1
|
Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I, Jacobs M, Ryffel B, Quesniaux VFJ. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2007; 179:1178-89. [PMID: 17617611 DOI: 10.4049/jimmunol.179.2.1178] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MyD88, the common adapter involved in TLR, IL-1, and IL-18 receptor signaling, is essential for the control of acute Mycobacterium tuberculosis (MTB) infection. Although TLR2, TLR4, and TLR9 have been implicated in the response to mycobacteria, gene disruption for these TLRs impairs only the long-term control of MTB infection. Here, we addressed the respective role of IL-1 and IL-18 receptor pathways in the MyD88-dependent control of acute MTB infection. Mice deficient for IL-1R1, IL-18R, or Toll-IL-1R domain-containing adaptor protein (TIRAP) were compared with MyD88-deficient mice in an acute model of aerogenic MTB infection. Although primary MyD88-deficient macrophages and dendritic cells were defective in cytokine production in response to mycobacterial stimulation, IL-1R1-deficient macrophages exhibited only a reduced IL-12p40 secretion with unaffected TNF, IL-6, and NO production and up-regulation of costimulatory molecules CD40 and CD86. Aerogenic MTB infection of IL-1R1-deficient mice was lethal within 4 wk with 2-log higher bacterial load in the lung and necrotic pneumonia but efficient pulmonary CD4 and CD8 T cell responses, as seen in MyD88-deficient mice. Mice deficient for IL-18R or TIRAP controlled acute MTB infection. These data demonstrate that absence of IL-1R signal leads to a dramatic defect of early control of MTB infection similar to that seen in the absence of MyD88, whereas IL-18R and TIRAP are dispensable, and that IL-1, together with IL-1-induced innate response, might account for most of MyD88-dependent host response to control acute MTB infection.
Collapse
|
Journal Article |
18 |
270 |
2
|
Togbe D, Schnyder-Candrian S, Schnyder B, Doz E, Noulin N, Janot L, Secher T, Gasse P, Lima C, Coelho FR, Vasseur V, Erard F, Ryffel B, Couillin I, Moser R. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury. Int J Exp Pathol 2007; 88:387-91. [PMID: 18039275 DOI: 10.1111/j.1365-2613.2007.00566.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent studies on endotoxin/lipopolysaccharide (LPS)-induced acute inflammatory response in the lung are reviewed. The acute airway inflammatory response to inhaled endotoxin is mediated through Toll-like receptor 4 (TLR4) and CD14 signalling as mice deficient for TLR4 or CD14 are unresponsive to endotoxin. Acute bronchoconstriction, tumour necrosis factor (TNF), interleukin (IL)-12 and keratinocyte-derived chemokine (KC) production, protein leak and neutrophil recruitment in the lung are abrogated in mice deficient for the adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adaptor protein (TIRAP), but independent of TIR-domain-containing adaptor-inducing interferon-beta (TRIF). In particular, LPS-induced TNF is required for bronchoconstriction, but dispensable for inflammatory cell recruitment. Lipopolysaccharide induces activation of the p38 mitogen-activated protein kinase (MAPK). Inhibition of pulmonary MAPK activity abrogates LPS-induced TNF production, bronchoconstriction, neutrophil recruitment into the lungs and broncho-alveolar space. In conclusion, TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin are dependent on TLR4/CD14/MD2 expression using the adapter proteins TIRAP and MyD88, while TRIF, IL-1R1 or IL-18R signalling pathways are dispensable. Further downstream in this axis of signalling, TNF blockade reduces only acute bronchoconstriction, while MAPK inhibition abrogates completely endotoxin-induced inflammation.
