Garner IM, Nourse C, Dreyer S, Jones M, Moran-Jones K, Wright DW, Paulus-Hock V, Nixon C, Thomson G, Jamieson NB, McGregor GA, Evers L, McKay CJ, Gulati A, Brough R, Bajrami I, Pettitt SJ, Dziubinski ML, Barry ST, Grützmann R, Brown R, Curry E, Pajic M, Musgrove EA, Petersen GM, Shanks E, Ashworth A, Crawford HC, Simeone DM, Froeling FEM, Lord CJ, Mukhopadhyay D, Pilarsky C, Grimmond SE, Morton JP, Sansom OJ, Chang DK, Bailey PJ, Biankin AV, Chang DK, Cooke SL, Dreyer S, Grimwood P, Kelly S, Marshall J, McDade B, McElroy D, Ramsay D, Upstill-Goddard R, Rebus S, Hair J, Jamieson NB, McKay CJ, Westwood P, Williams N, Duthie F, Biankin AV, Johns AL, Mawson A, Chang DK, Scarlett CJ, Brancato MAL, Rowe SJ, Simpson SH, Martyn-Smith M, Thomas MT, Chantrill LA, Chin VT, Chou A, Cowley MJ, Humphris JL, Mead RS, Nagrial AM, Pajic M, Pettit J, Pinese M, Rooman I, Wu J, Tao J, DiPietro R, Watson C, Steinmann A, Lee HC, Wong R, Pinho AV, Giry-Laterriere M, Daly RJ, Musgrove EA, Sutherland RL, Grimmond SM, Waddell N, Kassahn KS, Miller DK, Wilson PJ, Patch AM, Song S, Harliwong I, Idrisoglu S, Nourbakhsh E, Manning S, Wani S, Gongora M, Anderson M, Holmes O, Leonard C, Taylor D, Wood S, Xu C, Nones K, Fink JL, Christ A, Bruxner T, Cloonan N, Newell F, Pearson JV, Quinn M, Nagaraj S, Kazakoff S, Waddell N, Krisnan K, Quek K, Wood D, Samra JS, Gill AJ, Pavlakis N, Guminski A, Toon C, Asghari R, Merrett ND, Pavey D, Das A, Cosman PH, Ismail K, O’Connnor C, Lam VW, McLeod D, Pleass HC, Richardson A, James V, Kench JG, Cooper CL, Joseph D, Sandroussi C, Crawford M, Gallagher J, Texler M, Forest C, Laycock A, Epari KP, Ballal M, Fletcher DR, Mukhedkar S, Spry NA, DeBoer B, Chai M, Zeps N, Beilin M, Feeney K, Nguyen NQ, Ruszkiewicz AR, Worthley C, Tan CP, Debrencini T, Chen J, Brooke-Smith ME, Papangelis V, Tang H, Barbour AP, Clouston AD, Martin P, O’Rourke TJ, Chiang A, Fawcett JW, Slater K, Yeung S, Hatzifotis M, Hodgkinson P, Christophi C, Nikfarjam M, Mountain A, Eshleman JR, Hruban RH, Maitra A, Iacobuzio-Donahue CA, Schulick RD, Wolfgang CL, Morgan RA, Hodgin M, Scarpa A, Lawlor RT, Beghelli S, Corbo V, Scardoni M, Bassi C, Tempero MA, Nourse C, Jamieson NB, Graham JS. HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. Cell Rep 2020; 31:107625. [PMID: 32402285 PMCID: PMC9511995 DOI: 10.1016/j.celrep.2020.107625] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/05/2019] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis. Pharmacological inhibition of GSK3β results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3β inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
83 |
6
|
Carotenuto P, Fassan M, Pandolfo R, Lampis A, Vicentini C, Cascione L, Paulus-Hock V, Boulter L, Guest R, Quagliata L, Hahne JC, Ridgway R, Jamieson T, Athineos D, Veronese A, Visone R, Murgia C, Ferrari G, Guzzardo V, Evans TRJ, MacLeod M, Feng GJ, Dale T, Negrini M, Forbes SJ, Terracciano L, Scarpa A, Patel T, Valeri N, Workman P, Sansom O, Braconi C. Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers. Gut 2017; 66:1268-1277. [PMID: 27618837 PMCID: PMC5530482 DOI: 10.1136/gutjnl-2016-312278] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Transcribed-ultraconserved regions (T-UCR) are long non-coding RNAs which are conserved across species and are involved in carcinogenesis. We studied T-UCRs downstream of the Wnt/β-catenin pathway in liver cancer. DESIGN Hypomorphic Apc mice (Apcfl/fl) and thiocetamide (TAA)-treated rats developed Wnt/β-catenin dependent hepatocarcinoma (HCC) and cholangiocarcinoma (CCA), respectively. T-UCR expression was assessed by microarray, real-time PCR and in situ hybridisation. RESULTS Overexpression of the T-UCR uc.158- could differentiate Wnt/β-catenin dependent HCC from normal liver and from β-catenin negative diethylnitrosamine (DEN)-induced