1
|
Mimouni V, Ulmann L, Pasquet V, Mathieu M, Picot L, Bougaran G, Cadoret JP, Morant-Manceau A, Schoefs B. The Potential of Microalgae for the Production of Bioactive Molecules of Pharmaceutical Interest. Curr Pharm Biotechnol 2012; 13:2733-50. [DOI: 10.2174/138920112804724828] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 11/22/2022]
|
|
13 |
163 |
2
|
Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, Napier JA. Modulation of lipid biosynthesis by stress in diatoms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160407. [PMID: 28717017 PMCID: PMC5516116 DOI: 10.1098/rstb.2016.0407] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Diatoms are responsible for up to 40% of the carbon fixation in our oceans. The fixed carbon is moved through carbon metabolism towards the synthesis of organic molecules that are consumed through interlocking foodwebs, and this process is strongly impacted by the abiotic environment. However, it has become evident that diatoms can be used as 'platform' organisms for the production of high valuable bio-products such as lipids, pigments and carbohydrates where stress conditions can be used to direct carbon metabolism towards the commercial production of these compounds. In the first section of this review, some aspects of carbon metabolism in diatoms and how it is impacted by environmental factors are briefly described. The second section is focused on the biosynthesis of lipids and in particular omega-3 long-chain polyunsaturated fatty acids and how low temperature stress impacts on the production of these compounds. In a third section, we review the recent advances in bioengineering for lipid production. Finally, we discuss new perspectives for designing strains for the sustainable production of high-value lipids.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
|
Review |
8 |
65 |
3
|
Blanckaert V, Ulmann L, Mimouni V, Antol J, Brancquart L, Chénais B. Docosahexaenoic acid intake decreases proliferation, increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231. Int J Oncol 2010; 36:737-42. [PMID: 20126994 DOI: 10.3892/ijo_00000549] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is the most common cancer in women in industrialized countries. Environmental factors, such as differences in diet are likely to have an important influence on cancer emergence. Among these factors, n-3 polyunsaturated-fatty acids, such as docosahexaenoic acid (DHA), are good candidates for preventing breast cancer. Here we investigate the effect of DHA on the human breast cancer cell line MDA-MB-231 and show that DHA incorporation i) has an anti-proliferative effect, ii) induces apoptosis via a transient increase in caspase-3 activity and the promotion of nuclear condensation, and iii) reduces the invasive potential of MDA-MB-231 cells. To conclude, DHA may have beneficial effects as a result of slowing the proliferation of tumor cells, and minimizing their metastatic potential.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
60 |
4
|
Ulmann L, Mimouni V, Roux S, Porsolt R, Poisson JP. Brain and hippocampus fatty acid composition in phospholipid classes of aged-relative cognitive deficit rats. Prostaglandins Leukot Essent Fatty Acids 2001; 64:189-95. [PMID: 11334555 DOI: 10.1054/plef.2001.0260] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this work was to study the composition of long chain fatty acids and the n-6 and n-3 fatty acid ratios in aged and young Wistar rats in brain and hippocampus, related to relative cognitive deficits. The aged animals showed cognitive deficits during acquisition of a memory task (delayed alternation). In brain, results showed a decrease in palmitoleic and palmitic acid percentages in all the studied phospholipid classes and in the phosphatidylserine and phosphatidylcholine classes, respectively, in old rats, compared to the young ones. There was also an increase in oleic and stearic acid amounts in the sphingomyelin, phosphatidylserine and phosphatidylinositol classes and in the phosphatidylserine and phosphatidylcholine classes, respectively. Arachidonic acid amount was decreased in old rats, compared to the young ones, in the phosphatidylserine and phosphatidylinositol classes. Total n-6 and n-3 fatty acid amounts were both decreased in all phospholipid classes, with a stable n-6/n-3 ratio. Our results confirm that arachidonic acid concentration is decreased in aged rats and that this reduction, more significant in phosphatidylserine and phosphatidylinositol classes, should be related to the fact that low concentrations of arachidonic acid are observed during activation of glutamate receptor.