Collapse
|
Review |
18 |
103 |
3
|
Couillin I, Vasseur V, Charron S, Gasse P, Tavernier M, Guillet J, Lagente V, Fick L, Jacobs M, Coelho FR, Moser R, Ryffel B. IL-1R1/MyD88 signaling is critical for elastase-induced lung inflammation and emphysema. THE JOURNAL OF IMMUNOLOGY 2010; 183:8195-202. [PMID: 20007584 DOI: 10.4049/jimmunol.0803154] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Lung emphysema and fibrosis are severe complications of chronic obstructive pulmonary disease, and uncontrolled protease activation may be involved in the pathogenesis. Using experimental elastase-induced acute inflammation, we demonstrate here that inflammation and development of emphysema is IL-1R1 and Toll/IL-1R signal transduction adaptor MyD88 dependent; however, TLR recognition is dispensable in this model. Elastase induces IL-1beta, TNF-alpha, keratinocyte-derived chemokine, and IL-6 secretion and neutrophil recruitment in the lung, which is drastically reduced in the absence of IL-1R1 or MyD88. Further, tissue destruction with emphysema and fibrosis is attenuated in the lungs of IL-1R1- and MyD88-deficient mice. Specific blockade of IL-1 by IL-1R antagonist diminishes acute inflammation and emphysema. Finally, IL-1beta production and inflammation are reduced in mice deficient for the NALP3 inflammasome component apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and we identified uric acid, which is produced upon elastase-induced lung injury, as an activator of the NALP3/ASC inflammasome. In conclusion, elastase-mediated lung pathology depends on inflammasome activation with IL-1beta production. IL-1beta therefore represents a critical mediator and a possible therapeutic target of lung inflammation leading to emphysema.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
86 |
4
|
Guiton R, Vasseur V, Charron S, Arias M, Van Langendonck N, Buzoni‐Gatel D, Ryffel B, Dimier‐Poisson I. Interleukin 17 Receptor Signaling Is Deleterious duringToxoplasma gondiiInfection in Susceptible BL6 Mice. J Infect Dis 2010; 202:427-35. [DOI: 10.1086/653738] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
|
15 |
77 |
5
|
Court N, Vasseur V, Vacher R, Frémond C, Shebzukhov Y, Yeremeev VV, Maillet I, Nedospasov SA, Gordon S, Fallon PG, Suzuki H, Ryffel B, Quesniaux VFJ. Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:7057-70. [PMID: 20488784 DOI: 10.4049/jimmunol.1000164] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is recognized by multiple pattern recognition receptors involved in innate immune defense, but their direct role in tuberculosis pathogenesis remains unknown. Beyond TLRs, scavenger receptors (SRs) and C-type lectins may play a crucial role in the sensing and signaling of pathogen motifs, as well as contribute to M. tuberculosis immune evasion. In this study, we addressed the relative role and potential redundancy of these receptors in the host response and resistance to M. tuberculosis infection using mice deficient for representative SR, C-type lectin receptor, or seven transmembrane receptor families. We show that a single deficiency in the class A SR, macrophage receptor with collagenous structure, CD36, mannose receptor, specific ICAM-3 grabbing nonintegrin-related, or F4/80 did not impair the host resistance to acute or chronic M. tuberculosis infection in terms of survival, control of bacterial clearance, lung inflammation, granuloma formation, and cytokine and chemokine expression. Double deficiency for the SRs class A SR types I and II plus CD36 or for the C-type lectins mannose receptor plus specific ICAM-3 grabbing nonintegrin-related had a limited effect on macrophage uptake of mycobacteria and TNF response and on the long-term control of M. tuberculosis infection. By contrast, mice deficient in the TNF, IL-1, or IFN-gamma pathway were unable to control acute M. tuberculosis infection. In conclusion, we document a functional redundancy in the pattern recognition receptors, which might cooperate in a coordinated response to sustain the full immune control of M. tuberculosis infection, in sharp contrast with the nonredundant, essential role of the TNF, IL-1, or IFN-gamma pathway for host resistance to M. tuberculosis.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
64 |
6
|
Bourigault ML, Segueni N, Rose S, Court N, Vacher R, Vasseur V, Erard F, Le Bert M, Garcia I, Iwakura Y, Jacobs M, Ryffel B, Quesniaux VFJ. Relative contribution of IL-1α, IL-1β and TNF to the host response to Mycobacterium tuberculosis and attenuated M. bovis BCG. IMMUNITY INFLAMMATION AND DISEASE 2013; 1:47-62. [PMID: 25400917 PMCID: PMC4217540 DOI: 10.1002/iid3.9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/06/2013] [Accepted: 08/21/2013] [Indexed: 12/17/2022]
Abstract
TNF and IL-1 are major mediators involved in severe inflammatory diseases against which therapeutic neutralizing antibodies are developed. However, both TNF and IL-1 receptor pathways are essential for the control of Mycobacterium tuberculosis infection, and it is critical to assess the respective role of IL-1α, IL-1β, and TNF. Using gene-targeted mice we show that absence of both IL-1α and IL-1β recapitulates the uncontrolled M. tuberculosis infection with increased bacterial burden, exacerbated lung inflammation, high IFNγ, reduced IL-23 p19 and rapid death seen in IL-1R1-deficient mice. However, presence of either IL-1α or IL-1β in single-deficient mice is sufficient to control acute M. tuberculosis infection, with restrained bacterial burden and lung pathology, in conditions where TNF deficient mice succumbed within 4 weeks with overwhelming infection. Systemic infection by attenuated M. bovis BCG was controlled in the absence of functional IL-1 pathway, but not in the absence of TNF. Therefore, although both IL-1α and IL-1β are required for a full host response to virulent M. tuberculosis, the presence of either IL-1α or IL-1β allows some control of acute M. tuberculosis infection, and IL-1 pathway is dispensable for controlling M. bovis BCG acute infection. This is in sharp contrast with TNF, which is essential for host response to both attenuated and virulent mycobacteria and may have implications for anti-inflammatory therapy with IL-1β neutralizing antibodies.