HCC. uc.158- was overexpressed in human HepG2 versus Huh7 cells in line with activation of the Wnt pathway. In vitro modulation of β-catenin altered uc.158- expression in human malignant hepatocytes. uc.158- expression was increased in CTNNB1-mutated human HCCs compared with non-mutated human HCCs, and in human HCC with nuclear localisation of β-catenin. uc.158- was increased in TAA rat CCA and reduced after treatment with Wnt/β-catenin inhibitors. uc.158- expression was negative in human normal liver and biliary epithelia, while it was increased in human CCA in two different cohorts. Locked nucleic acid-mediated inhibition of uc.158- reduced anchorage cell growth, 3D-spheroid formation and spheroid-based cell migration, and increased apoptosis in HepG2 and SW1 cells. miR-193b was predicted to have binding sites within the uc.158- sequence. Modulation of uc.158- changed miR-193b expression in human malignant hepatocytes. Co-transfection of uc.158- inhibitor and anti-miR-193b rescued the effect of uc.158- inhibition on cell viability. CONCLUSIONS We showed that uc.158- is activated by the Wnt pathway in liver cancers and drives their growth. Thus, it may represent a promising target for the development of novel therapeutics.
Collapse
|
research-article |
8 |
67 |
7
|
Hock AK, Cheung EC, Humpton TJ, Monteverde T, Paulus-Hock V, Lee P, McGhee E, Scopelliti A, Murphy DJ, Strathdee D, Blyth K, Vousden KH. Development of an inducible mouse model of iRFP713 to track recombinase activity and tumour development in vivo. Sci Rep 2017; 7:1837. [PMID: 28500323 PMCID: PMC5431786 DOI: 10.1038/s41598-017-01741-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/13/2017] [Indexed: 01/12/2023] Open
Abstract
While the use of bioluminescent proteins for molecular imaging is a powerful technology to further our understanding of complex processes, fluorescent labeling with visible light fluorescent proteins such as GFP and RFP suffers from poor tissue penetration and high background autofluorescence. To overcome these limitations, we generated an inducible knock-in mouse model of iRFP713. This model was used to assess Cre activity in a Rosa Cre-ER background and quantify Cre activity upon different tamoxifen treatments in several organs. We also show that iRFP can be readily detected in 3D organoid cultures, FACS analysis and in vivo tumour models. Taken together we demonstrate that iRFP713 is a progressive step in in vivo imaging and analysis that widens the optical imaging window to the near-infrared spectrum, thereby allowing deeper tissue penetration, quicker image acquisition without the need to inject substrates and a better signal to background ratio in genetically engineered mouse models (GEMMs).
Collapse
|
research-article |
8 |
16 |
8
|
Paulus-Hock V, Cheung EC, Roxburgh P, Vousden KH, Hock AK. iRFP is a real time marker for transformation based assays in high content screening. PLoS One 2014; 9:e98399. [PMID: 24887316 PMCID: PMC4041769 DOI: 10.1371/journal.pone.0098399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
Anchorage independent growth is one of the hallmarks of oncogenic transformation. Here we show that infrared fluorescent protein (iRFP) based assays allow accurate and unbiased determination of colony formation and anchorage independent growth over time. This protocol is particularly compatible with high throughput systems, in contrast to traditional methods which are often labor-intensive, subjective to bias and do not allow further analysis using the same cells. Transformation in a single layer soft agar assay could be documented as early as 2 to 3 days in a 96 well format, which can be easily combined with standard transfection, infection and compound screening setups to allow for high throughput screening to identify therapeutic targets.
