1
|
Jenjaroenpun P, Wongsurawat T, Wadley TD, Wassenaar TM, Liu J, Dai Q, Wanchai V, Akel NS, Jamshidi-Parsian A, Franco AT, Boysen G, Jennings ML, Ussery DW, He C, Nookaew I. Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res 2021; 49:e7. [PMID: 32710622 PMCID: PMC7826254 DOI: 10.1093/nar/gkaa620] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 11/14/2022] Open
Abstract
Traditional epitranscriptomics relies on capturing a single RNA modification by antibody or chemical treatment, combined with short-read sequencing to identify its transcriptomic location. This approach is labor-intensive and may introduce experimental artifacts. Direct sequencing of native RNA using Oxford Nanopore Technologies (ONT) can allow for directly detecting the RNA base modifications, although these modifications might appear as sequencing errors. The percent Error of Specific Bases (%ESB) was higher for native RNA than unmodified RNA, which enabled the detection of ribonucleotide modification sites. Based on the %ESB differences, we developed a bioinformatic tool, epitranscriptional landscape inferring from glitches of ONT signals (ELIGOS), that is based on various types of synthetic modified RNA and applied to rRNA and mRNA. ELIGOS is able to accurately predict known classes of RNA methylation sites (AUC > 0.93) in rRNAs from Escherichiacoli, yeast, and human cells, using either unmodified in vitro transcription RNA or a background error model, which mimics the systematic error of direct RNA sequencing as the reference. The well-known DRACH/RRACH motif was localized and identified, consistent with previous studies, using differential analysis of ELIGOS to study the impact of RNA m6A methyltransferase by comparing wild type and knockouts in yeast and mouse cells. Lastly, the DRACH motif could also be identified in the mRNA of three human cell lines. The mRNA modification identified by ELIGOS is at the level of individual base resolution. In summary, we have developed a bioinformatic software package to uncover native RNA modifications.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
133 |
2
|
Abram K, Udaondo Z, Bleker C, Wanchai V, Wassenaar TM, Robeson MS, Ussery DW. Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups. Commun Biol 2021; 4:117. [PMID: 33500552 PMCID: PMC7838162 DOI: 10.1038/s42003-020-01626-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
In this study, more than one hundred thousand Escherichia coli and Shigella genomes were examined and classified. This is, to our knowledge, the largest E. coli genome dataset analyzed to date. A Mash-based analysis of a cleaned set of 10,667 E. coli genomes from GenBank revealed 14 distinct phylogroups. A representative genome or medoid identified for each phylogroup was used as a proxy to classify 95,525 unassembled genomes from the Sequence Read Archive (SRA). We find that most of the sequenced E. coli genomes belong to four phylogroups (A, C, B1 and E2(O157)). Authenticity of the 14 phylogroups is supported by several different lines of evidence: phylogroup-specific core genes, a phylogenetic tree constructed with 2613 single copy core genes, and differences in the rates of gene gain/loss/duplication. The methodology used in this work is able to reproduce known phylogroups, as well as to identify previously uncharacterized phylogroups in E. coli species.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
48 |
3
|
Jun SR, Leuze MR, Nookaew I, Uberbacher EC, Land M, Zhang Q, Wanchai V, Chai J, Nielsen M, Trolle T, Lund O, Buzard GS, Pedersen TD, Wassenaar TM, Ussery DW. Ebolavirus comparative genomics. FEMS Microbiol Rev 2015; 39:764-78. [PMID: 26175035 PMCID: PMC4551310 DOI: 10.1093/femsre/fuv031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/17/2022] Open
Abstract
The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Collapse
|
Review |
10 |
39 |
4
|
Jun SR, Wassenaar TM, Wanchai V, Patumcharoenpol P, Nookaew I, Ussery DW. Suggested mechanisms for Zika virus causing microcephaly: what do the genomes tell us? BMC Bioinformatics 2017; 18:471. [PMID: 29297281 PMCID: PMC5751795 DOI: 10.1186/s12859-017-1894-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Zika virus (ZIKV) is an emerging human pathogen. Since its arrival in the Western hemisphere, from Africa via Asia, it has become a serious threat to pregnant women, causing microcephaly and other neuropathies in developing fetuses. The mechanisms behind these teratogenic effects are unknown, although epidemiological evidence suggests that microcephaly is not associated with the original, African lineage of ZIKV. The sequences of 196 published ZIKV genomes were used to assess whether recently proposed mechanistic explanations for microcephaly are supported by molecular level changes that may have increased its virulence since the virus left Africa. For this we performed phylogenetic, recombination, adaptive evolution and tetramer frequency analyses, and compared protein sequences for the presence of protease cleavage sites, Pfam domains, glycosylation sites, signal peptides, trans-membrane protein domains, and phosphorylation sites. Results Recombination events within or between Asian and Brazilian lineages were not observed, and likewise there were no differences in protease cleavage, glycosylation sites, signal peptides or trans-membrane domains between African and Brazilian strains. The frequency of Retinoic Acid Response Element (RARE) sequences was increased in Brazilian strains. Genetic adaptation was also apparent by tetramer signatures that had undergone major changes in the past but has stabilized in the Brazilian lineage despite subsequent geographic spread, suggesting the viral population presently propagates in the same host species in various regions. Evidence for selection pressure was recognized for several amino acid sites in the Brazilian lineage compared to the African lineage, mainly in nonstructural proteins, especially protein NS4B. A