Collapse
|
Journal Article |
12 |
61 |
7
|
Foureau DM, Mielcarz DW, Menard LC, Schulthess J, Werts C, Vasseur V, Ryffel B, Kasper LH, Buzoni-Gatel D. TLR9-dependent induction of intestinal alpha-defensins by Toxoplasma gondii. THE JOURNAL OF IMMUNOLOGY 2010; 184:7022-9. [PMID: 20488791 DOI: 10.4049/jimmunol.0901642] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-defensins (or Cryptdins [Crps]) are a group of antimicrobial peptides produced as a component of Paneth cell (PC) secretory granules in the small intestine. In vivo ligation of TLR9 by synthetic agonists leads to PC degranulation, although the mechanism by which this occurs remains uncertain. In this report, we investigated TLR9-dependent mechanisms, triggered by the parasite Toxoplasma gondii, inducing Crp release in the lumen. Oral challenge of C57BL/6J (B6) wild-type (WT) mice with T. gondii induced TLR9 mRNA upregulation associated with a marked increase of type I IFN mRNA expression. PC secretory granules were released, and Crp-3/-5 mRNA expression by purified epithelial cells was increased following oral challenge of B6 WT mice. Although PCs failed to degranulate in infected B6 TLR9-/- mice, i.p. injection of mouse IFN-beta alone led to Crp-3/-5 mRNA upregulation in B6 WT and TLR9-/- mice. In addition, modulation of Crp mRNA expression in response to T. gondii infection was abrogated in B6 IFNAR-/- mice, which lack a functional type I IFN receptor. Taken together, these data demonstrate that T. gondii induces Crp-3/-5 production and release by PCs via a TLR9-dependent production of type I IFNs. Crps have a limited direct effect against T. gondii but may indirectly affect the early control of T. gondii invasiveness by promoting the initiation of a protective Th1 response against the parasite.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
56 |
8
|
Feliu V, Vasseur V, Grover HS, Chu HH, Brown MJ, Wang J, Boyle JP, Robey EA, Shastri N, Blanchard N. Location of the CD8 T cell epitope within the antigenic precursor determines immunogenicity and protection against the Toxoplasma gondii parasite. PLoS Pathog 2013; 9:e1003449. [PMID: 23818852 PMCID: PMC3688528 DOI: 10.1371/journal.ppat.1003449] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 05/07/2013] [Indexed: 12/24/2022] Open
Abstract
CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii) protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as immunodominance and is key to effective vaccine design. However, the mechanisms that determine the immunogenicity and immunodominance hierarchy of parasite antigens are not well understood. Here, using genetically modified parasites, we show that parasite burden is controlled by the immunodominant GRA6-specific CD8 T cell response but not by responses to the subdominant GRA4- and ROP7-derived epitopes. Remarkably, optimal processing and immunodominance were determined by the location of the peptide epitope at the C-terminus of the GRA6 antigenic precursor. In contrast, immunodominance could not be explained by the peptide affinity for the MHC I molecule or the frequency of T cell precursors in the naive animals. Our results reveal the molecular requirements for optimal presentation of an intracellular parasite antigen and for eliciting protective CD8 T cells.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
54 |
9
|