Collapse
|
research-article |
11 |
6 |
9
|
Baudot AD, Wang VMY, Leach JD, O’Prey J, Long JS, Paulus-Hock V, Lilla S, Thomson DM, Greenhorn J, Ghaffar F, Nixon C, Helfrich MH, Strathdee D, Pratt J, Marchesi F, Zanivan S, Ryan KM. Glycan degradation promotes macroautophagy. Proc Natl Acad Sci U S A 2022; 119:e2111506119. [PMID: 35737835 PMCID: PMC9245654 DOI: 10.1073/pnas.2111506119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Macroautophagy promotes cellular homeostasis by delivering cytoplasmic constituents to lysosomes for degradation [Mizushima, Nat. Cell Biol. 20, 521-527 (2018)]. However, while most studies have focused on the mechanisms of protein degradation during this process, we report here that macroautophagy also depends on glycan degradation via the glycosidase, α-l-fucosidase 1 (FUCA1), which removes fucose from glycans. We show that cells lacking FUCA1 accumulate lysosomal glycans, which is associated with impaired autophagic flux. Moreover, in a mouse model of fucosidosis-a disease characterized by inactivating mutations in FUCA1 [Stepien et al., Genes (Basel) 11, E1383 (2020)]-glycan and autophagosome/autolysosome accumulation accompanies tissue destruction. Mechanistically, using lectin capture and mass spectrometry, we identified several lysosomal enzymes with altered fucosylation in FUCA1-null cells. Moreover, we show that the activity of some of these enzymes in the absence of FUCA1 can no longer be induced upon autophagy stimulation, causing retardation of autophagic flux, which involves impaired autophagosome-lysosome fusion. These findings therefore show that dysregulated glycan degradation leads to defective autophagy, which is likely a contributing factor in the etiology of fucosidosis.
Collapse
|
research-article |
3 |
3 |
10
|
Dreyer S, Paulus-Hock V, Upstill-Goddard R, Lampraki E, Jamieson N, Cooke S, Bailey P, Biankin A, Chang DKF. Defining DNA damage repair deficiency and replication stress in pancreatic cancer. J Clin Oncol 2019. [DOI: 10.1200/jco.2019.37.4_suppl.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
285 Background: Integrated multi-omic analyses revealed 24% of pancreatic cancer (PC) harbor defects in DNA damage response (DDR) and a subgroup demonstrate upregulation in replication stress pathways. DDR defective tumors preferentially respond to DNA damaging agents, and clinical responses to cell cycle inhibitors are seen in undefined subgroups, representing novel therapeutic strategies for PC. The aim of this study is to define and refine therapeutic segments for agents targeting DDR and replication stress in PC. Methods: We performed whole genome and RNA sequencing (RNAseq) on 48 patient-derived cell lines (PDCL) generated and characterized as part of the International Cancer Genome Initiative (ICGC). This identified increased replication stress in a sub-group of tumours, correlating with previously defined molecular subtypes of PC, irrespective of DDR status. Cytotoxic viability assays were performed using agents targeting the DDR pathway and cell cycle checkpoints, including Cisplatin, and inhibitors of PARP, ATR, WEE1, CHK1, CDK4/6 and PLK4. Subcutaneous patient derived xenografts (PDX) were generated to test therapeutic regimens in vivo. Results: DDR defective models, as defined by signatures of homologous recombination deficiency (HRD) were highly sensitive to Cisplatin and PARP inhibitors. Replication stress predicted differential responses to cell cycle inhibitors of WEE1, CHK1, CDK4/6 and PLK4. A novel mRNA signature of ATR inhibitor sensitivity was generated and correlated with response. Response to cell cycle checkpoint inhibitors were independent of DDR status, but strongly associated with replication stress. Conclusions: This proof of concept data demonstrates DDR deficiency and increased Replication Stress to be attractive targets in PC. Therapeutic vulnerabilities extend beyond platinum chemotherapy and can be targeted with novel small molecule inhibitors, with independent biomarkers predicting response to agents targeting either DDR or cell cycle checkpoints. This has led to the design and development of several personalized medicine trials via the Precision Panc platform targeting DDR and Replication stress, and will allow clinical testing of signatures of HRD and replication stress.
Collapse
|
|
6 |
2 |
11
|
Dreyer S, Paulus-Hock V, Lampraki EM, Bailey P, Chang DKF, Biankin A. Defining DDR defectiveness in pancreatic cancer. J Clin Oncol 2017. [DOI: 10.1200/jco.2017.35.15_suppl.4115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
4115 Background: Recent whole genome sequencing analysis of Pancreatic Cancer (PC) revealed that up to 24% of PC may harbor defects in DNA damage response (DDR). There is increasing evidence that DDR defective tumors preferentially respond to DNA damaging agents, representing novel therapeutic strategy for PC using a synthetic lethality approach. The aim of this study is to define and refine DDR defective phenotypes in PC using next-generation preclinical model systems. Methods: From a panel of 40 patient-derived cell lines (PDCL) and 64 patient-derived xenografts (PDX), generated and extensively characterized as part of the International Cancer Genome Initiative (ICGC), we identified DDR defective models using recently described putative biomarkers of DDR defectiveness. Cytotoxic viability assays were performed using a panel of DNA damaging agents and inhibitors of key molecules in DDR pathway, including Cisplatin, PARP inhibitors, ATR inhibitor (AZD6738); and ATM inhibitor (AZD0156). Appropriate subcutaneous PDX models were also generated to test the hypothesis using various therapeutic regimens. Results: DDR defective PDCLs were selected based on a combination of an unstable genome, and/or a high BRCA mutational signature, and/or deleterious mutations in BRCA1/2, PALB2 or ARID1A. DDR defective PDCLs were significantly more sensitive to Cisplatin, PARP and ATR inhibitors. The ATR inhibitor AZD6738, and ATM inhibitor AZD0156 sensitized PDCLs with no putative biomarkers of DDR defectiveness to Cisplatin, demonstrating a ‘fabricated’ synthetic lethality. A BRCA1 mutant PDX model responded exceptionally to Cisplatin and the PARP inhibitor Olaparib monotherapy. Conclusions: This study provides proof of concept data that DDR deficiency represents an attractive segment to target in PC using a variety of DNA damaging agents and novel agents targeting key molecules of the DDR pathway in PC. In addition, the DDR defective segment may be significantly larger than just germline BRCA1/2 mutants, which is current clinical trial recruitment criteria. Robust molecular assays with clinical utility to define DDR defectiveness is urgently needed.