number of these positively selected mutations resulted in an increased potential to be phosphorylated in the Brazilian lineage compared to the African linage, which may have increased their potential to interfere with neural fetal development. Conclusions ZIKV seems to have adapted to a limited number of hosts, including humans, during which its virulence increased. Its protein NS4B, together with NS4A, has recently been shown to inhibit Akt-mTOR signaling in human fetal neural stem cells, a key pathway for brain development. We hypothesize that positive selection of novel phosphorylation sites in the protein NS4B of the Brazilian lineage could interfere with phosphorylation of Akt and mTOR, impairing Akt-mTOR signaling and this may result in an increased risk for developmental neuropathies. Electronic supplementary material The online version of this article (10.1186/s12859-017-1894-3) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
19 |
5
|
Wassenaar TM, Wanchai V, Ussery DW. Comparison of Monkeypox virus genomes from the 2017 Nigeria outbreak and the 2022 outbreak. J Appl Microbiol 2022; 133:3690-3698. [PMID: 36074056 PMCID: PMC9828465 DOI: 10.1111/jam.15806] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 01/12/2023]
Abstract
AIMS The current Monkeypox virus (MPX) outbreak is not only the largest known outbreak to date caused by a strain belonging to the West-African clade, but also results in remarkably different clinical and epidemiological features compared to previous outbreaks of this virus. Here, we consider the possibility that mutations in the viral genome may be responsible for its changed characteristics. METHODS AND RESULTS Six genome sequences of isolates from the current outbreak were compared to five genomes of isolates from the 2017 outbreak in Nigeria and to two historic genomes, all belonging to the West-African clade. We report differences that are consistently present in the 2022 isolates but not in the others. Although some variation in repeat units was observed, only two were consistently found in the 2022 genomes only, and these were located in intergenic regions. A total of 55 single nucleotide polymorphisms were consistently present in the 2022 isolates compared to the 2017 isolates. Of these, 25 caused an amino acid substitution in a predicted protein. CONCLUSIONS The nature of the substitution and the annotation of the affected protein identified potential candidates that might affect the virulence of the virus. These included the viral DNA helicase and transcription factors. SIGNIFICANCE This bioinformatic analysis provides guidance for wet-lab research to identify changed properties of the MPX.
Collapse
|
research-article |
3 |
12 |
6
|
Wanchai V, Jenjaroenpun P, Leangapichart T, Arrey G, Burnham CM, Tümmler MC, Delgado-Calle J, Regenberg B, Nookaew I. CReSIL: accurate identification of extrachromosomal circular DNA from long-read sequences. Brief Bioinform 2022; 23:bbac422. [PMID: 36198068 PMCID: PMC10144670 DOI: 10.1093/bib/bbac422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) of chromosomal origin is found in many eukaryotic species and cell types, including cancer, where eccDNAs with oncogenes drive tumorigenesis. Most studies of eccDNA employ short-read sequencing for their identification. However, short-read sequencing cannot resolve the complexity of genomic repeats, which can lead to missing eccDNA products. Long-read sequencing technologies provide an alternative to constructing complete eccDNA maps. We present a software suite, Construction-based Rolling-circle-amplification for eccDNA Sequence Identification and Location (CReSIL), to identify and characterize eccDNA from long-read sequences. CReSIL's performance in identifying eccDNA, with a minimum F1 score of 0.98, is superior to the other bioinformatic tools based on simulated data. CReSIL provides many useful features for genomic annotation, which can be used to infer eccDNA function and Circos visualization for eccDNA architecture investigation. We demonstrated CReSIL's capability in several long-read sequencing datasets, including datasets enriched for eccDNA and whole genome datasets from cells containing large eccDNA products. In conclusion, the CReSIL suite software is a versatile tool for investigating complex and simple eccDNA in eukaryotic cells.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
11 |
7
|
Sun F, Cheng Y, Wanchai V, Guo W, Mery D, Xu H, Gai D, Siegel E, Bailey C, Ashby C, Al Hadidi S, Schinke C, Thanendrarajan S, Ma Y, Yi Q, Orlowski RZ, Zangari M, van Rhee F, Janz S, Bishop G, Tricot G, Shaughnessy JD, Zhan F. Bispecific BCMA/CD24 CAR-T cells control multiple myeloma growth. Nat Commun 2024; 15:615. [PMID: 38242888 PMCID: PMC10798961 DOI: 10.1038/s41467-024-44873-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Anti-multiple myeloma B cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T-cell therapies represent a promising treatment strategy with high response rates in myeloma. However, durable cures following anti-BCMA CAR-T cell treatment of myeloma are rare. One potential reason is that a small subset of minimal residual myeloma cells seeds relapse. Residual myeloma cells following BCMA-CAR-T-mediated treatment show less-differentiated features and express stem-like genes, including CD24. CD24-positive myeloma cells represent a large fraction of residual myeloma cells after BCMA-CAR-T therapy. In this work, we develop CD24-CAR-T cells and test their ability to eliminate myeloma cells. We find that CD24-CAR-T cells block the CD24-Siglec-10 pathway, thereby enhancing macrophage phagocytic clearance of myeloma cells. Additionally, CD24-CAR-T cells polarize macrophages to a M1-like phenotype. A dual-targeted BCMA-CD24-CAR-T exhibits improved efficacy compared to monospecific BCMA-CAR-T-cell therapy. This work presents an immunotherapeutic approach that targets myeloma cells and promotes tumor cell clearance by macrophages.