Doz E, Rose S, Court N, Front S, Vasseur V, Charron S, Gilleron M, Puzo G, Fremaux I, Delneste Y, Erard F, Ryffel B, Martin OR, Quesniaux VFJ. Mycobacterial phosphatidylinositol mannosides negatively regulate host Toll-like receptor 4, MyD88-dependent proinflammatory cytokines, and TRIF-dependent co-stimulatory molecule expression. J Biol Chem 2009; 284:23187-96. [PMID: 19561082 DOI: 10.1074/jbc.m109.037846] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis modulates host immune responses through proteins and complex glycolipids. Here, we report that the glycosylphosphatidylinositol anchor phosphatidyl-myo-inositol hexamannosides PIM(6) or PIM(2) exert potent anti-inflammatory activities. PIM strongly inhibited the Toll-like receptor (TLR4) and myeloid differentiation protein 88 (MyD88)-mediated release of NO, cytokines, and chemokines, including tumor necrosis factor (TNF), interleukin 12 (IL-12) p40, IL-6, keratinocyte-derived chemokine, and also IL-10 by lipopolysaccharide (LPS)-activated macrophages. This effect was independent of the presence of TLR2. PIM also reduced the LPS-induced MyD88-independent, TIR domain-containing adaptor protein inducing interferon beta (TRIF)-mediated expression of co-stimulatory receptors. PIM inhibited LPS/TLR4-induced NFkappaB translocation. Synthetic PIM(1) and a PIM(2) mimetic recapitulated these in vitro activities and inhibited endotoxin-induced airway inflammation, TNF and keratinocyte-derived chemokine secretion, and neutrophil recruitment in vivo. Mannosyl, two acyl chains, and phosphatidyl residues are essential for PIM anti-inflammatory activity, whereas the inosityl moiety is dispensable. Therefore, PIM exert potent antiinflammatory effects both in vitro and in vivo that may contribute to the strategy developed by mycobacteria for repressing the host innate immunity, and synthetic PIM analogs represent powerful anti-inflammatory leads.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
54 |
10
|
Lopez J, Bittame A, Massera C, Vasseur V, Effantin G, Valat A, Buaillon C, Allart S, Fox BA, Rommereim LM, Bzik DJ, Schoehn G, Weissenhorn W, Dubremetz JF, Gagnon J, Mercier C, Cesbron-Delauw MF, Blanchard N. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen. Cell Rep 2015; 13:2273-86. [PMID: 26628378 DOI: 10.1016/j.celrep.2015.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/11/2015] [Accepted: 10/30/2015] [Indexed: 11/20/2022] Open
Abstract
Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
49 |
11
|
Quesniaux VFJ, Jacobs M, Allie N, Grivennikov S, Nedospasov SA, Garcia I, Olleros ML, Shebzukhov Y, Kuprash D, Vasseur V, Rose S, Court N, Vacher R, Ryffel B. TNF in host resistance to tuberculosis infection. CURRENT DIRECTIONS IN AUTOIMMUNITY 2010; 11:157-79. [PMID: 20173394 DOI: 10.1159/000289204] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TNF is essential to control Mycobacterium tuberculosis infection and cannot be replaced by other proinflammatory cytokines. Overproduction of TNF may cause immunopathology, while defective TNF production results in uncontrolled infection. The critical role of TNF in the control of tuberculosis has been illustrated recently by primary and reactivation of latent infection in some patients under pharmacological anti-TNF therapy for rheumatoid arthritis or Crohn's disease. In this review, we discuss results of recent studies aimed at better understanding of molecular, cellular and kinetic aspects of TNF-mediated regulation of host-mycobacteria interactions. In particular, recent data using either mutant mice expressing solely membrane TNF or specific inhibitor sparing membrane TNF demonstrated that membrane TNF is sufficient to control acute M. tuberculosis infection. This is opening the way to selective TNF neutralization that might retain the desired anti-inflammatory effect but reduce the infectious risk.