Collapse
|
|
8 |
1 |
12
|
Lampis A, Murgia C, Paulus-Hock V, Fassan M, Edwards J, Horgan P, Sansom O, Terracciano L, Karin M, Croce C, Braconi C, Valeri N. Abstract 976: Junctional adhesion molecule-A (JAM-A) expression is downmodulated by miR-21 during colorectal cancer progression. Cancer Res 2014. [DOI: 10.1158/1538-7445.am2014-976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Introduction: MicroRNAs are small non-coding-RNAs that control cell homeostasis and are deregulated in human colorectal cancer (CRC). MiR-21 up-regulation is frequent in CRC and represents a driver for tumor initiation and progression. Junctional Adhesion Molecule A (JAM-A) is a tight junction protein involved in regulation of para-cellular permeability in epithelial and endothelial cells. JAM-A forms homodimers and activates signalling pathways regulating cell adhesion, polarity and proliferation. For this reason, monoclonal antibodies against JAM-A are currently tested in the preclinical setting as potential targeted therapies. JAM-A loss appears to be an early event in CRC initiation but very little is known about the role of JAM-A in human sporadic CRC. The aim of our study was defining the pattern of expression of JAM-A in human CRC and to the define the whether its deregulation is a consequence of aberrant microRNA expression.
Methods: JAM-A expression was analyzed by immunohistochemistry in 1254 cases of human sporadic CRC. MiR-21 and JAM-A expression was analyzed in human CRC cells [RKO, HT29, HCT116, SW620, HCT15, SW480, SW837, SW48, DLD1 (both Wild-Type and Knock-Out for miR-21)] by Real-Time-PCR and Western-Blotting. MiR-21 silencing and over-expression were performed using Exiqon Locked Nucleic Acids and Ambion Pre-miR respectively. MiR-21 binding site in JAM-A 3’UTR was predicted using bio-informatics tools (RNA Hybrid) and a 236bp area encompassing the predicted seed region was cloned downstream of the Firefly Luciferase gene in PGL3 vector for Luciferase Reporter Assay.
Results: JAM-A down-regulation was observed in cancer compared to normal adjacent tissues. JAM-A was progressively down-regulated in the progression from normal epithelium, dysplasia, intraepithelial and invasive cancer. Poorly differentiated cancers showed total loss of JAM-A. Shifted staining from apical to baso-lateral compartment was observed in 25% of all cancers. Silencing and re-expression of miR-21 in CRC cell lines resulted in increase and down-regulation of JAM-A protein expression respectively. Luciferase reporter assay experiments were able to define the potential seed region by which miR-21 interacts with JAM-A 3′UTR.
Conclusion: Our data suggest that JAM-A expression is deregulated during human colorectal cancer progression as a consequence of miR-21 over-expression. These results highlight how miR-21 could potentially exert its’ actions on para-cellular permeability and cell polarity acting on junctional adhesion molecules. Understanding the mechanisms of JAM-A loss or re-localization may help to stratify patient's treatment and identify patients who might benefit from anti-JAM-A monoclonal antibodies.
Citation Format: Andrea Lampis, Claudio Murgia, Viola Paulus-Hock, Matteo Fassan, Joanne Edwards, Paul Horgan, Owen Sansom, Luigi Terracciano, Michael Karin, Carlo Croce, Chiara Braconi, Nicola Valeri. Junctional adhesion molecule-A (JAM-A) expression is downmodulated by miR-21 during colorectal cancer progression. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 976. doi:10.1158/1538-7445.AM2014-976
Collapse
|
|
11 |
|