Collapse
|
|
24 |
60 |
5
|
Le Goff M, Le Ferrec E, Mayer C, Mimouni V, Lagadic-Gossmann D, Schoefs B, Ulmann L. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie 2019; 167:106-118. [DOI: 10.1016/j.biochi.2019.09.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/18/2019] [Indexed: 01/19/2023]
|
|
6 |
54 |
6
|
Haimeur A, Ulmann L, Mimouni V, Guéno F, Pineau-Vincent F, Meskini N, Tremblin G. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats. Lipids Health Dis 2012; 11:147. [PMID: 23110391 PMCID: PMC3543224 DOI: 10.1186/1476-511x-11-147] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/26/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. METHODS Male Wistar rats were divided into 4 groups and were fed with a standard diet (control); with the standard diet supplemented with 3% freeze-dried O. aurita (COA); with a high-fat diet (HF); or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA) for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. RESULTS After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets) were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. CONCLUSIONS O. aurita is a marine diatom rich in EPA as well as in other bioactive molecules, such as pigments. The synergistic effect of these microalgal compounds, displayed a beneficial effect in reducing the risk factors for high-fat induced metabolic syndrome: hyperlipidemia, platelet aggregation, and oxidative stress.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
45 |
7
|
Mimouni V, Poisson JP. Altered desaturase activities and fatty acid composition in liver microsomes of spontaneously diabetic Wistar BB rat. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1123:296-302. [PMID: 1536868 DOI: 10.1016/0005-2760(92)90010-s] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We examined the activities of delta 9, delta 6 and delta 5 desaturases and fatty acid composition of liver microsomes in the insulin-dependent spontaneously diabetic adult female Wistar Bio-Breeding (BB) rat. The diabetic BB rats were subcutaneously injected with different doses of protamine zinc insulin in order to be killed in hyper-, normo- or hypo-glycemic states. Desaturase activities, which are partially inhibited by spontaneous diabetes during the normo- and hyper-glycemic periods, were similarly affected by the various insulin treatment; delta 9 desaturase activity being more depressed than the desaturase activities of either delta 6 of delta 5. Insulin treatment with 10 I.U./kg body weight twice a day for 2 days was able to restore the delta 9, delta 6 and delta 5 desaturase activities to control levels during the hypoglycemic period. The microsomal fatty acid composition of BB rats liver was not consistent with the desaturase activities, particularly delta 9 desaturase activity, during the different states of glycemia, indicating that they are not closely linked in a direct cause-effect relationship.
Collapse
|
|
33 |
31 |
8
|
Huang B, Marchand J, Thiriet-Rupert S, Carrier G, Saint-Jean B, Lukomska E, Moreau B, Morant-Manceau A, Bougaran G, Mimouni V. Betaine lipid and neutral lipid production under nitrogen or phosphorus limitation in the marine microalga Tisochrysis lutea (Haptophyta). ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101506] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
|
6 |
26 |
9
|
Mayer C, Côme M, Ulmann L, Chini Zittelli G, Faraloni C, Nazih H, Ouguerram K, Chénais B, Mimouni V. Preventive Effects of the Marine Microalga Phaeodactylum tricornutum, Used as a Food Supplement, on Risk Factors Associated with Metabolic Syndrome in Wistar Rats. Nutrients 2019; 11:nu11051069. [PMID: 31091691 PMCID: PMC6566425 DOI: 10.3390/nu11051069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Long-chain polyunsaturated fatty acids, n-3 series (n-3 LC-PUFA), are known for their preventive effects against cardiovascular disease. In an unfavourable economic and environmental context of fish oil production, marine microalgae could be an alternative source of n-3 LC-PUFA and are of interest for human nutrition. The aim of this study was to evaluate the effects of P. tricornutum, a microalga rich in eicosapentaenoic acid and used as a food supplement, on the metabolic disorders associated with metabolic syndrome and obesity development. Three male Wistar rat groups (n = 6) were submitted for eight weeks to a standard diet or high-fat diet (HF) with 10% fructose in drinking water, supplemented or not with 12% of P. tricornutum (HF-Phaeo). Supplementation led to n-3 LC-PUFA enrichment of lipids in the liver, plasma and erythrocytes. Plasma transaminases showed no difference between the HF and HF-Phaeo groups. Body weight, fat mass, inflammatory markers and insulinemia decreased in HF-Phaeo rats versus the HF group. Plasma total cholesterol, triacylglycerols and leptine diminished in HF-Phaeo rats, while HDL-cholesterol increased. In conclusion, this study highlights the beneficial effects of P. tricornutum in reducing the metabolic disorders associated with metabolic syndrome.