Collapse
|
research-article |
1 |
11 |
8
|
Wassenaar TM, Wanchai V, Buzard G, Ussery DW. The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. FEMS Microbiol Rev 2022; 46:fuac003. [PMID: 35076068 PMCID: PMC9075578 DOI: 10.1093/femsre/fuac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
The genomic diversity of SARS-CoV-2 is the result of a relatively low level of spontaneous mutations introduced during viral replication. With millions of SARS-CoV-2 genome sequences now available, we can begin to assess the overall genetic repertoire of this virus. We find that during 2020, there was a global wave of one variant that went largely unnoticed, possibly because its members were divided over several sublineages (B.1.177 and sublineages B.1.177.XX). We collectively call this Janus, and it was eventually replaced by the Alpha (B.1.1.7) variant of concern (VoC), next replaced by Delta (B.1.617.2), which itself might soon be replaced by a fourth pandemic wave consisting of Omicron (B.1.1.529). We observe that splitting up and redefining variant lineages over time, as was the case with Janus and is now happening with Alpha, Delta and Omicron, is not helpful to describe the epidemic waves spreading globally. Only ∼5% of the 30 000 nucleotides of the SARS-CoV-2 genome are found to be variable. We conclude that a fourth wave of the pandemic with the Omicron variant might not be that different from other VoCs, and that we may already have the tools in hand to effectively deal with this new VoC.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
10 |
9
|
Jenjaroenpun P, Wongsurawat T, Wadley TD, Wassenaar TM, Liu J, Dai Q, Wanchai V, Akel NS, Jamshidi-Parsian A, Franco AT, Boysen G, Jennings ML, Ussery DW, He C, Nookaew I. Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res 2021; 49:e7. [PMID: 32710622 DOI: 10.1101/487819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 05/25/2023] Open
Abstract
Traditional epitranscriptomics relies on capturing a single RNA modification by antibody or chemical treatment, combined with short-read sequencing to identify its transcriptomic location. This approach is labor-intensive and may introduce experimental artifacts. Direct sequencing of native RNA using Oxford Nanopore Technologies (ONT) can allow for directly detecting the RNA base modifications, although these modifications might appear as sequencing errors. The percent Error of Specific Bases (%ESB) was higher for native RNA than unmodified RNA, which enabled the detection of ribonucleotide modification sites. Based on the %ESB differences, we developed a bioinformatic tool, epitranscriptional landscape inferring from glitches of ONT signals (ELIGOS), that is based on various types of synthetic modified RNA and applied to rRNA and mRNA. ELIGOS is able to accurately predict known classes of RNA methylation sites (AUC > 0.93) in rRNAs from Escherichiacoli, yeast, and human cells, using either unmodified in vitro transcription RNA or a background error model, which mimics the systematic error of direct RNA sequencing as the reference. The well-known DRACH/RRACH motif was localized and identified, consistent with previous studies, using differential analysis of ELIGOS to study the impact of RNA m6A methyltransferase by comparing wild type and knockouts in yeast and mouse cells. Lastly, the DRACH motif could also be identified in the mRNA of three human cell lines. The mRNA modification identified by ELIGOS is at the level of individual base resolution. In summary, we have developed a bioinformatic software package to uncover native RNA modifications.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
10 |
10
|
Abstract
BACKGROUND It is well-known that genome sequencing technologies are becoming significantly cheaper and faster. As a result of this, the exponential growth in sequencing data in public databases allows us to explore ever growing large collections of genome sequences. However, it is less known that the majority of available sequenced genome sequences in public databases are not complete, drafts of varying qualities. We have calculated quality scores for around 100,000 bacterial genomes from all major genome repositories and put them in a fast and easy-to-use database. RESULTS Prokaryotic genomic data from all sources were collected and combined to make a non-redundant set of bacterial genomes. The genome quality score for each was calculated by four different measurements: assembly quality, number of rRNA and tRNA genes, and the occurrence of conserved functional domains. The dataBase of Bacterial Quality scores (dBBQs) was designed to store and retrieve quality scores. It offers fast searching and download features which the result can be used for further analysis. In addition, the search results are shown in interactive JavaScript chart framework using DC.js. The analysis of quality scores across major public genome databases find that around 68% of the genomes are of acceptable quality for many uses. CONCLUSIONS dBBQs (available at http://arc-gem.uams.edu/dbbqs ) provides genome quality scores for all available prokaryotic genome sequences with a user-friendly Web-interface. These scores can be used as cut-offs to get a high-quality set of genomes for testing bioinformatics tools or improving the analysis. Moreover, all data of the four measurements that were combined to make the quality score for each genome, which can potentially be used for further analysis. dBBQs will be updated regularly and is freely use for non-commercial purpose.