Collapse
|
Review |
15 |
48 |
12
|
Le Dréan G, Mounier J, Vasseur V, Arzur D, Habrylo O, Barbier G. Quantification of Penicillium camemberti and P. roqueforti mycelium by real-time PCR to assess their growth dynamics during ripening cheese. Int J Food Microbiol 2010; 138:100-7. [DOI: 10.1016/j.ijfoodmicro.2009.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/13/2009] [Accepted: 12/10/2009] [Indexed: 11/29/2022]
|
|
15 |
39 |
13
|
Secher T, Vasseur V, Poisson DM, Mitchell JA, Cunha FQ, Alves-Filho JC, Ryffel B. Crucial role of TNF receptors 1 and 2 in the control of polymicrobial sepsis. THE JOURNAL OF IMMUNOLOGY 2009; 182:7855-64. [PMID: 19494310 DOI: 10.4049/jimmunol.0804008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sepsis is still a major cause of mortality in the intensive critical care unit and results from an overwhelming immune response to the infection. TNF signaling pathway plays a central role in the activation of innate immunity in response to pathogens. Using a model of polymicrobial sepsis by i.p. injection of cecal microflora, we demonstrate a critical role of TNFR1 and R2 activation in the deregulated immune responses and death associated with sepsis. A large and persistent production of TNF was found in wild-type (B6) mice. TNFR1/R2-deficient mice, compared with B6 mice, survive lethal polymicrobial infection with enhanced neutrophil recruitment and bacterial clearance in the peritoneal cavity. Absence of TNFR signaling leads to a decreased local and systemic inflammatory response with diminished organ injury. Furthermore, using TNFR1/R2-deficient mice, TNF was found to be responsible for a decrease in CXCR2 expression, explaining reduced neutrophil extravasation and migration to the infectious site, and in neutrophil apoptosis. In line with the clinical experience, administration of Enbrel, a TNF-neutralizing protein, induced however only a partial protection in B6 mice, with no improvement of clinical settings, suggesting that future TNF immunomodulatory strategies should target TNFR1 and R2. In conclusion, the present data suggest that the endogenous TNFR1/R2 signaling pathway in polymicrobial sepsis reduces neutrophil recruitment contributing to mortality and as opposed to pan-TNF blockade is an important therapeutic target for the treatment of polymicrobial sepsis.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
37 |
14
|
Vanhoutte F, Breuilh L, Fontaine J, Zouain CS, Mallevaey T, Vasseur V, Capron M, Goriely S, Faveeuw C, Ryffel B, Trottein F. Toll-like receptor (TLR)2 and TLR3 sensing is required for dendritic cell activation, but dispensable to control Schistosoma mansoni infection and pathology. Microbes Infect 2007; 9:1606-13. [PMID: 18023390 DOI: 10.1016/j.micinf.2007.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/16/2007] [Accepted: 09/14/2007] [Indexed: 02/02/2023]
Abstract
Toll-like receptors (TLRs) play an important role in the innate recognition of pathogens by dendritic cells (DCs) and in the induction of immune responses. However, relatively little is known about their functions in innate/acquired responses to complex eukaryotic microorganisms, including helminth parasites. That Schistosoma mansoni eggs activate myeloid DCs through TLR2 and TLR3 has been shown by us and others, but the consequences of this combined activation are still unknown. We show that the engagement of both TLR2 and TLR3 by schistosome eggs is important for the production of inflammatory cytokines and interferon-stimulated genes, such as some chemokines, by DCs. Strikingly, DCs sensitized with ovalbumin in the presence of parasite eggs dramatically reduce the release of Th2-type cytokines by ovalbumin-specific T lymphocytes, an effect that fully depends on TLR3. Finally, although TLR2 and TLR3 have no role in host resistance and in egg-induced granuloma formation in S. mansoni-infected mice, they individually and additionally increase the Th1/Th2 balance of the immune response. Thus, TLR2 and TLR3 sensing is required to shape the immune response during murine schistosomiasis, but is dispensable to control infection and pathology.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
36 |
15
|
Vasseur V, Arigoni F, Andersen H, Defago G, Bompeix G, Seng JM. Isolation and characterization of Aphanocladium album chitinase-overproducing mutants. ACTA ACUST UNITED AC 1990. [DOI: 10.1099/00221287-136-12-2561] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
|
35 |
23 |
16
|
Minnaard J, Delfederico L, Vasseur V, Hollmann A, Rolny I, Semorile L, Pérez PF. Virulence of Bacillus cereus: A multivariate analysis. Int J Food Microbiol 2007; 116:197-206. [PMID: 17303280 DOI: 10.1016/j.ijfoodmicro.2006.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 12/28/2006] [Accepted: 12/29/2006] [Indexed: 11/19/2022]
Abstract