Collapse
|
Journal Article |
6 |
21 |
10
|
Mimouni V, Christiansen EN, Blond JP, Ulmann L, Poisson JP, Bezard J. Elongation and desaturation of arachidonic and eicosapentaenoic acids in rat liver. Effect of clofibrate feeding. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1086:349-53. [PMID: 1742327 DOI: 10.1016/0005-2760(91)90180-p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fatty acid elongation-desaturation ability of 5,8,11,14-eicosatetraenoic (20:4(n-6)) and 5,8,11,14,17-eicosapentaenoic (20:5(n-3)) acids was determined in both liver microsomal and light mitochondrial (rich in peroxisomes) fractions of untreated and clofibrate treated rats. The elongation and the subsequent desaturation steps were performed in the corresponding favorable media. 20:5(n-3) elongation was about 2-times more extensive than that of 20:4(n-6). Clofibrate feeding for 10 days resulted in a marked decrease in the elongation rate with the two substrates, while the delta 4 desaturation rate was increased. There were small differences in the elongation rate between the microsomal and light mitochondrial fractions, however, the relative delta 4 desaturation rate was higher in the light mitochondrial fraction than microsomes.
Collapse
|
Comparative Study |
34 |
14 |
11
|
Mimouni V, Poisson JP. Spontaneous diabetes in BB rats: evidence for insulin dependent liver microsomal delta 6 and delta 5 desaturase activities. Horm Metab Res 1990; 22:405-7. [PMID: 2227799 DOI: 10.1055/s-2007-1004934] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We studied linoleic acid delta 5 and dihomo-gamma-linolenic acid delta 5 desaturations, and fatty acid composition, of liver microsomes in the insulin-dependent spontaneously diabetic adult female BB rat. These desaturations were defective along the normo- and hyper-glycemic period and restored during the hypoglycemic period which followed the insulin injection to the diabetic rats. The fatty acid composition of BB rats microsomes was not consistent with the desaturase activities at the different periods of glycemia, probably because other factors than desaturation impairments were involved in the evolution of fatty acid composition.
Collapse
|
|
35 |
13 |
12
|
Haimeur A, Messaouri H, Ulmann L, Mimouni V, Masrar A, Chraibi A, Tremblin G, Meskini N. Argan oil prevents prothrombotic complications by lowering lipid levels and platelet aggregation, enhancing oxidative status in dyslipidemic patients from the area of Rabat (Morocco). Lipids Health Dis 2013; 12:107. [PMID: 23870174 PMCID: PMC3751630 DOI: 10.1186/1476-511x-12-107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background It is now established that patients with hyperlipidemia have a high risk of atherosclerosis and thrombotic complications, which are two important events responsible for the onset and progression of cardiovascular disease. In the context of managing dyslipidemia by means of dietary advice based on the consumption of argan oil, we wanted to investigate the effect of virgin argan oil on plasma lipids, and for the first time, on the platelet hyperactivation and oxidative status associated with dyslipidemia. This study concerns patients recruited in the area of Rabat in Morocco. Methods 39 dyslipidemic (79% women) patients were recruited for our study in the area of Rabat in Morocco. They were randomly assigned to the two following groups: the argan group, in which the subjects consumed 25 mL/day of argan oil at breakfast for 3 weeks, and the control group in which argan oil was replaced by butter. Results After a 3-week consumption period, blood total cholesterol was significantly lower in the argan oil group, as was LDL cholesterol (23.8% and 25.6% lower, respectively). However, the HDL cholesterol level had increased by 26% at the end of the intervention period compared to baseline. Interestingly, in the argan oil group thrombin-induced platelet aggregation was lower, and oxidative status was enhanced as a result of lower platelet MDA and higher GPx activity, respectively. Conclusions In conclusion, our results, even if it is not representative of the Moroccan population, show that argan oil can prevent the prothrombotic complications associated with dyslipidemia, which are a major risk factor for cardiovascular disease.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
12 |
13
|