Collapse
|
research-article |
8 |
7 |
11
|
Cabal A, Jun SR, Jenjaroenpun P, Wanchai V, Nookaew I, Wongsurawat T, Burgess MJ, Kothari A, Wassenaar TM, Ussery DW. Genome-Based Comparison of Clostridioides difficile: Average Amino Acid Identity Analysis of Core Genomes. MICROBIAL ECOLOGY 2018; 76:801-813. [PMID: 29445826 PMCID: PMC6132499 DOI: 10.1007/s00248-018-1155-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Infections due to Clostridioides difficile (previously known as Clostridium difficile) are a major problem in hospitals, where cases can be caused by community-acquired strains as well as by nosocomial spread. Whole genome sequences from clinical samples contain a lot of information but that needs to be analyzed and compared in such a way that the outcome is useful for clinicians or epidemiologists. Here, we compare 663 public available complete genome sequences of C. difficile using average amino acid identity (AAI) scores. This analysis revealed that most of these genomes (640, 96.5%) clearly belong to the same species, while the remaining 23 genomes produce four distinct clusters within the Clostridioides genus. The main C. difficile cluster can be further divided into sub-clusters, depending on the chosen cutoff. We demonstrate that MLST, either based on partial or full gene-length, results in biased estimates of genetic differences and does not capture the true degree of similarity or differences of complete genomes. Presence of genes coding for C. difficile toxins A and B (ToxA/B), as well as the binary C. difficile toxin (CDT), was deduced from their unique PfamA domain architectures. Out of the 663 C. difficile genomes, 535 (80.7%) contained at least one copy of ToxA or ToxB, while these genes were missing from 128 genomes. Although some clusters were enriched for toxin presence, these genes are variably present in a given genetic background. The CDT genes were found in 191 genomes, which were restricted to a few clusters only, and only one cluster lacked the toxin A/B genes consistently. A total of 310 genomes contained ToxA/B without CDT (47%). Further, published metagenomic data from stools were used to assess the presence of C. difficile sequences in blinded cases of C. difficile infection (CDI) and controls, to test if metagenomic analysis is sensitive enough to detect the pathogen, and to establish strain relationships between cases from the same hospital. We conclude that metagenomics can contribute to the identification of CDI and can assist in characterization of the most probable causative strain in CDI patients.
Collapse
|
Comparative Study |
7 |
3 |
12
|
Sun F, Cheng Y, Ying J, Mery D, Al Hadidi S, Wanchai V, Siegel ER, Xu H, Gai D, Ashby TC, Bailey C, Chen JR, Schinke C, Thanendrarajan S, Zangari M, Janz S, Barlogie B, Van Rhee F, Tricot G, Shaughnessy JD, Zhan F. A gene signature can predict risk of MGUS progressing to multiple myeloma. J Hematol Oncol 2023; 16:70. [PMID: 37386588 PMCID: PMC10308756 DOI: 10.1186/s13045-023-01472-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023] Open
Abstract
Multiple myeloma is preceded by monoclonal gammopathy of undetermined significance (MGUS). Serum markers are currently used to stratify MGUS patients into clinical risk groups. A molecular signature predicting MGUS progression has not been produced. We have explored the use of gene expression profiling to risk-stratify MGUS and developed an optimized signature based on large samples with long-term follow-up. Microarrays of plasma cell mRNA from 334 MGUS with stable disease and 40 MGUS that progressed to MM within 10 years, was used to define a molecular signature of MGUS risk. After a three-fold cross-validation analysis, the top thirty-six genes that appeared in each validation and maximized the concordance between risk score and MGUS progression were included in the gene signature (GS36). The GS36 accurately predicted MGUS progression (C-statistic is 0.928). An optimal cut-point for risk of progression by the GS36 score was found to be 0.7, which identified a subset of 61 patients with a 10-year progression probability of 54.1%. The remainder of the 313 patients had a probability of progression of only 2.2%. The sensitivity and specificity were 82.5% and 91.6%. Furthermore, combination of GS36, free light chain ratio and immunoparesis identified a subset of MGUS patients with 82.4% risk of progression to MM within 10 years. A gene expression signature combined with serum markers created a highly robust model for predicting risk of MGUS progression. These findings strongly support the inclusion of genomic analysis in the management of MGUS to identify patients who may benefit from more frequent monitoring.