Biological activity and presence of DNA sequences related to virulence genes were studied in 21 strains of the Bacillus cereus group. The activity of spent culture supernatants and the effect of infection by vegetative bacterial cells were assessed on cultured human enterocytes (Caco-2 cells). The effect of extracellular factors on the detachment, necrosis and mitochondrial dehydrogenase activity of cultured human enterocytes was studied. Hemolytic activity on rabbit red blood cells was also evaluated and the effect of direct procaryotic-eucaryotic interactions was assessed in infection assays with vegetative bacterial cells. Concerning virulence genes, presence of the DNA sequences corresponding to the genes entS, entFM, nhe (A, B and C), sph, hbl (A, B, C and D), piplC and bceT was assessed by PCR. Ribopatterns were determined by an automated riboprinting analysis after digestion of the DNA with EcoRI. Principal component analysis and biplots were used to address the relationship between variables. Results showed a wide range of biological activities: decrease in mitochondrial dehydrogenase activity, necrosis, cell detachment and hemolytic activity. These effects were strain-dependent. Concerning the occurrence of the DNA sequences tested, different patterns were found. In addition, ribotyping showed that strains under study grouped into two main clusters. One of these clusters includes all the strains that were positive for all the DNA sequences tested. Positive and negative correlations between variables under study were evidenced. Interestingly, high detaching strains were positively correlated with the presence of the sequences entS, nheC and sph. Within gene complexes, high correlation was found between sequences of the hbl complex. In contrast, sequences of the nhe complex were not correlated. Some strains clustered together in the biplots. These strains were positive for all the DNA sequences tested and they were able to detach enterocytes upon infection. Our results highlight the multifactorial character of the virulence of the B. cereus group and show the correlation between ribopatterns, occurrence of toxin genes and biological activity of the strains under study.
Collapse
|
|
18 |
23 |
17
|
Salvioni A, Belloy M, Lebourg A, Bassot E, Cantaloube-Ferrieu V, Vasseur V, Blanié S, Liblau RS, Suberbielle E, Robey EA, Blanchard N. Robust Control of a Brain-Persisting Parasite through MHC I Presentation by Infected Neurons. Cell Rep 2020; 27:3254-3268.e8. [PMID: 31189109 DOI: 10.1016/j.celrep.2019.05.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/03/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Control of CNS pathogens by CD8 T cells is key to avoid fatal neuroinflammation. Yet, the modalities of MHC I presentation in the brain are poorly understood. Here, we analyze the antigen presentation mechanisms underlying CD8 T cell-mediated control of the Toxoplasma gondii parasite in the CNS. We show that MHC I presentation of an efficiently processed model antigen (GRA6-OVA), even when not expressed in the bradyzoite stage, reduces cyst burden and dampens encephalitis in C57BL/6 mice. Antigen presentation assays with infected primary neurons reveal a correlation between lower MHC I presentation of tachyzoite antigens by neurons and poor parasite control in vivo. Using conditional MHC I-deficient mice, we find that neuronal MHC I presentation is required for robust restriction of T. gondii in the CNS during chronic phase, showing the importance of MHC I presentation by CNS neurons in the control of a prevalent brain pathogen.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
22 |
18
|
Vasseur V, Van Montagu M, Goldman GH. Trichoderma harzianum genes induced during growth on Rhizoctonia solani cell walls. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 4):767-74. [PMID: 7773384 DOI: 10.1099/13500872-141-4-767] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Trichoderma harzianum is a biocontrol agent that attacks a range of economically important phytopathogenic fungi. In an attempt to identify genes specifically expressed by T. harzianum during growth on cell walls of Rhizoctonia solani, we carried out differential screening of an induced cDNA library. In this paper we report the analysis of the sequence and expression of two cDNA clones that encode putative mycoparasitism-related proteins of T. harzianum. One of these clones corresponds to a gene, inda1, that encodes a protein of 570 amino acids with a predicted molecular mass of 62,853 Da. The predicted amino acid sequence of inda1 showed a high degree of similarity with amino acid permeases from several other organisms. The other cDNA clone corresponds to a gene, indc11, that encodes a novel protein of 340 amino acids with a predicted molecular mass of 37,010 Da. The use of this methodology should provide specific genetic markers to follow mycoparasitism by Trichoderma spp.