Mayer C, Côme M, Ulmann L, Martin I, Zittelli GC, Faraloni C, Ouguerram K, Chénais B, Mimouni V. The Potential of the Marine Microalga Diacronema lutheri in the Prevention of Obesity and Metabolic Syndrome in High-Fat-Fed Wistar Rats. Molecules 2022; 27:molecules27134246. [PMID: 35807489 PMCID: PMC9268017 DOI: 10.3390/molecules27134246] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Long-chain polyunsaturated fatty acids n-3 series (n-3 LC-PUFAs), especially eicosapentaenoic and docosahexaenoic acids, are known to exert preventive effects on obesity and metabolic syndrome. Mainly consumed in the form of fish oil, LC-PUFAs n-3 are also found in significant quantities in other sources such as certain microalgae. The aim of this study was to evaluate the effects of Diacronema lutheri (Dia), a microalga rich in n-3 LC-PUFAs, on metabolic disorders associated with obesity. Three groups of male Wistar rats (n = 6 per group) were submitted for eight weeks to a standard diet or high-fat and high-fructose diet (HF), supplemented or not with 12% of Dia (HF-Dia). Compared to HF rats, HF-Dia rats showed a 41% decrease in plasma triacylglycerol (TAG) and an increase in plasma cholesterol (+35%) as well as in high-density lipoprotein cholesterol (+51%) without change to low-density lipoprotein cholesterol levels. Although fasting glycemia did not change, glucose and insulin tolerance tests highlighted an improvement in glucose and insulin homeostasis. Dia supplementation restored body weight and fat mass, and decreased levels of liver TAG (−75%) and cholesterol (−84%). In HF-Dia rats, leptin was decreased (−30%) below the control level corresponding to a reduction of 68% compared to HF rats. Similarly, the anti-inflammatory cytokines interleukin-4 (IL-4) and IL-10 were restored up to control levels, corresponding to a 74% and 58% increase in HF rats, respectively. In contrast, the level of IL-6 remained similar in the HF and HF-Dia groups and about twice that of the control. In conclusion, these results indicated that the D. lutheri microalga may be beneficial for the prevention of weight gain and improvement in lipid and glucose homeostasis.
Collapse
|
|
3 |
12 |
14
|
Kasbi-Chadli F, Boquien CY, Simard G, Ulmann L, Mimouni V, Leray V, Meynier A, Ferchaud-Roucher V, Champ M, Nguyen P, Ouguerram K. Maternal supplementation with n-3 long chain polyunsaturated fatty acids during perinatal period alleviates the metabolic syndrome disturbances in adult hamster pups fed a high-fat diet after weaning. J Nutr Biochem 2014; 25:726-33. [DOI: 10.1016/j.jnutbio.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 01/13/2014] [Accepted: 03/02/2014] [Indexed: 01/09/2023]
|
|
11 |
11 |
15
|
Ulmann L, Blanckaert V, Mimouni V, Andersson MX, Schoefs B, Chenais B. Microalgal Fatty Acids and Their Implication in Health and Disease. Mini Rev Med Chem 2017; 17:1112-1123. [PMID: 27457215 DOI: 10.2174/1389557516666160722132736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fatty acids of seed plants and microalgae stored in triglyceride are all produced in the plastid and incorporated into triglycerides by a complex biochemical exchange between the plastid envelope and the endoplasmic reticulum. The oils of seed plants provide the basis for vegetal fat production and the microalgal fats represent an important part of the basal food web of the marine environment. The health-promoting properties of these various sources of fats and in particular the long-chain polyunsaturated fatty acids of marine microalgae are widely recognized. The omega-3 fatty acids are known to have benefits on health and disease. Indeed, alpha-linolenic, eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are linked to the regulation of mechanisms involved in numerous biological functions associated with cardiovascular disease and cancer prevention. Most EPA and DHA sources for human nutrition are provided by decreasing global stocks of fish. This is one of the reasons why industrial research has been directed towards more sustainable sources of these "marine" lipids. The synthesis of fatty acids and triglycerides are in many respects similar in higher plants and marine algae, but there are also important differences. CONCLUSION This mini-review covers the biochemistry of fatty acid and lipid synthesis in marine microalgae, and the potential health impact of the different fats is also discussed.