Collapse
|
Letter |
2 |
3 |
13
|
Wanchai V, Jin J, Bircan E, Eng C, Orloff M. Genome-wide tracts of homozygosity and exome analyses reveal repetitive elements with Barrets esophagus/esophageal adenocarcinoma risk. BMC Bioinformatics 2019; 20:98. [PMID: 30871476 PMCID: PMC6419328 DOI: 10.1186/s12859-019-2622-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Barrett's esophagus (BE) is most commonly seen as the condition in which the normal squamous epithelium lining of the esophagus is replaced by goblet cells. Many studies show that BE is a predisposing factor for the development of esophageal adenocarcinoma (EAC), a particularly lethal cancer. The use of single nucleotide polymorphisms (SNPs) to map BE/EAC genes has previously provided insufficient genetic information to fully characterize the heterogeneous nature of the disease. We therefore hypothesize that rigorous interrogation of other types of genomic changes, e.g. tracts of homozygosity (TOH), repetitive elements, and insertion/deletions, may provide a comprehensive understanding of the development of BE/EAC. RESULTS First, we used a case-control framework to identify TOHs by using SNPs and tested for association with BE/EAC. Second, we used a case only approach on a validation series of eight samples subjected to exome sequencing to identify repeat elements and insertion/deletions. Third, insertion/deletions and repeat elements identified in the exomes were then mapped onto genes in the significant TOH regions. Overall, 24 TOH regions were significantly differentially represented among cases, as compared to controls (adjusted-P = 0.002-0.039). Interestingly, four BE/EAC-associated genes within the TOH regions consistently showed insertions and deletions that overlapped across eight exomes. Predictive functional analysis identified NOTCH, WNT, and G-protein inflammation pathways that affect BE and EAC. CONCLUSIONS The integration of common TOHs (cTOHs) with repetitive elements, insertions, and deletions within exomes can help functionally prioritize factors contributing to low to moderate penetrance predisposition to BE/EAC.
Collapse
|
research-article |
6 |
1 |
14
|
Wadley T, Moon SH, DeMott MS, Wanchai V, Huang E, Dedon PC, Boysen G, Nookaew I. Nanopore Sequencing for Detection and Characterization of Phosphorothioate Modifications in Native DNA Sequences. Front Microbiol 2022; 13:871937. [PMID: 35531280 PMCID: PMC9069010 DOI: 10.3389/fmicb.2022.871937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial DNA is subject to various modifications involved in gene regulation and defense against bacteriophage attacks. Phosphorothioate (PT) modifications are protective modifications in which the non-bridging oxygen in the DNA phosphate backbone is replaced with a sulfur atom. Here, we expand third-generation sequencing techniques to allow for the sequence-specific mapping of DNA modifications by demonstrating the application of Oxford Nanopore Technologies (ONT) and the ELIGOS software package for site-specific detection and characterization of PT modifications. The ONT/ELIGOS platform accurately detected PT modifications in a plasmid carrying synthetic PT modifications. Subsequently, studies were extended to the genome-wide mapping of PT modifications in the Salmonella enterica genomes within the wild-type strain and strains lacking the PT regulatory gene dndB (ΔdndB) or the PT synthetic gene dndC (ΔdndC). PT site-specific signatures were observed in the established motifs of GAAC/GTTC. The PT site locations were in close agreement with PT sites previously identified using the Nick-seq technique. Compared to the wild-type strain, the number of PT modifications are 1.8-fold higher in ΔdndB and 25-fold lower in ΔdndC, again consistent with known regulation of the dnd operon. These results demonstrate the suitability of the ONT platform for accurate detection and identification of the unusual PT backbone modifications in native genome sequences.
Collapse
|
|
3 |
1 |
15
|
Cheng Y, Sun F, Alapat DV, Wanchai V, Mery D, Siegel ER, Xu H, Johnson S, Guo W, Bailey C, Ashby C, Bauer MA, Hadidi SA, Schinke C, Thanendrarajan S, Zangari M, van Rhee F, Tricot G, Shaughnessy JD, Zhan F. Multi-omics reveal immune microenvironment alterations in multiple myeloma and its precursor stages. Blood Cancer J 2024; 14:194. [PMID: 39505839 PMCID: PMC11541562 DOI: 10.1038/s41408-024-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Tumor immune microenvironmental alterations occur early in multiple myeloma (MM) development. In this study, we aim to systematically characterize the tumor immune microenvironment (TME) and the tumor-immune interactions from precursor stages, i.e., monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM), to newly diagnosed MM, comparing these to healthy donors. Using CIBERSORT, mass cytometry (CyTOF), and single-cell RNA sequencing (scRNA-Seq), we examined innate and adaptive immune changes across these stages. We found a decrease in granulocytes in the TME predicts MM outcomes. HLA-DR is reduced in CD16+ monocytes and plasmacytoid dendritic cells, while myeloid dendritic cells show decreased expression of stress and immune-response genes. NK cells and CD8+ T cells shift from a GZMK+ to a GZMB+ cytotoxic phenotype in the TME, with increased inhibitory markers TIM3 and TIGIT. In paired samples, the proportion and gene expression pattern in patient-specific GZMB+CD8+ T cells remain largely unchanged despite MM progression. Our findings provide a comprehensive immune landscape of MM and its precursors, offering insights into therapeutic strategies. Enhancing neutrophil and NK cell cytotoxicity, tumor antigen presentation, and CD8+ T cell versatility in precursor stages may prevent MM progression.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
16
|