Collapse
|
Comparative Study |
30 |
20 |
19
|
Maurice S, Coroller L, Debaets S, Vasseur V, Le Floch G, Barbier G. Modelling the effect of temperature, water activity and pH on the growth of Serpula lacrymans. J Appl Microbiol 2011; 111:1436-46. [DOI: 10.1111/j.1365-2672.2011.05161.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
14 |
20 |
20
|
Buaillon C, Guerrero NA, Cebrian I, Blanié S, Lopez J, Bassot E, Vasseur V, Santi-Rocca J, Blanchard N. MHC I presentation of Toxoplasma gondii immunodominant antigen does not require Sec22b and is regulated by antigen orientation at the vacuole membrane. Eur J Immunol 2017; 47:1160-1170. [PMID: 28508576 DOI: 10.1002/eji.201646859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022]
Abstract
The intracellular Toxoplasma gondii parasite replicates within a parasitophorous vacuole (PV). T. gondii secretes proteins that remain soluble in the PV space, are inserted into PV membranes or are exported beyond the PV boundary. In addition to supporting T. gondii growth, these proteins can be processed and presented by MHC I for CD8+ T-cell recognition. Yet it is unclear whether membrane binding influences the processing pathways employed and if topology of membrane antigens impacts their MHC I presentation. Here we report that the MHC I pathways of soluble and membrane-bound antigens differ in their requirement for host ER recruitment. In contrast to the soluble SAG1-OVA model antigen, we find that presentation of the membrane-bound GRA6 is independent from the SNARE Sec22b, a key molecule for transfer of host endoplasmic reticulum components onto the PV. Using parasites modified to secrete a transmembrane antigen with opposite orientations, we further show that MHC I presentation is highly favored when the C-terminal epitope is exposed to the host cell cytosol, which corresponds to GRA6 natural orientation. Our data suggest that the biochemical properties of antigens released by intracellular pathogens critically guide their processing pathway and are valuable parameters to consider for vaccination strategies.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
20 |
21
|
Allie N, Keeton R, Court N, Abel B, Fick L, Vasseur V, Vacher R, Olleros ML, Drutskaya MS, Guler R, Nedospasov SA, Garcia I, Ryffel B, Quesniaux VFJ, Jacobs M. Limited role for lymphotoxin α in the host immune response to Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2010; 185:4292-301. [PMID: 20817877 DOI: 10.4049/jimmunol.1000650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contribution of lymphotoxin (LT)α in the host immune response to virulent Mycobacterium tuberculosis and Mycobacterium bovis bacillus Calmette-Guérin infections was investigated. Despite their ability to induce Th1 cytokine, IFN-γ, and IL-12 pulmonary response, "conventional" LTα(-/-) mice succumb rapidly to virulent M. tuberculosis aerosol infection, with uncontrolled bacilli growth, defective granuloma formation, necrosis, and reduced pulmonary inducible NO synthase expression, similar to TNF(-/-) mice. Contributions from developmental lymphoid abnormalities in LTα(-/-) mice were excluded because hematopoietic reconstitution with conventional LTα(-/-) bone marrow conferred enhanced susceptibility to wild-type mice, comparable to conventional LTα(-/-) control mice. However, conventional LTα(-/-) mice produced reduced levels of TNF after M. bovis bacillus Calmette-Guérin infection, and their lack of control of mycobacterial infection could be due to a defective contribution of either LTα or TNF, or both, to the host immune response. To address this point, the response of "neo-free" LTα(-/-) mice with unperturbed intrinsic TNF expression to M. tuberculosis infection was investigated in a direct comparative study with conventional LTα(-/-) mice. Strikingly, although conventional LTα(-/-) mice were highly sensitive, similar to TNF(-/-) mice, neo-free LTα(-/-) mice controlled acute M. tuberculosis infection essentially as wild-type mice. Pulmonary bacterial burden and inflammation was, however, slightly increased in neo-free LTα(-/-) mice 4-5 mo postinfection, but importantly, they did not succumb to infection. Our findings revise the notion that LTα might have a critical role in host defense to acute mycobacterial infection, independent of TNF, but suggest a contribution of LTα in the control of chronic M. tuberculosis infection.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