Collapse
|
Review |
8 |
9 |
16
|
Mimouni V, Narce M, Huang YS, Horrobin DF, Poisson JP. Adrenic acid delta 4 desaturation and fatty acid composition in liver microsomes of spontaneously diabetic Wistar BB rats. Prostaglandins Leukot Essent Fatty Acids 1994; 50:43-7. [PMID: 8146207 DOI: 10.1016/0952-3278(94)90104-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We examined the delta 4 (n-6) desaturation and the fatty acid composition of liver microsomes in the insulin-dependent spontaneously diabetic Wistar Bio-Breeding (BB) rat. The desaturation of adrenic acid to n-6 docosapentaenoic acid was decreased in the normo- and hyperglycemic diabetic rats. Insulin treatment with 1.0 IU. 100 g body weight-1 twice a day for 2 days restored the reduced activity during the hypoglycemic period. The pattern of responses was similar to that of linoleic acid delta 6 and dihomo-gamma-linolenic acid delta 5 desaturases, with a non-parallel relationship between the desaturation system and the glycemia. The microsomal fatty acid composition of BB rat liver reflected only partially to the delta 4 desaturation at different states of glycemia. Factors other than impaired desaturation system are involved in the fatty acid metabolism of spontaneously diabetic rats.
Collapse
|
|
31 |
9 |
17
|
Mimouni V, Narce M, Poisson JP. Evidence for insulin dependent hepatic microsomal gamma-linolenic acid chain elongation in spontaneously diabetic Wistar BB rats. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1133:187-92. [PMID: 1310052 DOI: 10.1016/0167-4889(92)90068-m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We studied hepatic microsomal gamma-linolenoyl-CoA elongation and fatty acid composition of liver microsomes in spontaneously diabetic Wistar BB rats. The liver microsomal gamma-linolenoyl-CoA elongation was decreased in diabetic Wistar BB rats during both normo- and hyperglycemic periods and restored during the hypoglycemic period following insulin treatment. These results are in agreement with our previously reported data on linoleic acid delta 6 and delta 5 desaturations and support the non-parallel relationship between the chain elongation system and the glycemia. The fatty acid composition of BB rat liver microsomes was only partially consistent with the gamma-linolenoyl-CoA elongation activity at the different periods of glycemia, probably because factors other than elongation impairments were involved in the evolution of fatty acid composition.