Nookaew I, Xiong J, Onal M, Bustamante-Gomez C, Wanchai V, Fu Q, Kim HN, Almeida M, O'Brien CA. Refining the identity of mesenchymal cell types associated with murine periosteal and endosteal bone. J Biol Chem 2024; 300:107158. [PMID: 38479598 PMCID: PMC11007436 DOI: 10.1016/j.jbc.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Single-cell RNA-seq has led to novel designations for mesenchymal cells associated with bone as well as multiple designations for what appear to be the same cell type. The main goals of this study were to increase the amount of single-cell RNA sequence data for osteoblasts and osteocytes, to compare cells from the periosteum to those inside bone, and to clarify the major categories of cell types associated with murine bone. We created an atlas of murine bone-associated cells by harmonizing published datasets with in-house data from cells targeted by Osx1-Cre and Dmp1-Cre driver strains. Cells from periosteal bone were analyzed separately from those isolated from the endosteum and trabecular bone. Over 100,000 mesenchymal cells were mapped to reveal 11 major clusters designated fibro-1, fibro-2, chondrocytes, articular chondrocytes, tenocytes, adipo-Cxcl12 abundant reticular (CAR), osteo-CAR, preosteoblasts, osteoblasts, osteocytes, and osteo-X, the latter defined in part by periostin expression. Osteo-X, osteo-CAR, and preosteoblasts were closely associated with osteoblasts at the trabecular bone surface. Wnt16 was expressed in multiple cell types from the periosteum but not in cells from endocortical or cancellous bone. Fibro-2 cells, which express markers of stem cells, localized to the periosteum but not trabecular bone in adult mice. Suppressing bone remodeling eliminated osteoblasts and altered gene expression in preosteoblasts but did not change the abundance or location of osteo-X or osteo-CAR cells. These results provide a framework for identifying bone cell types in murine single-cell RNA-seq datasets and suggest that osteoblast progenitors reside near the surface of remodeling bone.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
17
|
Wongsurawat T, Jenjaroenpun P, Wanchai V, Nookaew I. Native RNA or cDNA Sequencing for Transcriptomic Analysis: A Case Study on Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022; 10:842299. [PMID: 35497361 PMCID: PMC9039254 DOI: 10.3389/fbioe.2022.842299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Direct sequencing of single molecules through nanopores allows for accurate quantification and full-length characterization of native RNA or complementary DNA (cDNA) without amplification. Both nanopore-based native RNA and cDNA approaches involve complex transcriptome procedures at a lower cost. However, there are several differences between the two approaches. In this study, we perform matched native RNA sequencing and cDNA sequencing to enable relevant comparisons and evaluation. Using Saccharomyces cerevisiae, a eukaryotic model organism widely used in industrial biotechnology, two different growing conditions are considered for comparison, including the poly-A messenger RNA isolated from yeast cells grown in minimum media under respirofermentative conditions supplemented with glucose (glucose growth conditions) and from cells that had shifted to ethanol as a carbon source (ethanol growth conditions). Library preparation for direct RNA sequencing is shorter than that for direct cDNA sequencing. The sequence characteristics of the two methods were different, such as sequence yields, quality score of reads, read length distribution, and mapped on reference ability of reads. However, differential gene expression analyses derived from the two approaches are comparable. The unique feature of direct RNA sequencing is RNA modification; we found that the RNA modification at the 5' end of a transcript was underestimated due to the 3' bias behavior of the direct RNA sequencing. Our comprehensive evaluation from this work could help researchers make informed choices when selecting an appropriate long-read sequencing method for understanding gene functions, pathways, and detailed functional characterization.
Collapse
|
research-article |
3 |
|
18
|
Wanchai V, Nookaew I, Ussery DW. ProdMX: Rapid query and analysis of protein functional domain based on compressed sparse matrices. Comput Struct Biotechnol J 2020; 18:3890-3896. [PMID: 33335686 PMCID: PMC7719867 DOI: 10.1016/j.csbj.2020.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/26/2022] Open
Abstract
Large-scale protein analysis has been used to characterize large numbers of proteins across numerous species. One of the applications is to use as a high-throughput screening method for pathogenicity of genomes. Unlike sequence homology methods, protein comparison at a functional level provides us with a unique opportunity to classify proteins, based on their functional structures without dealing with sequence complexity of distantly related species. Protein functions can be abstractly described by a set of protein functional domains, such as PfamA domains; a set of genomes can then be mapped to a matrix, with each row representing a genome, and the columns representing the presence or absence of a given functional domain. However, a powerful tool is needed to analyze the large sparse matrices generated by millions of genomes that will become available in the near future. The ProdMX is a tool with user-friendly utilities developed to facilitate high-throughput analysis of proteins with an ability to be included as an effective module in the high-throughput pipeline. The ProdMX employs a compressed sparse matrix algorithm to reduce computational resources and time used to perform the matrix manipulation during functional domain analysis. The ProdMX is a free and publicly available Python package which can be installed with popular package mangers such as PyPI and Conda, or with a standard installer from source code available on the ProdMX GitHub repository at https://github.com/visanuwan/prodmx.