18 |
22
|
Nevarez L, Vasseur V, Le Dréan G, Tanguy A, Guisle-Marsollier I, Houlgatte R, Barbier G. Isolation and analysis of differentially expressed genes in Penicillium glabrum subjected to thermal stress. Microbiology (Reading) 2008; 154:3752-3765. [PMID: 19047743 DOI: 10.1099/mic.0.2008/021386-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
|
17 |
16 |
23
|
Togbe D, Aurore G, Noulin N, Quesniaux VFJ, Schnyder-Candrian S, Schnyder B, Vasseur V, Akira S, Hoebe K, Beutler B, Ryffel B, Couillin I. Nonredundant roles of TIRAP and MyD88 in airway response to endotoxin, independent of TRIF, IL-1 and IL-18 pathways. J Transl Med 2006; 86:1126-35. [PMID: 16983331 DOI: 10.1038/labinvest.3700473] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Inhaled endotoxins induce an acute inflammatory response in the airways mediated through Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). However, the relative roles of the TLR4 adaptor proteins TIRAP and TRIF and of the MyD88-dependent IL-1 and IL-18 receptor pathways in this response are unclear. Here, we demonstrate that endotoxin-induced acute bronchoconstriction, vascular damage resulting in protein leak, Th1 cytokine and chemokine secretion and neutrophil recruitment in the airways are abrogated in mice deficient for either TIRAP or MyD88, but not in TRIF deficient mice. The contribution of other TLR-independent, MyD88-dependent signaling pathways was investigated in IL-1R1, IL-18R and caspase-1 (ICE)-deficient mice, which displayed normal airway responses to endotoxin. In conclusion, the TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin critically depend on the expression of both adaptor proteins, TIRAP and MyD88, suggesting cooperative roles, while TRIF, IL-1R1, IL-18R signaling pathways are dispensable.
Collapse
|
|
19 |
15 |
24
|
Guillon A, Brea-Diakite D, Cezard A, Wacquiez A, Baranek T, Bourgeais J, Picou F, Vasseur V, Meyer L, Chevalier C, Auvet A, Carballido JM, Nadal Desbarats L, Dingli F, Turtoi A, Le Gouellec A, Fauvelle F, Donchet A, Crépin T, Hiemstra PS, Paget C, Loew D, Herault O, Naffakh N, Le Goffic R, Si-Tahar M. Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein. EMBO J 2022; 41:e108306. [PMID: 35506364 PMCID: PMC9194747 DOI: 10.15252/embj.2021108306] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria‐derived succinate that accumulated both in the respiratory fluids of virus‐challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus‐triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate‐dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.
Collapse
|
|
3 |
15 |
25
|
Jacobs M, Samarina A, Grivennikov S, Botha T, Allie N, Fremond C, Togbe D, Vasseur V, Rose S, Erard F, Monteiro A, Quesniaux V, Ryffel B. Reactivation of tuberculosis by tumor necrosis factor neutralization. Eur Cytokine Netw 2007; 18:5-13. [PMID: 17400533 DOI: 10.1684/ecn.2007.0083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tumor necrosis factor (TNF) is required in the control of infection with Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. TNF is essential and non-redundant for forming microbiocidal granulomas, and cannot be replaced by other members of the TNF family. We established a model of latent Mtb infection in mice, allowing investigation of the reactivation of latent Mtb as observed in patients receiving TNF-neutralizing therapy used in rheumatoid arthritis and Crohn's disease. Antibody neutralization of TNF is able to reactivate clinically silent Mtb infection. Using mutant mice expressing solely membrane, but not soluble TNF, we demonstrated that membrane TNF is sufficient to control acute Mtb infection. Therefore, we hypothesize that TNF-neutralizing therapy, sparing membrane TNF, may have an advantage as compared to complete neutralization. In conclusion, endogenous TNF is critical for the control of tuberculosis infection. Genetic absence or pharmacological neutralization of TNF results in uncontrolled infection, while selective neutralization might retain the desired anti-inflammatory effect but reduce the infectious risk.
Collapse
|
Review |
18 |
12 |