Collapse
|
|
33 |
8 |
18
|
Guihéneuf F, Ulmann L, Mimouni V, Tremblin G. Use of radiolabeled substrates to determine the desaturase and elongase activities involved in eicosapentaenoic acid and docosahexaenoic acid biosynthesis in the marine microalga Pavlova lutheri. PHYTOCHEMISTRY 2013; 90:43-49. [PMID: 23528573 DOI: 10.1016/j.phytochem.2013.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/17/2013] [Accepted: 02/20/2013] [Indexed: 06/02/2023]
Abstract
The marine flagellate Pavlova lutheri is a microalga known to be rich in long-chain polyunsaturated fatty acids (LC-PUFAs) and able to produce large amounts of n-3 fatty acids, such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). As no previous study had attempted to measure the metabolic step of fatty acid synthesis in this alga, we used radiolabeled precursors to explore the various desaturation and elongation steps involved in LC-PUFA biosynthesis pathways. The incorporation of (14)C-labeled palmitic ([1-(14)C] 16:0) and dihomo-γ-linolenic ([1-(14)C] 20:3n-6) acids as ammonium salts within the cells was monitored during incubation periods lasting 3, 10 or 24h. Total lipids and each of the fatty acids were also monitored during these incubation periods. A decrease in the availability and/or accessibility of the radiolabeled substrates was observed over the incubation time. This decrease with incubation time observed using [1-(14)C] 16:0 and [1-(14)C] 20:3n-6 as substrates was used to monitor the conversion of (14)C-labeled arachidonic acid ([1-(14)C] 20:4n-6) into longer and more unsaturated fatty acids, such as 20:5n-3 and 22:6n-3, over shorter incubation times (1 and 3h). A metabolic relationship between the n-6 and n-3 fatty acid series was demonstrated in P. lutheri by measuring the Δ17-desaturation activity involved in the conversion of eicosatetraenoic acid to 20:5n-3. Our findings suggest that the biosynthesis pathway leading to n-3 LC-PUFA involves fatty acids of the n-6 family, which act as precursors in the biosynthesis of 20:5n-3 and 22:6n-3. This preliminary work provides a method for studying microalgal LC-PUFA biosynthesis pathways and desaturase and elongase activities in vivo using externally-radiolabeled fatty acid precursors as substrates. The use of the [1-(14)C] 20:4n-6 substrate also highlighted the relationships between the n-6 and the n-3 fatty acid series (e.g. Δ17-desaturation), and the final elongation and desaturation steps required for n-3 LC-PUFA formation in P. lutheri.
Collapse
|
|
12 |
6 |
19
|
Mayer C, Richard L, Côme M, Ulmann L, Nazih H, Chénais B, Ouguerram K, Mimouni V. The Marine Microalga, Tisochrysis lutea, Protects against Metabolic Disorders Associated with Metabolic Syndrome and Obesity. Nutrients 2021; 13:430. [PMID: 33525643 PMCID: PMC7911999 DOI: 10.3390/nu13020430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Long-chain polyunsaturated fatty acids n-3 series and especially docosahexaenoic acid are known to exert preventive effects on metabolic disturbances associated with obesity and decrease cardiovascular disease risk. n-3 LC-PUFAs are mainly consumed in the form of fish oil, while other sources, such as certain microalgae, may contain a high content of these fatty acids. The aim of this study was to evaluate the effects of Tisochrysis lutea (Tiso), a microalga rich in DHA, on metabolic disorders associated with obesity. Three male Wistar rat groups were submitted for eight weeks to a standard diet or high-fat and high fructose diet (HF), supplemented or not with 12% of T. lutea (HF-Tiso). The supplementation did not affect plasma alanine aminotransferase (ALAT). Bodyweight, glycemia and insulinemia decreased in HF-Tiso rats (ANOVA, p < 0.001), while total plasma cholesterol, high-density lipoprotein-cholesterol (HDL-C) increased (ANOVA, p < 0.001) without change of low-density lipoprotein-cholesterol (LDL-C) and triacylglycerol (TAG) levels. Tiso supplementation decreased fat mass and leptinemia as well as liver TAG, cholesterol and plasma tumor necrosis factor-alpha levels (ANOVA, p < 0.001) while it did not affect interleukin 6 (IL-6), IL-4 and lipopolysaccharides levels. HF-Tiso rats showed an increase of IL-10 level in abdominal adipose tissue (ANOVA, p < 0.001). In conclusion, these results indicated that DHA-rich T. lutea might be beneficial for the prevention of obesity and improvement of lipid and glucose metabolism.