Collapse
|
|
5 |
|
19
|
Nookaew I, Xiong J, Onal M, Bustamante-Gomez C, Wanchai V, Fu Q, Kim HN, Almeida M, O’Brien CA. A framework for defining mesenchymal cell types associated with murine periosteal and endosteal bone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567528. [PMID: 38014179 PMCID: PMC10680810 DOI: 10.1101/2023.11.17.567528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Single-cell RNA sequencing has led to numerous novel designations for mesenchymal cell types associated with bone. Consequently, there are now multiple designations for what appear to be the same cell type. In addition, existing datasets contain relatively small numbers of mature osteoblasts and osteocytes and there has been no comparison of periosteal bone cells to those at the endosteum and trabecular bone. The main goals of this study were to increase the amount of single cell RNA sequence data for osteoblasts and osteocytes, to compare cells from the periosteum to those inside bone, and to clarify the major categories of cell types associated with murine bone. To do this, we created an atlas of murine bone-associated cells by harmonizing published datasets with in-house data from cells targeted by Osx1-Cre and Dmp1-Cre driver strains. Cells from periosteal bone were analyzed separately from those isolated from the endosteum and trabecular bone. Over 100,000 mesenchymal cells were mapped to reveal 11 major clusters designated fibro-1, fibro-2, chondrocytes, articular chondrocytes, tenocytes, adipo-CAR, osteo-CAR, pre-osteoblasts, osteoblasts, osteocytes, and osteo-X, the latter defined in part by Postn expression. Osteo-X, osteo-CAR, and pre-osteoblasts were closely associated with osteoblasts at the trabecular bone surface. Wnt16 was expressed in multiple cell types from the periosteum but not in any cells from endocortical or cancellous bone. Fibro-2 cells, which express markers of skeletal stem cells, localized to the periosteum but not trabecular bone in adult mice. Suppressing bone remodeling eliminated osteoblasts and altered gene expression in pre-osteoblasts but did not change the abundance or location of osteo-X or osteo-CAR cells. These results provide a framework for identifying bone cell types in murine single cell RNA sequencing datasets and suggest that osteoblast progenitors reside near the surface of remodeling bone.
Collapse
|
Preprint |
2 |
|
20
|
Wassenaar TM, Harville T, Chastain J, Wanchai V, Ussery DW. DNA structural features and variability of complete MHC locus sequences. FRONTIERS IN BIOINFORMATICS 2024; 4:1392613. [PMID: 39022183 PMCID: PMC11251971 DOI: 10.3389/fbinf.2024.1392613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The major histocompatibility (MHC) locus, also known as the Human Leukocyte Antigen (HLA) genes, is located on the short arm of chromosome 6, and contains three regions (Class I, Class II and Class III). This 5 Mbp locus is one of the most variable regions of the human genome, yet it also encodes a set of highly conserved and important proteins related to immunological response. Genetic variations in this region are responsible for more diseases than in the entire rest of the human genome. However, information on local structural features of the DNA is largely ignored. With recent advances in long-read sequencing technology, it is now becoming possible to sequence the entire 5 Mbp MHC locus, producing complete diploid haplotypes of the whole region. Here, we describe structural maps based on the complete sequences from six different homozygous HLA cell lines. We find long-range structural variability in the different sequences for DNA stacking energy, position preference and curvature, variation in repeats, as well as more local changes in regions forming open chromatin structures, likely to influence gene expression levels. These structural maps can be useful in visualizing large scale structural variation across HLA types, in particular when this can be complemented with epigenetic signals.
Collapse
|
Review |
1 |
|
21
|
Sun F, Cheng Y, Chen JR, Wanchai V, Mery DE, Xu H, Gai D, Al Hadidi S, Schinke C, Thanendrarajan S, Zangari M, van Rhee F, Tricot G, Shaughnessy JD, Zhan F. BCMA- and CST6-specific CAR T cells lyse multiple myeloma cells and suppress murine osteolytic lesions. J Clin Invest 2024; 134:e171396. [PMID: 37883186 PMCID: PMC10760955 DOI: 10.1172/jci171396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
We have previously demonstrated that cystatin E/M (CST6), which is elevated in a subset of patients with multiple myeloma (MM) lacking osteolytic lesions (OLs), suppresses MM bone disease by blocking osteoclast differentiation and function. CST6 is a secreted type 2 cystatin, a cysteine protease inhibitor that regulates lysosomal cysteine proteases and the asparaginyl endopeptidase legumain. Here, we developed B cell maturation antigen (BCMA) CST6 chimeric antigen receptor T cells (CAR-T cells), which lysed MM cells and released CST6 proteins. Our in vitro studies show that these CAR-T cells suppressed the differentiation and formation of tartrate-resistant acid phosphatase-positive (TRAP+) osteoclasts. Using xenografted MM mice, bioluminescence images showed that both BCMA-CAR-T and BCMA-CST6-CAR-T cells inhibited MM growth to a similar extent. Reconstructed micro-computed tomography images revealed that BCMA-CST6-CAR-T cells, but not BCMA-CAR-T cells, prevented MM-induced bone damage and decreased osteoclast numbers. Our results provide a CAR-T strategy that targets tumor cells directly and delivers an inhibitor of bone resorption.