Collapse
|
research-article |
4 |
6 |
20
|
Guihéneuf F, Mimouni V, Tremblin G, Ulmann L. Light Intensity Regulates LC-PUFA Incorporation into Lipids of Pavlova lutheri and the Final Desaturase and Elongase Activities Involved in Their Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1261-1267. [PMID: 25592433 DOI: 10.1021/jf504863u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The microalga Pavlova lutheri is a candidate for the production of omega-3 long-chain polyunsaturated fatty acid (LC-PUFA), due to its ability to accumulate both eicosapentaenoic (EPA) and docosahexaenoic acids. Outstanding questions need to be solved to understand the complexity of n-3 LC-PUFA synthesis and partitioning into lipids, especially its metabolic regulation, and which enzymes and/or abiotic factors control their biosynthesis. In this study, the radioactivity of 14C-labeled arachidonic acid incorporated into the total lipids of P. lutheri grown under different light intensities and its conversion into labeled LC-PUFA were monitored. The results highlighted for the first time the light-dependent incorporation of LC-PUFA into lipids and the light-dependent activity of the final desaturation and elongation steps required to synthesize and accumulate n-3 C20/C22 LC-PUFA. The incorporation of arachidonic acid into lipids under low light and the related Δ17-desaturation activity measured explain the variations in fatty acid profile of P. lutheri, especially the accumulation of n-3 LC-PUFA such as EPA under low light conditions.
Collapse
|
|
10 |
6 |
21
|
Mimouni V, Poisson JP. Liver fatty acid composition in the spontaneously diabetic BB rat. ARCHIVES INTERNATIONALES DE PHYSIOLOGIE, DE BIOCHIMIE ET DE BIOPHYSIQUE 1991; 99:111-21. [PMID: 1713483 DOI: 10.3109/13813459109145913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of the present experiment was to investigate if the modulation by insulin of liver microsomal desaturase activities in the spontaneously diabetic adult male Bio-Breeding (BB) rat, with destructive insulitis resembling the lesions described in the human Type I (insulin-dependent) diabetes, corresponds to modifications in fatty acid composition, reflect of changes in fatty acid desaturation. We observed no significant differences between BB rats, during the hyper-(48 h), the normo-(17 h) and the hypo-glycemic (3 h) periods which followed the insulin injection, and control rats for the fatty acid composition of liver total lipids, phosphatidylethanolamines, phosphatidylcholines, triacylglycerols, cholesterol esters and non esterified fatty acids. On the other hand, linoleic acid of BB rats liver phospholipids increased, comparatively to control rats, while arachidonic acid decreased, in agreement with previously reported results on chemical diabetes and consistent with a defective delta 6 desaturation, particularly during the normo-and hyper-glycemic periods, and the fact that control of membrane lipid composition is multifactorial.
Collapse
|
|
34 |
5 |
22
|
Narce M, Mimouni V, Poisson JP. Effect of sodium loading (3% NaCl) on arachidonic acid biosynthesis in rat liver microsomes. Prostaglandins Leukot Essent Fatty Acids 1992; 47:193-7. [PMID: 1475274 DOI: 10.1016/0952-3278(92)90238-e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sodium loading increases arachidonic acid (AA) metabolism by way of the prostaglandins(PGs) from series 2. Its effect on AA biosynthesis remains unknown. The purpose of the present study was to investigate the influence of sodium loading on the fatty acid composition of liver and liver microsomes, and the liver microsomal delta-6 and delta-5 desaturations of linoleic acid (LA) into AA. We found a decrease of LA and dihomo-gamma-linolenic acid (DGLA) levels in liver total lipids of Wistar rats receiving hypernatriuretic drinking water (NaCl 3%) for 60 days. At the same time AA increased. DGLA decreased and AA increased in liver microsomal total lipids. 1(14) C-LA delta-6 desaturase and 2(14) C-DGLA delta-5 desaturase activities increased in liver microsomes. These results show that, in addition to its influence on the regulation of glomerular filtration, sodium loading is involved in the regulation of liver AA biosynthesis.