Collapse
|
research-article |
1 |
|
22
|
Wassenaar TM, Wanchai V, Buzard GS, Ussery DW. In silico Selection of Amplification Targets for Rapid Polymorphism Screening in Ebola Virus Outbreaks. Front Microbiol 2019; 10:857. [PMID: 31080442 PMCID: PMC6497787 DOI: 10.3389/fmicb.2019.00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Abstract
To achieve maximum transmission chain tracking in the current Ebola outbreak, whole genome sequencing (WGS) has been proposed to provide optimal information. However, WGS remains a costly and time-intensive procedure that is poorly suited for the large numbers of samples being generated, especially under severe time and work-environment constraints as in the present DRC outbreak. To better prepare for future outbreaks, where an apparent single outbreak may actually represent overlapping outbreaks caused by independent variants, and where rapid identification of emerging new transmission chains will be essential, a more practical method would be to amplify and sequence genomic areas that reveal the highest information to differentiate EBOV variants. We have identified four highly informative polymorphism PCR sequencing targets, suitable for rapid tracing of transmission chains and identification of new sources of Ebola outbreaks, an approach which will be far more practical in the field than WGS.
Collapse
|
Journal Article |
6 |
|
23
|
Guo W, Strouse C, Mery D, Siegel ER, Munshi MN, Ashby TC, Cheng Y, Sun F, Wanchai V, Zhang Z, Bailey C, Alapat DV, Peng H, Al Hadidi S, Thanendrarajan S, Schinke C, Zangari M, van Rhee F, Tricot G, Shaughnessy JD, Zhan F. A Risk Stratification System in Myeloma Patients with Autologous Stem Cell Transplantation. Cancers (Basel) 2024; 16:1116. [PMID: 38539451 PMCID: PMC10969019 DOI: 10.3390/cancers16061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 06/26/2024] Open
Abstract
Autologous stem cell transplantation (ASCT) has been a mainstay in myeloma treatment for over three decades, but patient prognosis post-ASCT varies significantly. In a retrospective study of 5259 patients with multiple myeloma (MM) at the University of Arkansas for Medical Sciences undergoing ASCT with a median 57-month follow-up, we divided the dataset into training (70%) and validation (30%) subsets. Employing univariable and multivariable Cox analyses, we systematically assessed 29 clinical variables, identifying crucial adverse prognostic factors, such as extended duration between MM diagnosis and ASCT, elevated serum ferritin, and reduced transferrin levels. These factors could enhance existing prognostic models. Additionally, we pinpointed significant poor prognosis markers like high serum calcium and low platelet counts, though they are applicable to a smaller patient population. Utilizing seven easily accessible high-risk variables, we devised a four-stage system (ATM4S) with primary stage borders determined through K-adaptive partitioning. This staging system underwent validation in both the training dataset and an independent cohort of 514 ASCT-treated MM patients from the University of Iowa. We also explored cytogenetic risk factors within this staging system, emphasizing its potential clinical utility for refining prognostic assessments and guiding personalized treatment approaches.
Collapse
|
research-article |
1 |
|
24
|
Cheng Y, Sun F, Alapat DV, Wanchai V, Mery D, Guo W, Cao H, Zhu Y, Ashby C, Bauer MA, Nookaew I, Siegel ER, Ying J, Chen JR, Gai D, Peng B, Xu H, Bailey C, Al Hadidi S, Schinke C, Thanendrarajan S, Zangari M, Chesi M, Bergsagel PL, van Rhee F, Janz S, Tricot G, Shaughnessy JD, Zhan F. High NEK2 expression in myeloid progenitors suppresses T cell immunity in multiple myeloma. Cell Rep Med 2023; 4:101214. [PMID: 37794587 PMCID: PMC10591052 DOI: 10.1016/j.xcrm.2023.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/21/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Multiple myeloma (MM) growth is supported by an immune-tolerant bone marrow microenvironment. Here, we find that loss of Never in mitosis gene A (NIMA)-related kinase 2 (NEK2) in tumor microenvironmental cells is associated with MM growth suppression. The absence of NEK2 leads to both fewer tumor-associated macrophages (TAMs) and inhibitory T cells. NEK2 expression in myeloid progenitor cells promotes the generation of functional TAMs when stimulated with MM conditional medium. Clinically, high NEK2 expression in MM cells is associated with increased CD8+ T effector memory cells, while low NEK2 is associated with an IFN-γ gene signature and activated T cell response. Inhibition of NEK2 upregulates PD-L1 expression in MM cells and myeloid cells. In a mouse model, the combination of NEK2 inhibitor INH154 with PD-L1 blockade effectively eliminates MM cells and prolongs survival. Our results provide strong evidence that NEK2 inhibition may overcome tumor immune escape and support its further clinical development.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|