Collapse
|
|
33 |
5 |
23
|
Huang B, Mimouni V, Lukomska E, Morant-Manceau A, Bougaran G. Carbon Partitioning and Lipid Remodeling During Phosphorus and Nitrogen Starvation in the Marine Microalga Diacronema lutheri (Haptophyta). JOURNAL OF PHYCOLOGY 2020; 56:908-922. [PMID: 32215912 DOI: 10.1111/jpy.12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The domesticated marine microalga Diacronema lutheri is of great interest for producing various highly valuable molecules like lipids, particularly long-chain polyunsaturated fatty acids (LC-PUFA). In this study, we investigated the impact of phosphorus (P) and nitrogen (N) starvation on growth, carbon fixation (photosynthetic activity) and partitioning, and membrane lipid remodeling in this alga during batch culture. Our results show that the photosynthetic machinery was similarly affected by P and N stress. Under N starvation, we observed a much lower photosynthetic rate and biomass productivity. The degradation and re-use of cellular N-containing compounds contributed to triacylglycerol (TAG) accumulation. On the other hand, P-starved cells maintained pigment content and a carbon partitioning pattern more similar to the control, ensuring a high biomass. Betaine lipids constitute the major compounds of non-plastidial membranes, which are rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Under P and N starvations, EPA was transferred from the recycling of membrane polar lipids, most likely contributing to TAG accumulation.
Collapse
|
|
5 |
3 |
24
|
Tricot S, Mimouni V, Rompion S, Froger C, Lacroix P, Roux S, Ulmann L. No altered blood pressure and serum markers of oxidative stress after a long time dietary fish oil in the genetically 9 month-old type-2 diabetes Zucker rat. Prostaglandins Leukot Essent Fatty Acids 2010; 83:211-8. [PMID: 20833009 DOI: 10.1016/j.plefa.2010.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 11/20/2022]
Abstract
In this study, we investigated the effect of a high n-3 fatty acid diet (eicosapentaenoic and docosahexaenoic acids) in Zucker obese and lean rats on blood pressure in association with physiological parameters, serum biochemistry and oxidative stress analysis. After 150 days of treatment, dietary fish oil supplementation in Zucker obese rats (9 months of age) reduces bodyweight gain and serum triglyceridemia and nitrite levels, increases serum glucose and angiotensin converting enzyme activity, but does not alter blood pressure, cholesterol levels and serum markers of oxidative stress (malondialdehyde, glutathione), compared to the Zucker rats fed control diet. According to these results, we can consider that after 150 days of treatment, fish oil is not enough to regulate parameters involved in the metabolic syndrome, such as cholesterolemia and blood pressure, in a 9 month-old genetically type-2 diabetes rat.
Collapse
|
|
15 |
|
25
|
Van Gulick L, Saby C, Mayer C, Fossier E, Jaisson S, Okwieka A, Gillery P, Chenais B, Mimouni V, Morjani H, Beljebbar A. Biochemical and morpho-mechanical properties, and structural organization of rat tail tendon collagen in diet-induced obesity model. Int J Biol Macromol 2024; 254:127936. [PMID: 37939767 DOI: 10.1016/j.ijbiomac.2023.127936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
We have investigated the impact of obesity on the structural organization, morpho-mechanical properties of collagen fibers from rat tail tendon fascicles (RTTFs). Polarized Raman microspectroscopy showed that the collagen bands 855, 875, 938, and 960 cm-1 as well as those 1631 and 1660 cm-1 were affected by diet. Mechanical properties exhibited an increase in the yield strength from control (CTRL) to high fat (HF) diet (9.60 ± 1.71 and 13.09 ± 1.81 MPa) (p < 0.01) and ultimate tensile strength (13.12 ± 2.37 and 18.32 ± 2.83 MPa) (p < 0.05) with no significant change in the Young's Modulus. During mechanical, the band at 875 cm-1 exhibited the most relevant frequency shift (2 cm-1). The intensity of those at 855, 875, and 938 cm-1 in HF collagen displayed a comparable response to mechanical stress as compared to CTRL collagen with no significant diet-related changes in the Full Width at Half Maximum. Second harmonic generation technique revealed i) similar fiber straightness (0.963 ± 0.004 and 0.965 ± 0.003) and ii) significant changes in fibers diameter (1.48 ± 0.07 and 1.52 ± 0.08 μm) (p < 0.05) and length (22.06 ± 2.38 and 29.00 ± 3.76 μm) (p < 0.001) between CTRL and HF diet, respectively. The quantification of advanced glycation end products (AGEs) revealed an increase in both carboxymethyl-lysine and total fluorescence AGEs from CTRL to HF RTTFs.
Collapse
|
|
1 |
|